当前位置:文档之家› linux下i2c驱动源码详解

linux下i2c驱动源码详解

linux下i2c驱动源码详解
linux下i2c驱动源码详解

Linux i2c驱动详细分析.

首先在S3C2440平台的初始化函数中,主要是将开发平台的设备注册进了系统,也就是将device注册到了platform虚拟的总线上,并进行了一些初始化的工作,这里我们只关注I2C的部分。

static void __init smdk2440_machine_init(void)

{

s3c24xx_fb_set_platdata(&smdk2440_fb_info);

s3c_i2c0_set_platdata(NULL);

platform_add_devices(smdk2440_devices,

ARRAY_SIZE(smdk2440_devices));

smdk_machine_init();

}

s3c_i2c0_set_platdata()函数将S3C2440上的I2C控制器进行了一些初始化,但是并没有写入硬件寄存器,仅仅是保存在了

s3c2410_platform_i2c结构体中。

void __init s3c_i2c0_set_platdata(struct s3c2410_platform_i2c *pd)

{

struct s3c2410_platform_i2c *npd;

if (!pd)

pd = &default_i2c_data0;

npd = kmemdup(pd, sizeof(struct s3c2410_platform_i2c),

GFP_KERNEL);

if (!npd)

printk(KERN_ERR "%s: no memory for platform data\n",

__func__);

else if (!npd->cfg_gpio)

npd->cfg_gpio = s3c_i2c0_cfg_gpio;

/* s3c_i2c0_cfg_gpio为 配置I2C控制器GPIO函数指针 */ s3c_device_i2c0.dev.platform_data = npd;

/*最后将struct device 中的platform_data指针直指向了初始化后的 s3c2410_platform_i2c结构体 */

}

函数s3c_i2c0_cfg_gpio()很简单,实际上就是配置GPIO为I2C的工作模式

void s3c_i2c0_cfg_gpio(struct platform_device *dev)

{

s3c2410_gpio_cfgpin(S3C2410_GPE(15), S3C2410_GPE15_IICSDA);

s3c2410_gpio_cfgpin(S3C2410_GPE(14), S3C2410_GPE14_IICSCL); }

s3c_i2c0_set_platdata(struct s3c2410_platform_i2c *pd)函数实际上就是把初始化数据段中的default_i2c_data0结构体复制过来,然后对GPIO进行配置的函数指针进行了初始化。default_i2c_data0结构体如下:

static struct s3c2410_platform_i2c default_i2c_data0

__initdata = {

.flags = 0,

.slave_addr = 0x10,

.frequency = 100*1000,

.sda_delay = 100,

};

s3c2410_platform_i2c结构体原型如下,根据英文注释即可大致理解其意思

/**

* struct s3c2410_platform_i2c - Platform data for s3c I2C. * @bus_num: The bus number to use (if possible).

* @flags: Any flags for the I2C bus (E.g.

S3C_IICFLK_FILTER).

* @slave_addr: The I2C address for the slave device (if enabled).

* @frequency: The desired frequency in Hz of the bus. This is

* guaranteed to not be exceeded. If the caller does

* not care, use zero and the driver will select a

* useful default.

* @sda_delay: The delay (in ns) applied to SDA edges.

* @cfg_gpio: A callback to configure the pins for I2C

operation.

*/

struct s3c2410_platform_i2c {

int bus_num;

unsigned int flags;

unsigned int slave_addr;

unsigned long frequency;

unsigned int sda_delay;

void (*cfg_gpio)(struct platform_device *dev);

};

在函数smdk2440_machine_init(void)中,调用了

platform_add_devices(smdk2440_devices,

ARRAY_SIZE(smdk2440_devices));

即将smdk2440_devices结构体数组中platform_device添加到了系统中,也就是添加到了platform总线上。smdk2440_devices的具体内容如下:

static struct platform_device *smdk2440_devices[] __initdata = {

&s3c_device_usb,

&s3c_device_lcd,

&s3c_device_wdt,

&s3c_device_i2c0,

&s3c_device_iis,

&s3c_device_dm9000,

&s3c_device_rtc,

};

其中s3c_device_i2c0保存了S3C2440中的I2C控制器的一些内部资源等信息,具体内容如下:

struct platform_device s3c_device_i2c0 = {

.name = "s3c2410-i2c",

/*设备名,platform总线的match函数中会用设备名和驱动名的比较来绑定设备和驱动程序*/

#ifdef CONFIG_S3C_DEV_I2C1

.id = 0,

#else

.id = -1,

#endif

.num_resources = ARRAY_SIZE(s3c_i2c_resource),

.resource = s3c_i2c_resource,

};

其中s3c_i2c_resource结构体保存了S3C2440中I2C控制器寄存器的物理地址和中断号等具体的硬件信息。

static struct resource s3c_i2c_resource[] = {

[0] = {

.start = S3C_PA_IIC,

.end = S3C_PA_IIC + SZ_4K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = IRQ_IIC,

