当前位置:文档之家› 生物质直燃技术现状

生物质直燃技术现状

生物质直燃技术现状
生物质直燃技术现状

1.1 农林废弃物燃烧发电技术

农林废弃物燃烧发电技术通过燃烧利用生物质资源生产电力或者热电联供,从技术上可以分为单一生物质燃料燃烧发电技术和生物质混烧发电技术两大类,现分别进行分析。

1.1.1 农林废弃物混烧技术

生物质混烧利用有显著的优越性:首先混烧可以充分利用已有燃煤电厂的现成设备,具有工程建设周期短、投资成本和操作成本低的优点;而且生物质通过混烧在大型高效燃煤机组中利用可以实现非常高的生物质转化利用效率;从污染物角度看混烧在大多数场合都有利于减少硫、氮气相污染物的排放,当然也直接降低了CO2的排放量;混烧可有效利用当地生物质废弃资源,避免农林业废弃物资源的浪费;混烧的燃料掺混比例灵活,避免过度依赖生物质燃料的供应,对于规避生物质燃料供应风险有积极的意义。因而是一种非常有生命力的生物质能利用方式。

从混烧技术角度分析,目前农林废弃物类生物质混烧主要有三条技术路线:直接混烧、间接混烧和平行混烧。直接混烧就是最常见的将生物质和化石燃料同时送入燃烧设备进行燃烧,是应用最多的一种形式,间接混烧指采用液化或者气化技术先对生物质进行预处理,然后将生成的油或者燃气引入燃烧设备和化石燃料一起燃烧哦;平行混烧则是蒸汽侧级联的概念,即利用分离的生物质燃烧装置和化石燃料燃烧装置串联共同完成对工质的加热;后面两种混烧模式比较少见,国内尚没有运行的工程业绩,因此本调研仅仅针对直接混烧工艺路线。

直接混烧是生物质混烧应用的主要模式,在北美和欧洲非常普遍,大多数工程分布在美国、德国和北欧等国家。我国由于生物质大规模燃烧利用发展起步较晚,生物质混烧由于难以计量、监管和落实可再生能源的电价补贴等政策因素而受到较大的限制,目前国内的生物质混烧项目仅有零星的几个。生物质混烧一般使用现有化石燃料燃烧设备,锅炉本体不做或者稍作改造,但是为了适合生物质燃料的掺入,一般会在给料环节进行调整。生物质作为掺混燃料入炉可分为几种基本形式:一种是使用已有的预处理、计量、破碎设备并沿用现有燃烧器,这种模式对生物质燃料的品种品质有较高要求,一般要求使用颗粒燃料,国内没有应用的实例;一种是使用专门增添的预处理、计量和破碎设备,但是沿用已有的燃烧器,这种模式在国内多见于采用流态化燃烧或者炉排技术的燃煤热电机组,出于应对煤价高涨的压力,为了降低燃料成本,利用当地相对丰富的生物质资源经过简单预处理后直接送入锅炉燃烧,由于是规模较小的热电机组,这种改造一般比较简单,资金要求较低,考虑到当地获取的生物质燃料通常成本较低,而掺入少量生物质(<40%能量基)通常对于锅炉的影响不大还有部分改善燃烧质量,降低污染物排放的作用,这种模式具有较好的经济性,在我国具有一定的产业化基础;还有一种模式是使用专门添置的预处理、计量和破碎设备,添加定制的燃烧器。这是针对大型煤粉锅炉或者燃气燃油锅炉经常采用的一种方法。国外有较多的应用实例,但是国内目前只有华电国际的十里泉电厂在一台135MW四角碰燃的煤粉锅炉上进行过该类尝试,改造引进丹麦技术,增添了秸秆粉碎、输送装置和一套单独的秸秆燃烧器,作为国内第一个该类型的示范电厂,改造工程获得了很多宝贵的经验,但基于经济和技术上的一些原因,工程示范程并没有稳定长期进行。该模式一般在大型电站锅炉上进行,改造的技术要求和资金要求都比较大,且为了确保生产稳定,生物质的掺烧份额通常在20%以下,其突出的优点就是掺入的生物质燃料能够以相当高的效率被利用。除了上述三种模式,以生物质