.end = IRQ_IIC,

.flags = IORESOURCE_IRQ,

},

};

在后面注册具体设备驱动时也会添加到paltform总线上,platform 总线会将具体的设备和驱动进行绑定,这样驱动就可以操作具体的设备了。platform实际上是一个虚拟的总线,本质上也是一个设备。

好了,上面是一些板级的硬件设备资源向系统的注册,没有设计到具体的硬件操作,在加载驱动程序时,驱动程序会根据已经注册到系统的具体设备的硬件资源进行初始化,也就是进行一些硬件操作,控制硬件设备的正常工作,下面来分析驱动程序的加载过程。

S3C2440平台上的I2C的驱动程序

在linux/drivers/i2c/busses/i2c-s3c2410.c文件中,

在驱动的加载程序中,将platform_driver类型的

s3c24xx_i2c_driver注册到了系统中。

static int __init i2c_adap_s3c_init(void)

{

return platform_driver_register(&s3c24xx_i2c_driver);

}

分析platform_driver_register(&s3c24xx_i2c_driver);的源代码可知,实际上是将s3c24xx_i2c_driver注册到了platform总线上。

int platform_driver_register(struct platform_driver *drv) {

drv->driver.bus = &platform_bus_type;

/*将device_driver中的probe,remove,shutdown函数指针指

向platform_driver中的函数,后面进行驱动和设备绑定后会调用probe 函数 */

if (drv->probe)

drv->driver.probe = platform_drv_probe;

if (drv->remove)

drv->driver.remove = platform_drv_remove;

if (drv->shutdown)

drv->driver.shutdown = platform_drv_shutdown;

return driver_register(&drv->driver);

}

下图即为Linux 2.6中引入的设备驱动模型的结构图(只是个总体框架,并不是指这的platform总线,设备和驱动)。

总线上包括设备和驱动的集合,总线上所有设备组成双向循环链表,包含在platform_device的设备集合中,总线上所有驱动组成双向循环链表,包含在platform_dirver的驱动集合中。

platform_driver_register(struct platform_driver *drv)函数实际上是对driver_register(struct device_driver *drv)函数的一个简单封装。driver_register()函数的调用关系如下

driver_register()

—>bus_add_driver(drv);

—> driver_attach(drv);

—> bus_for_each_dev(drv->bus, NULL, drv,

__driver_attach);

bus_for_each_dev(drv->bus, NULL, drv, __driver_attach)函数会遍历总线上所有的设备,并调用__driver_attach函数,判断驱动是否和设备匹配,若匹配则将struct device中的 struct device_driver *driver指向此驱动,也就是进行了驱动和设备的绑定,若不匹配,则继续遍历下一个设备。事实上,在向总线注册设备时,同样会进行类似的操作,遍历总线上所有驱动程序,找到则进行设备与驱动程序的绑定。

static int __driver_attach(struct device *dev, void *data) {

struct device_driver *drv = data;

/*

* Lock device and try to bind to it. We drop the

error

* here and always return 0, because we need to keep trying

* to bind to devices and some drivers will return an error

* simply if it didn't support the device.

*

* driver_probe_device() will spit a warning if there * is an error.

*/

/*调用platform总线的match()函数,即platform_match函数,判断设备和驱动是否匹配,若匹配则返真,找到对应的设备,继续执行

后面的程序,若没有找到,则返回假,函数执行结束 。这里我们的I2C 驱动找到了可以驱动的设备,所以会继续执行*/

if (!driver_match_device(drv, dev))

return 0;

if (dev->parent) /* Needed for USB */

down(&dev->parent->sem);

down(&dev->sem);

/*设备是否已经找到驱动?显然,这里没有找到驱动,因为设备在向系统中platform总线注册时还没有驱动注册到platform总线上,所以dev->drive = NULL */

if (!dev->driver)

driver_probe_device(drv, dev);

up(&dev->sem);

if (dev->parent)

up(&dev->parent->sem);

return 0;

}

driver_probe_device(drv, dev)函数进行驱动与设备的绑定。

/**

* driver_probe_device - attempt to bind device & driver together

* @drv: driver to bind a device to

* @dev: device to try to bind to the driver

*

* This function returns -ENODEV if the device is not registered,

* 1 if the device is bound sucessfully and 0 otherwise.

*

* This function must be called with @dev->sem held. When called for a

* USB interface, @dev->parent->sem must be held as well.

*/

int driver_probe_device(struct device_driver *drv, struct device *dev)

{

int ret = 0;

if (!device_is_registered(dev)) //判断设备是否已经注册

return -ENODEV;

pr_debug("bus: '%s': %s: matched device %s with driver %s\n",

drv->bus->name, __func__, dev_name(dev), drv-

>name);

ret = really_probe(dev, drv);

return ret;

}

really_probe函数中 进行device和driver的绑定,并调用用户

在device_driver 中注册的probe()例程。

static int really_probe(struct device *dev, struct

device_driver *drv)

{

int ret = 0;

atomic_inc(&probe_count);

pr_debug("bus: '%s': %s: probing driver %s with device %s\n",

drv->bus->name, __func__, drv->name,

dev_name(dev));

WARN_ON(!list_empty(&dev->devres_head));

/*将device中的device_driver指针指向了这个driver,即完

成device和driver的绑定*/

dev->driver = drv;

f (driver_sysfs_add(dev)) {

printk(KERN_ERR "%s: driver_sysfs_add(%s)

failed\n",

__func__, dev_name(dev));

goto probe_failed;

}

/*若总线设置了probe函数,则调用总线的probe函数,然

而platform总线并没有设置 */

if (dev->bus->probe) {

ret = dev->bus->probe(dev);

if (ret)

goto probe_failed;

}

/* 否则,调用驱动注册在device_driver里的probe,这个函数中一般进行获得硬件资源,初始化硬件等操作,这里实际调用了

s3c24xx_i2c_probe函数*/

else if (drv->probe) {

ret = drv->probe(dev);

if (ret)

goto probe_failed;

}

/*将设备添加到driver所支持的设备列表中(因为一个驱动可以支持多个设备),并通知bus上的设备,表明BUS_NOTIFY_BOUND_DRIVER */

driver_bound(dev);

ret = 1;

pr_debug("bus: '%s': %s: bound device %s to driver

%s\n",

drv->bus->name, __func__, dev_name(dev), drv-

>name);

goto done;

probe_failed:

devres_release_all(dev);

driver_sysfs_remove(dev);

dev->driver = NULL;

if (ret != -ENODEV && ret != -ENXIO) {

/* driver matched but the probe failed */

printk(KERN_WARNING

"%s: probe of %s failed with error %d\n", drv->name, dev_name(dev), ret);

}

/*

* Ignore errors returned by ->probe so that the next driver can try

* its luck.

*/

ret = 0;

done:

atomic_dec(&probe_count);

wake_up(&probe_waitqueue);

return ret;

}

到这里,I2C设备软件层次上的驱动模型已经建立好了,接着会执行s3c24xx_i2c_probe函数,获取系统开始注册的一些硬件资源信息,进行硬件上的一些操作,以及真正的涉及到数据传输驱动程序的注册等操作。

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.doczj.com/doc/e617193712.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

Linux下I2C驱动介绍

1、I2C概述 I2C是philips公司提供的外设总线,I2C有两条数据线,一条是串行数据线SDA、一条是时钟线SCL,使用SDA和SCL实现了数据的交换,便于布线。I2C总线方便用在EEPROM、实时钟、小型LCD等与CPU外部的接口上。 2、Linux下的驱动思路 Linux系统下编写I2c驱动主要有两种方法:一种是把I2C当做普通字符设备来使用;另一种利用Linux下驱动的体系结构来实现。 第一种方法: 优点:思路比较直接,不用花费大量时间去了解Linux系统下I2C体系结构 缺点:不仅对I2C设备操作要了解,还有了解I2C的适配器操作 不仅对I2C设备器和设备操作需要了解,编写的驱动移植性差,内核 提供的I2C设备器都没有用上。 第二种方法: 第一种的优点就是第二种的缺点,第一种的缺点就是第二种的优点。 3、I2C框架概述 Linux的I2C体系结构分为3部分: 1)I2C核心I2C核心提供了I2C总线驱动和设备驱动的注册和注销的方法,I2C 通信方法(algorithm)上层,与具体适配器无关的代码,检测设备上层的代 码等。 2)I2C总线驱动I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可以直接受CPU来控制。 3)I2C设备驱动I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备端挂在受CPU控制的适配器上,通过I2C适配器与CPU交换数据。 Linux下的I2C体系结构: 1)Linux下的I2C体系结构 4、I2C设备驱动编写方法 首先让我们明白适配器驱动的作用是让我们能够通过它发出标准的I2C时序,在linux