为燃料的再燃改造在形式上也是一种混烧,但是由于其主要目的在于控制NOx 排放,在此不进行深入讨论。

总体上讲,混烧一种可大规模实施,性价比高,投资周期短的生物质利用模式,对于不同的混烧工程情况目前已经有很多可以借鉴的宝贵经验;虽然存在燃料处理、存储、NOx形成机理、沉积、腐蚀、碳转化、流动均匀性、灰渣特性和利用、对SCR的影响等一系列问题,但是对于低混烧率时技术上都能解决,要达到高混烧率还需更多探索;这些关键环节取决于燃料特性、锅炉设计和操作运行这几个要素之间的配合,需要进一步研究。

我国的生物质混烧以直接混烧模式为主体,其关键技术环节在于生物质燃料的预处理环节的合理高效并且与具体混烧模式相适应,比如混合燃料在磨煤机中的破碎特性,在燃烧系统内的燃烧特性等。从目前的发展情况看,具体来说,生物质燃料的存储、运输、预处理和给料等辅助系统的成熟和完善是混烧产业发展的必要因素,另外大份额掺混,特别是对于稻麦秸秆等燃料实现较大的掺混比例还存在一定的技术瓶颈,有待相关技术的突破,不过随着生物质直燃发电产业的兴起和成熟,混烧相关技术问题的解决不存在技术上的根本障碍。

从混烧产业在我国的产业化发展角度看,在目前国家政策没有向混烧倾斜的情况下,以小型热电机组在较小技术改造强度下掺烧部分生物质的混烧具有较好的经济性,发展条件比较好,这些机组由于量大面广,如果能够较好地实施生物质混烧,不但对于电厂自身可有效降低燃料成本,对于生物质能的转化利用也具有重要的意义。需要引起注意的是混烧灰渣的利用问题,一方面生物质灰的加入会影响燃煤灰渣的一些特性,可能会对灰渣的常规利用方式有一定影响,例如灰渣在水泥工业的适用性;另一方面混烧不利于生物质灰渣的循环利用,从循环经济的角度,生物质灰渣回田、相关无机物质的循环利用在一定程度上是生物质长期可持续利用的基础,混烧给这一循环利用过程带来了较大的障碍,需要慎重考虑。

1.1.2 农林废弃物直燃技术

农林废弃物直燃技术完全以生物质为燃料,燃烧设备针对生物质的特性进行专门的设计,辅助以整套的生物质储运预处理以及给料设备,可以实现大规模连续的生物质燃烧转化利用,是生物质能利用的重要方式。

从技术现状分析,目前的生物质直燃技术可以分成两个层面,首先是针对低碱优质生物质燃料的直燃技术,这种利用技术的发展在全球范围、特别是北美和欧洲已经有较长的历史,也拥有大量的工程实践,例如美国2002年统计,这种技术层面燃烧生物质的发电装机容量有5,886 MW ,其主体是众多木制品企业拥有的小型生物质直接燃烧热电站,燃烧形式包括悬浮、炉排和流态化等各种类型。我国也有很多的类似应用,比较典型的有广西等地大量的蔗渣燃烧锅炉、各个锅炉厂都有开发生产业绩的燃用稻壳、木加工厂下脚料的直燃锅炉等,炉型以炉排炉为主,也有采用流态化燃烧技术的,容量一般在35t/h以下。这类燃烧技术需要考虑生物质的物理特性以及高挥发分、低灰分等燃烧特性,但是由于燃料中无机杂质很少,不需要过多考虑生物质含钾含氯带来的灰熔点低、受热面容易沉积以及高温腐蚀等问题。该类燃烧技术的关键在于成熟的给料以及恰当的炉膛设计,能够根据生物质特性组织好炉内生物质的挥发分燃烧和半焦燃尽即可保证燃烧质量。对于我国,生物质的主体是农作物秸秆,属于高碱生物质燃料,而木质

燃料和稻壳、蔗渣等的资源量很小且受地域限制较大,因此更为关注针对高碱生物质燃烧利用的秸秆直燃技术,从全球范围看,目前秸秆直燃主要的技术代表是丹麦的秸秆水冷振动炉排炉直接燃烧技术,丹麦国土狭小,农作物种植品种单一,生物质资源以大麦和燕麦秸秆为主,从上世纪90年代开始大力发展秸秆直燃技术上,取得了显著的效果。除了丹麦,奥地利等国也有其他不同类型的针对高碱生物质燃烧的技术,但是从工程实践经验的积累上还有欠缺。