内核源代码中driver/I2C/buss包含一些适配器的驱动,例如s3c2410的驱动I2C-s3c2410.c,适配器被加载到内核中,接下的任务就是实现设备驱动的编写。编写设备驱动的方法主要分为两种方法: 第一种:利用设备提供的I2C-dev.c来实现I2C适配器设备文件,然后通过上层应用程序来操作I2C设备器来控制I2C设备。 第二种:为I2C设备独立编写一个设备驱动 注意:第二种方法不能用设备提供的I2C-dev.c 5、I2C系统下的文件架构 在linux下driver下面有个I2C目录,在I2C目录下包含以下文件和文件夹 1)I2C-core.c 这个文件实现I2C核心功能以及/proc/bus/I2C*接口 2)I2C-dev.c 实现I2C适配器设备文件的功能,每个I2C适配器被分配一个设备,通过 适配器访问设备的时候,主设备号是89,此设备号是0-255. I2C-dev.c并没有针对特定设备而设计,只提供了read() write()和ioctl()等接口,应用层可以通过这些接口访问挂在适配器上的I2C设备存储空间和寄存器,并控制I2C设备的工作方式。 3)Chips 这个文件下面包含特定的I2C设备驱动。 4)Busses 这个文件包含一些I2C总线驱动。 5)Algos文件夹下实现了I2C总线适配器的algorithm 6、重要结构体 1)在内核中的I2C.h这个头文件中对I2C_driver;I2C_client;I2C_adapter和I2C_algorithm 这个四个结构体进行了定义。理解这4个结构体的作用十分关键。 i2c_adapter结构体 struct i2c_adapter { struct module *owner; //所属模块 unsigned int id; //algorithm的类型,定义于i2c-id.h, unsigned int class; const struct i2c_algorithm *algo; //总线通信方法结构体指针 void *algo_data;//algorithm数据 struct rt_mutex bus_lock; //控制并发访问的自旋锁 int timeout; int retries; //重试次数 struct device dev; //适配器设备 int nr; char name[48]; //适配器名称 struct completion dev_released; //用于同步 struct list_head userspace_clients; //client链表头

linux驱动开发的经典书籍

linux驱动开发的经典书籍 结构、操作系统、体系结构、编译原理、计算机网络你全修过 我想大概可以分为4个阶段,水平从低到高 从安装使用=>linux常用命令=>linux系统编程=>内核开发阅读内核源码 其中学习linux常用命令时就要学会自己编译内核,优化系统,调整参数 安装和常用命令书太多了,找本稍微详细点的就ok,其间需要学会正则表达式 系统编程推荐《高级unix环境编程》,黑话叫APUE 还有《unix网络编程》 这时候大概还需要看资料理解elf文件格式,连接器和加载器,cmu的一本教材中文名为《深入理解计算机系统》比较好 内核开发阅读内核源码阶段,从写驱动入手逐渐深入linux内核开发 参考书如下《linux device drivers》,黑话叫ldd 《linux kernel development》,黑话叫lkd 《understading the linux kernel》,黑话叫utlk 《linux源码情景分析》 这四本书为搞内核的必读书籍 最后,第三阶段和第四阶段最重动手,空言无益,光看书也不罩,不动手那些东西理解不了 学习linux/unix编程方法的建议 建议学习路径: 首先先学学编辑器,vim, emacs什么的都行。 然后学make file文件,只要知道一点就行,这样就可以准备编程序了。 然后看看《C程序设计语言》K&R,这样呢,基本上就可以进行一般的编程了,顺便找本数据结构的书来看。 如果想学习UNIX/LINUX的编程,《APUE》绝对经典的教材,加深一下功底,学习《UNP》的第二卷。这样基本上系统方面的就可以掌握了。 然后再看Douglus E. Comer的《用TCP/IP进行网际互连》第一卷,学习一下网络的知识,再看《UNP》的第一卷,不仅学习网络编程,而且对系统编程的一些常用的技巧就很熟悉了,如果继续网络编程,建议看《TCP/IP进行网际互连》的第三卷,里面有很多关于应用

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

Linux串口(serial、uart)驱动程序设计

Linux串口(serial、uart)驱动程序设计 https://www.doczj.com/doc/e617193712.html,/space.php?uid=23089249&do=blog&id=34481 一、核心数据结构 串口驱动有3个核心数据结构,它们都定义在<#include linux/serial_core.h> 1、uart_driver uart_driver包含了串口设备名、串口驱动名、主次设备号、串口控制台(可选)等信息,还封装了tty_driver(底层串口驱动无需关心tty_driver)。 struct uart_driver { struct module *owner;/* 拥有该uart_driver的模块,一般为THIS_MODULE */ const char*driver_name;/* 串口驱动名,串口设备文件名以驱动名为基础 */ const char*dev_name;/* 串口设备名*/ int major;/* 主设备号*/ int minor;/* 次设备号*/ int nr;/* 该uart_driver支持的串口个数(最大) */ struct console *cons;/* 其对应的console.若该uart_driver支持serial console, 否则为NULL */ /* * these are private; the low level driver should not * touch these; they should be initialised to NULL */ struct uart_state *state; struct tty_driver *tty_driver; }; 2、uart_port uart_port用于描述串口端口的I/O端口或I/O内存地址、FIFO大小、端口类型、串口时钟等信息。实际上,一个uart_port实例对应一个串口设备

Linux下I2C驱动架构全面分析概要

Linux下I2C驱动架构全面分析 I2C概述 I2C是philips提岀的外设总线. I2C只有两条线,一条串行数据线:SDA, —条是时钟线SCL,使用SCL , SDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线。 因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中。 linux下的驱动思路 在linux系统下编写I2C驱动,目前主要有两种方法,一种是把I2C设备当作一个普通的字符设备来处理,另一种是利用linux下I2C驱动体系结构来完成。下面比较下这两种方法: 第一种方法: 优点:思路比较直接,不需要花很多时间去了解linux中复杂的I2C子系统的操作方法。 缺点: 要求工程师不仅要对I2C设备的操作熟悉,而且要熟悉I2C的适配器(I2C控制器)操作。要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写岀的程序可以移植性差。 对内核的资源无法直接使用,因为内核提供的所有I2C设备器以及设备驱动都是基于I2C 子系统的格式。 第一种方法的优点就是第二种方法的缺点, 第一种方法的缺点就是第二种方法的优点。 I2C架构概述 Linux的I2C体系结构分为3个组成部分: I2C核心:I2C核心提供了I2C总线驱动和设备驱动的注册,注销方法,I2C通信方法 (” algorithm 上层的,与具体适配器无关的代码以及探测设备,检测设备地址的上层代码等。 I2C总线驱动:I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。 I2C设备驱动:I2C设备驱动(也称为客户驱动)是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

linux UART串口驱动开发文档

linux UART串口驱动开发文档 w83697/w83977 super I/O串口驱动开发 内容简介: 介绍了Linux下的串口驱动的设计层次及接口, 并指出串口与TTY终端之间的关联层次(串口可作TTY终端使用), 以及Linux下的中断处理机制/中断共享机制, 还有串口缓冲机制当中涉及的软中断机制; 其中有关w83697/w83977 IC方面的知识, 具体参考相关手册, 对串口的配置寄存器有详细介绍, 本文不再进行说明. 目录索引: 一. Linux的串口接口及层次. 二. Linux的中断机制及中断共享机制. 三. Linux的软中断机制. 四. TTY与串口的具体关联. 一. Linux的串口接口及层次. 串口是使用已经非常广的设备了, 因此在linux下面的支持已经很完善了, 具有统一的编程接口, 驱动开发者所要完整的工作就是针对不同的串口IC来做完成相应的配置宏, 这此配置宏包括读与写, 中断打开与关闭(如传送与接收中断), 接收状态处理, 有FIFO时还要处理FIFO的状态. 如下我们就首先切入这一部分, 具体了解一下与硬件串口IC相关的部分在驱动中的处理, 这一部分可以说是串口驱动中的最基础部分, 直接与硬件打交道, 完成最底层具体的串口数据传输. 1. 串口硬件资源的处理. W83697及W83977在ep93xx板子上的映射的硬件物理空间如下: W83697: 0x20000000起1K空间. W83977: 0x30000000起1K空间. 因为串口设备的特殊性, 可以当作终端使用, 但是终端的使用在内核还未完全初始化之前(关于串口与终端的关联及层次在第四节中详细), 此时还没有通过mem_init()建立内核的虚存管理机制, 所以不能通过ioreamp来进行物理内存到虚存的映射(物理内存必须由内核映射成系统管理的虚拟内存后才能进行读写访问), 这与先前所讲的framebuffer的物理内存映射是不同的, 具体原因如下: √终端在注册并使用的调用路径如下: start_kernel→console_init→uart_console_init→ep93xxuart_console_init→register_conso

linux下iic(i2c)读写AT24C02

https://www.doczj.com/doc/e617193712.html,/jammy_lee/ https://www.doczj.com/doc/e617193712.html, linux下iic(i2c)读写AT24C02 linux驱动2010-02-09 16:02:03 阅读955 评论3 字号:大中小订阅 linux内核上已有iic的驱动,因此只需要对该iic设备文件进行读写则能够控制外围的iic器件。这里以AT24C02为对象,编写一个简单的读写应用程序。iic设备文件在我的开发板上/dev/i2c/0 ,打开文件为可读写。AT24C02的器件地址为0x50 ,既是iic总线上从器件的地址,每次只读写一字节数据。 /************************************************************/ //文件名:app_at24c02.c //功能:测试linux下iic读写at24c02程序 //使用说明: (1) // (2) // (3) // (4) //作者:jammy-lee //日期:2010-02-08 /************************************************************/ //包含头文件 #include #include #include #include #include #include #include

#include #include #include //宏定义 #define Address 0x50 //at24c02地址 #define I2C_RETRIES 0x0701 #define I2C_TIMEOUT 0x0702 #define I2C_SLAVE 0x0703 //IIC从器件的地址设置 #define I2C_BUS_MODE 0x0780 typedef unsigned char uint8; uint8 rbuf[8] = {0x00}; //读出缓存 uint8 wbuf[8] = {0x01,0x05,0x06,0x04,0x01,0x01,0x03,0x0d}; //写入缓存int fd = -1; //函数声明 static uint8 AT24C02_Init(void); static uint8 i2c_write(int fd, uint8 reg, uint8 val); static uint8 i2c_read(int fd, uint8 reg, uint8 *val); static uint8 printarray(uint8 Array[], uint8 Num); //at24c02初始化 static uint8 AT24C02_Init(void) { fd = open("/dev/i2c/0", O_RDWR); //允许读写 if(fd < 0) { perror("Can't open /dev/nrf24l01 \n"); //打开iic设备文件失败 exit(1);