针对我国生物质资源现状,从2005年开始,随着可再生能源法的颁布和实施,我国大力促进秸秆直燃发电产业的发展,各种技术流派相继涌现,从技术层面看主要有引进技术、引进技术消化改进技术和国内自主开发技术三类。中国引进的主要是丹麦的水冷振动炉排秸秆直燃技术,该技术针对秸秆等高碱生物质燃料特点开发,具有特殊设计的炉排可保证炉排上生物质燃料的燃尽以及低熔点灰渣的排除,炉膛和受热面的设计也充分考虑了生物质灰渣熔融以及生物质无机杂质带来的高低温腐蚀问题,该技术引进后除了燃料预处理和给料在适应国内燃料品种品质变动方面存在一些问题外运行情况良好。但是高昂的价格是阻碍其推广的主要因素;我国秸秆直燃技术中的引进技术改进型主要指以丹麦技术为基础结合各锅炉生产厂家对秸秆燃烧过程的理解开发的国产炉排秸秆锅炉,这些锅炉大多数也采用水冷振动炉排的基本形式以及自主开发的燃料预处理和上料系统,由于价格低廉目前在国内市场占有率较高。该类技术存在的问题是由于缺少经验积累和实践经验,各示范工程或多或少存在各种问题,例如给料、炉排结构和排渣等等,在一定程度上影响机组的正常运行。但是应该看到,随着工程项目推进,经验的积累,一些设计上的缺陷正在逐步被克服,锅炉的运行质量正在逐步接近国外进口技术。最后一类是新开发的秸秆燃烧技术,其主要的代表是基于循环流化床的秸秆燃烧技术,循环流化床技术应用于高碱生物质燃料的燃烧在国际上尚无先例,国内相关研发单位在对秸秆燃烧特性和碱金属问题进行了较深入研究的基础上,提出了创新的燃烧组织思路和特殊设计的秸秆流化床直燃技术路线,该技术经过示范工程的验证运行,目前正处于推广阶段。由于该技术利用流态化的低温燃烧特点抑制秸秆燃烧中的碱金属问题,同时能很好地适用于中国生物质燃料品质变化大和预处理程度低的特点,具有非常强的生命力,有望在各方面赶超国外同类进口技术。

从国内相关工程的立项和投运情况看,通过技术引进和自主开发,生物质直燃发电在中国已经逐渐发展成为生物质能源化利用的主体,是近期中国提升生物质能在一次能源中比例的主要途径。生物质直燃发电产业发展的关键是直燃技术的完善、成熟和配套辅助设备工艺的开发,例如生物质预处理和给料环节,这些方面目前还存在一些问题。但是上述两个方面的关键问题由于可以借鉴国际上现有技术在实施上并没有根本性困难,随着生物质直燃发电产业的兴起和发展,必能实现较好地突破。从规模发展态势来看,国内自主研发或者吸收改进的技术将在未来起到主要的作用,这主要是考虑到对于国内燃料情况的适用性和成本问题。从建设规模看,今后我国基于新建或者老电厂改建的规模为6000-12000KWe 的生物质发电机组将会是主要形式。国家从政策制定的角度需要注意生物质电厂的布点规划以及生物质电厂对周边农业生产和局部生态环境的影响。

什么才是真正的生物质锅炉

什么才是真正的生物质锅炉? 高温气化、裂解燃烧生物质锅炉。其原理是先利用生物质气化,把生物质转化成可燃气体,之后生物质燃气再经过燃烧,用于产生热水、蒸汽或者加热导热油。本设备特点是气化和燃烧在微秒级的时间内,几乎同时进行,此燃烧方式目前在全球此行业唯一。 高温气化生物质锅炉采用倾斜布置炉排,炉排下采用均布风装置,可以根据需要调节各段送风量,炉排上采用绝热燃烧装置,燃料由前部液压送料系统送入。启炉时,利用外加热源(如木材、报纸等)将燃烧室出料口部分点燃,待加热到800℃以上较高温度后,再利用送料机构将物料慢慢送入燃烧室,这样表面的燃料在高温下快速气化燃烧,由于是绝热燃烧,燃烧室温度较高,燃烧室的温度可根据需要调整,燃烧产生的高温一部分用来维持燃烧室的高温以保证高温热解气化燃烧反应的连续进行,另一部分经出火口送到换热器作功。燃烬的灰渣在物料的推动下进入下部的除渣机除到外面。 之所以节能原因是:绝热控制技术+超高温气化技术+恒定高温燃烧技术+水管换热(非水火管)=燃烧干净=相对节能,技术优秀、成熟,运行稳定、免维护,非常适用于工业。 优点:

▲由于生物质高温气化炉产生的是生物质燃气,而生物质直燃锅炉产生的是高温的烟气,故生物质气化锅炉比生物质直燃锅炉粉尘含量、烟尘含量更低: ▲生物质高温气化炉,把生物质转换成燃气的同时,在绝热腔内进行高温燃烧,所以生物质高温气化锅炉比生物质直燃锅炉效率平均高达20%以上; ▲生物质高温气化锅炉的主体形式采用一体式锅炉,所以相对于生物质直燃锅炉具有占地小,系统简便的优点; ▲本生物质气化锅炉的既可以采用直接的生物质原料,也可以采用生物质块及生物质颗粒,并且生物质气化锅炉具有效率高,无烟等特点。 主要技术参数:

我国生物技术现状的发展及展望

我国生物技术的现状发展及展望 课程:食品生物技术 专业: 班级: 学号: 姓名: 完成时间:2011 年5月23日

我国生物技术的现状发展及展望 摘要:生物技术是20 世纪后期人类科技史上最令人瞩目的高新技术,它是国际科技竞争乃至经济安全的重点。在我国生物技术一直受到国家的高度重视,并从政策、环境方面采取了多项有效措施来推动生物技术与产业的发展。特别是改革开放二十多年来,国家相继出台了重大科技计划,把生物技术作为优先发展的领域,从而进一步加快了生物技术的发展步伐。我国还积极参与国际生物计划,如人类基因组计划、人类脑计划、人类肝脏蛋白质组计划等。有些研究领域已走在世界前列,初步建立起较为完整的生物技术研发体系,生物产业也初具规模,生物经济初见端倪。 关键词:生物技术现状发展前景 0前言 生物技术是应用自然科学及工程学的原理,依靠微生物、动物、植物作为反应器将物料进行加工以提供产品来为社会服务的技术。[1]主要包括基因、细胞、酶、发酵等工程学科,近年来在医药、农业、食品、化工、能源、冶金、环保等领域有了越来越广泛的应用,形成了一个新兴的生物技术产业群。 目前,我国生物技术已广泛用于农业、医药、环保、轻化工等重要领域,为生物技术创新和产业化奠定了良好基础。生物技术与产业已经开始从跟踪仿制到自主创新的转变;从实验室探索到产业化的转变;从单项技术突破到整体协调发展的转变。中国生物科技发展中心主任王宏广说,我国生物技术在让企业积极参与产业化的同时,还要加强有独立知识产权成果的创新。努力培养技术、管理人才,建立产品标准化体系,组建相关行业协会,规范市场秩序。 1我国生物技术的发展 1.1生物技术在我国的兴起 我国第一个生物制品研究所始建于1919年,在北平天坛成立了中央防疫处--即今天的北京生物制品研究所,迄今已有80多年的历史。我国自七十年代末开始了现代生物技术的研究。国家高度重视生物技术的发展,不仅被列为863计划之首,而且纳入七五、八五、九五国家重点攻关计划。这一系列的举措,大大促进了我国医药生物技术的发展,并形成了一定的产业规模。据统计,我国现有456个单位从事生物技术的研究、开发和生产,其中医药领域的有165个,占36%,专业人员约6800人,