Linux下软件安装详解(精)

Linux下软件安装详解 在Linux系统中,软件安装程序比较纷繁复杂,不过最常见的有两种: 1一种是软件的源代码,您需要自己动手编译它。这种软件安装包通常是用gzip 压缩过的tar包(后缀为.tar.gz。 2另一种是软件的可执行程序,你只要安装它就可以了。这种软件安装包通常被是一个RPM包(Redhat Linux Packet Manager,就是Redhat的包管理器,后缀是.rpm。 当然,也有用rpm格式打包的源代码,用gzip压缩过的可执行程序包。只要您理解了以下的思路,这两种形式的安装包也不在话下了。 下面,我们就分成两个部分来说明软件安装思路: 第一部分:搞定.tar.gz 1.首先,使用tar -xzvf来解开这个包,如: #tar -xzvf apache_1_3_6_tar.gz 这样就会在当前目录中创建了一个新目录(目录名与.tat.gz包的文件名类似,用来存放解压了的内容。如本例中就是apache_1.3.6 2.进入这个目录,再用ls命令查看一下所包含的文件,如: #cd apache_1.3.6 #ls 你观察一下这个目录中包含了以下哪一个文件:configure、Makefile还是Imake。 1如果是configure文件,就执行:

#./configure #make #make install 2如果是Makefile文件,就执行: #make #make install 3如果是 Imake文件,就执行: #xmkmf #make #make install 3.如果没有出现什么错误提示的话,就搞定了。至于软件安装到什么地方,通常会在安装时出现。否则就只能查阅一下README,或者问问我,:- 如果遇到错误提示,也别急,通常是十分简单的问题: 1没有安装C或C++编译器; 确诊方法:执行命令gcc(C++则为g++,提示找不到这个命令。 解决方法:将Linux安装光盘mount上来,然后进入RPMS目录,执行命令: #rpm -ivh gcc* (哈哈,我们用到了第二种安装方式 2没有安装make工具; 确诊方法:执行命令make,提示找不到这个命令。

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

linux串口测试程序

linux串口测试程序 由于已经完成了第一个HELLO程序,标志着整个编译环境已经没有问题了,下来准备做一下串口测试程序。由于串口驱动开发板已经作好了,所以就作一个Linux串口测试工具简单的数据收发看看。 Linux串口测试工具网上常见的版本都看起来比较烦琐,下面是一个简单一点的,这个程序功能是收到10个字节后会发前7个字节,如果所发的数据的第一个字节是9则退出。 #include #include #include #include #include #include #include #include #define BAUDRATE B9600 #define MODEMDEVICE "/dev/ttyUSB1" int main() { int fd,c=0,res;struct termios oldtio,newtio;//intch;static char s1[10],buf[10];printf("start ……\n");/*打开PC的COM1口*/ fd = open(MODEMDEVICE,O_RDWR|O_NOCTTY);if (fd < 0) { perror(MODEMDEVICE);exit(1);} printf("open……\n");/*将旧的通讯参数存入oldtio结构*/ tcgetattr(fd,&oldtio);/*初始化新的newtio */ bzero(&newtio,sizeof(newtio));/*8N1*/ newtio.c_cflag = BAUDRATE|CS8|CLOCAL|CREAD;newtio.c_iflag = IGNPAR;newtio.c_oflag = 0;/*正常模式*/ /*newtio.c_lflag = ICANON;*/ /*非正常模式*/ newtio.c_lflag = 0;newtio.c_cc[VTIME] = 0;newtio.c_cc[VMIN] = 10; tcflush(fd,TCIFLUSH);/*新的temios作为通讯端口参数*/ tcsetattr(fd,TCSANOW,&newtio);printf("writing……\n"); while(1) { //printf("read……\n");res = read(fd,buf,10);//res = read(fd,s1,10);//strcat(buf,s1);// res = write(fd,buf,7);printf("buf = %s\n",buf);if(buf[0]==9) break;} printf("close……\n");close(fd);/*还原旧参数*/ tcsetattr(fd,TCSANOW,&oldtio);return 0;} 还有一点要注意,就是Linux串口测试工具串口有两种工作模式,即正规模式和非正规模式,如果习惯在串口调试器中用16进制发送,此时串口应该为非正规模式才行。 下面是这两种模式的说明Linux串口测试工具正规模式(CANONICAL或者COOKED) 此模式下,终端设备会处理特殊字符,并且数据传输是一次一行的方式,既按回车后才开始发送和接收数据。例如LINUX的SHELL. Linux串口测试工具非正规模式(NON-CANONICAL

实例解析linux内核I2C体系结构(2)

实例解析linux内核I2C体系结构(2) 华清远见刘洪涛四、在内核里写i2c设备驱动的两种方式 前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。 (1)Adapter方式(LEGACY) (下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式) ●构建i2c_driver static struct i2c_driver pca953x_driver = { .driver = { .name= "pca953x", //名称 }, .id= ID_PCA9555,//id号 .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备 .detach_client= pca953x_detach_client,//让设备脱离适配器 }; ●注册i2c_driver static int __init pca953x_init(void) { return i2c_add_driver(&pca953x_driver); } module_init(pca953x_init); ●attach_adapter动作 执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下: static int pca953x_attach_adapter(struct i2c_adapter *adapter) { return i2c_probe(adapter, &addr_data, pca953x_detect); /* adapter:适配器 addr_data:地址信息 pca953x_detect:探测到设备后调用的函数 */ } 地址信息addr_data是由下面代码指定的。 /* Addresses to scan */ static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END}; I2C_CLIENT_INSMOD;

ubuntu用源码安装软件

在Ubuntu中附带了丰富的软件,这些软件一般使用图形化的自动方式(“添加/删除”或“新立得”)即可轻松安装,但是对于那些刚刚问世的新软件,Ubuntu的源中还未 收录其中,这时我们就需要用到一种更通用的安装方式:通过手工方式从源文件来安装这些 软件。下面就介绍这种手工安装方式的详细步骤。 一、安装编译程序 因为要编译源代码,所以第一步就是安装编译和构建之类的程序。如果你已经安装过了,可以跳过此步。在Ubuntu系统中非常简单,只要执行下面命令就行了: $ sudo apt-get install build-essential 该命令执行后,从源文件安装软件所需的工具,如gcc、make、g++及其他所需软件就 安装好了。 二、下载并编译软件的源代码 当我们下载源文件时,一定要弄清该软件所依赖的库文件和其他程序,并且首先将它们 装好。这些信息,通常都能在该开源项目的主页上查找到。做好这些准备工作后,我们就可 以进行下面的工作了。因为,软件的源代码通常以压缩文件形式发布,所以需要将其解压到 指定目录。命令如下所示: OwnLinux@ubuntu:~$ tar xvzf program.tar.gz OwnLinux@ubuntu:~$ cd program/ 如果你的对tar命令不熟悉请点击这里阅读《tar命令详解》 在Linux下从源文件安装程序时,有一个通用模式,即配置(。/configure)–>编译(make)–>安装(sudo make install)。但是,此前你最好还是阅读源文件中附带的安 装说明,因为对于每个程序,其开发者的指示才是最具权威性的。程序开发者通常将安装说 明存放在名为INSTALL或README.到哪里找这些文件呢?它们在项目主页或源代码主目录中 都能找到。 1.配置 构建应用的第一步就是执行configure脚本,该脚本位于程序源文件的主目录下: OwnLinux@ubuntu:~/program$ ./configure 该脚本将扫描系统,以确保程序所需的所有库文件业已存在,并做好文件路径及其他所 需的设置工作。如果程序所需的库文件不完全,该配置脚本就会退出,并告诉您还需要哪些 库文件或者是哪些版本太旧需要更新。如果遇到这种情况,仅弄到含有该库文件的软件包还 是不够的,同时还要找到具有该库文件所有头文件的开发包,在Ubuntu中,这样的包一般 以-dev作为文件名的结尾。安装好所有需要的库文件后,重新运行配置脚本,直到没有错 误提示为止,这说明需要的库文件已经全部安装妥当了即满足了依赖关系。 2.编译 当配置脚本成功退出后,接下来要做的就是编译代码了。具体操作为在源文件的主目录 中运行make命令: OwnLinux@ubuntu:~/program$ make 这时,您会看到一串编译输出数据迅速从屏幕上滚过,如果正常的话,系统会返回的提 示符状态。然而,如果编译过程中出现错误的话,排错的过程可就不像配置步骤那么简单了。因为,这通常要涉及到源代码的调试,可能源代码有语法错误,或其他错误等等。怎么办? 如果您是编程高手,那就自己调试吧!否则,检查该软件的邮件列表等支持渠道,看看是不 是已知的bug,如果是就看看别人是怎么解决的,不是就提交一份bug报告吧,也许不久就 会有解决办法。 3.安装

Linux驱动工程师成长之路

本人此刻还不是什么驱动工程师,连入门都谈不上,但我坚信在未来的3-5年我肯定能成为我想像中的人,因为我马上就要进入这一行工作了。写下这个日志来记录我是怎么最后成为我想像中的人才的,呵呵。 《Linux驱动工程师》这个东西是我在大二的时候看到有一篇讲如何学习嵌入式的,点击这里下载PDF,里面讲到嵌入式分为四层:硬件,驱动,系统,应用程序;还说linux驱动最难然后工资也最高就冲着他这句话我就决定我大学毕业的时候要去做这个linux驱动工程师,随后我就先后买了51单片机,ARM7,ARM9还有一大堆的视频教程准备来进行学习。我还跟我旁边那个哈工大哥们说:“我们学校像我这样的人很少,你们学校呢?”他说:“太少了,不过我们学校都是做这种板子卖的人比较多!”。行,你们牛!即使是买了这些东西,从大二到现在都快毕业了但感觉还是没有入门。回想一下我都学过什么啊:1:自己在ARM9上写bootloader(主要锻炼了三方面的知识:C语言应该写了有近万行的代码,ARM9的外设的基本操作方法如UART,LCD,TOUCH,SD,USB,ETHERNET...,makefile);2:移植和学习linux驱动。下面我说一下我学习Linux驱动的一个思路这也是我在面试的时候自我介绍中最重要的部分;1:硬件知识学习Linux驱动首先得了解这个驱动对应的硬件的一些基本原理和操作方法比如LCD你得了解它的场同步,行同步,像素时钟,一个像素的表示模式,还有就是这个LCD是怎么把图像显示在屏幕上的。如果是USB,SD卡就得了解相关协议。可以通过spec(协议)、datasheet来了解,这就是传说中的Linux驱动开发三件宝之二,还有一个就是linux相关源码。2:了解linux驱动框架linux下的每一类驱动差不多都是一个比较完善的子系统,比如FLASH的驱动它就属于MTD子系统从上到下分为四层:设备节点层,设备层,原始设备层,最下面的与具体硬件相关的硬件驱动层,通常要我们自己来实现就是最下面这个与具体硬件相关那部分代码。3:了解这个驱动的数据流。这个过程与第二个过程紧密相关,如果了解了驱动的框架差不多这个过程也算了解了。比如flash.在/dev/目录下有对应flash的字符设备文件和块设备文件,用户对这些文件进行读、写、ioctl操作,其间通过层层的函数调用最终将调用到最下面的硬件驱动层对硬件进行操作。了解这个过程我相信在调试驱动的时候是很有帮助。3:分析与硬件相关通常需要我们实现的那部分源代码。4:三板子上将驱动调试出来。每次调试都会出问题,但我买的板子提供的资料比较全调试过程中遇到的问题都比较浅显,即使是浅显的问题也要把它记录下来。(这个是我上次在华为面试的时候,那个人问我你调试驱动遇到过什么问题吗?你是如何解决的。当时我学习还没有到调试驱动这一步,所以那次面试也惨败收场)。 好像说了这么多,还没有进入正题《工作的选择》。在年前去了龙芯,实习2.8K,转正3.5k,环境还是不错,经理很好,头儿也很帅都是中科院的硕士。不过去了两周我就没去了身边的人都不太理解,我也一度有过后悔的时候,从龙芯出来应该是1月6号,也就是从那个时候开始我就没有再找工作,转而学习linux驱动。一直到上周日。上周日的晚上我就开始投简历一开始要找linux驱动,在智联里面输入linux驱动出来500来个职位,点开一看没有一个自己符合要求的,差不多都要3-5年经验本科,有时候好不容易有个实习的关键字在里面,一看要求硕士,严重打击了我的信心,哎不管了随便投,最后又投了一下嵌入式关键字的职位。最后就瞎申请,看看职位要求差不多就申请。周一来了,这周一共来了6个面试,创下了我求职以来的历史新高。周一下午面了一家感觉还不错不过到现在也没有给我一个通知,估计当时我要了4500把他给要跑了,这家是做测量的不是Linux驱动,差不多是把ARM当单片机用。周二上午一家也是要招linux驱动面了估计不到二分钟,他

linux串口编程参数配置详解

linux串口编程参数配置详解 1.linux串口编程需要的头文件 #include //标准输入输出定义 #include //标准函数库定义 #include //Unix标准函数定义 #include #include #include //文件控制定义 #include //POSIX中断控制定义 #include //错误号定义 2.打开串口 串口位于/dev中,可作为标准文件的形式打开,其中: 串口1 /dev/ttyS0 串口2 /dev/ttyS1 代码如下: int fd; fd = open(“/dev/ttyS0”, O_RDWR); if(fd == -1) { Perror(“串口1打开失败!”); } //else //fcntl(fd, F_SETFL, FNDELAY); 除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。 O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这

个标志的话,任何输入都会影响你的程序。 O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。 3.设置波特率 最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下: struct termios { tcflag_t c_iflag; //输入模式标志 tcflag_t c_oflag; //输出模式标志 tcflag_t c_cflag; //控制模式标志 tcflag_t c_lflag; //本地模式标志 cc_t c_line; //line discipline cc_t c_cc[NCC]; //control characters } 代码如下: int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, }; int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, }; void SetSpeed(int fd, int speed) { int i; struct termios Opt; //定义termios结构 if(tcgetattr(fd, &Opt) != 0) { perror(“tcgetattr fd”); return; }

相关主题
文本预览
相关文档 最新文档