生物制药技术现状及发展前景1

生物制药技术现状及发展前景 摘要:生物制药技术或称生物药物是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因、功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一,这些进展可以帮助人类解决很多目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类寿命,提高生命质量,为社会安全和刑侦提供新的手段。生物制药产业将是一个倍受投资者青睐的阳光产业,其市场前景是不可估量的。本文就生物制药现状,发展前景做出以下浅析:关键词:生物生物制药技术发展前景 一、生物制药现状: 1、我国生物技术药物的研究和开发起步较晚,但在国家产业政策特别是国家高 技术计划的大力支持下,使这一领域发展迅速,逐步缩短了与先进国家的差距,产品从无到有,基本上做至了国外有的我国也有,目前己有种基因工程药物和若干种疫苗批准上市,另有十几种基因工程药物正在进行临床验证,还在研究中的药物数十种。国产基因工程药物的不断开发生产和上市,打破了国外生物制品长期垄断中国临床用药的局面。目前,国产干扰素α的销售市场占有率已经超过了进口产品。我国首创的一种新型重组人γ干扰素并已具备向国外转让技术和承包工程的能力,新一代干扰素正在研制之中。 2、我国目前登记在册的生物技术企业共有家,但其业务真正涉及到基因工程的 企业却很少。目前,国内市场上国产生物药品主要是基因乙肝疫苗、干扰素、白细胞介素、增白细胞、重组链激酶、重组表皮生长因子等种基因工程药物。 组织溶纤原激活剂、白介素、重组人胰岛素、尿激酶等十几种多肽药品还进行临床、ⅱ期试验,单克隆抗体研制已由实验进入临床,型血友病基因治疗

中国生物技术的发展现状

中国生物技术的发展现状 我国第一个生物制品研究所始建于1919年,在北平天坛成立了中央防疫处--即今天的北京生物制品研究所,迄今已有80多年的历史。 我国自七十年代未开始了现代生物技术的研究。国家高度重视生物技术的发展,不仅被列为863计划之首,而且纳入七五、八五、九五国家重点攻关计划。这一系列的举措,大大促进了我国医药生物技术的发展,并形成了一定的产业规模。 我国基因工程多肽药物、单抗和新型诊断试剂在仿制的基础上向创新发展,已能生产目前国际上市的大多基因工程多肽药物,基因工程干扰素α-1b-系国际首创,重组人肿瘤坏死因子、bFGF已申请专利,首创的免疫PCR胃癌诊断试剂已获得新药证书,有望开发出一系列的高灵敏度癌症诊断试剂。 基因工程疫苗的研制取得明显进展,基因工程乙肝疫苗投放市场,对乙肝的预防起到了非常重要的作用。双价痢疾疫苗、霍乱疫苗获准试生产,血吸虫疫苗。出血热疫苗等正在进行临床试验。 基因治疗取得突破,研制成功具有高效导入功能的靶向性非病毒型载体系统,动物试验表明,该系统能在体内将基因高效导入肿瘤细胞,明显抑制肿瘤生长;血管表皮生长因子基因缝线等3种基因治疗方案已基本完成临床前试验。

获得了一批转基因动物,已获得生长激素转基因猪的第2、3、4代。获得手乳腺表达外源基因的转基因羊等。 通过研究出现一批创新性成果,克隆了大量人、动物、植物的新基因,创造了具有多种用途的新型表达载体等。 据统计,我国现有456个单位从事生物技术的研究、开发和生产,其中医药领域的有165个,占36%,专业人员约6800人,已有近二十种基因工程药物、疫苗获准进入市场,数十种医药生物技术产品正在进行临床或临床前研究。 当今世界生物技术迅猛发展,呈现出巨大活力。特别是九十年代以来,随着人类基因组计划等各类生物基因组研究工作的展开,新基因不断被发现,新技术、新手段不断涌现,生物技术进入了大发展的新时期。与此同时,生物技术产业迅速崛起,并已成为国际市场竞争的第二个热点领域。可以预言,二十一世纪生物技术将会对世界技术经济格局产生重要影响,生物技术产业将成为全球经济的支柱产业之一。 一、我国生物技术产业发展现状 近年来,我国的生物技术取得了很大的发展。初步形成了医药生物技术、农业生物技术、轻化工生物技术、海洋生物技术等门类齐全的生物技术研究、开发、生产的体系;取得了一批具有较高水平的生物技术研究开发成果,开发出一批生物技术产品并投放市场。 1、现代生物技术产品的销售额是10年前的50倍

(word完整版)现代农业高技术的发展现状、方向和趋势

类别:综述 现代农业高技术的发展现状、方向和趋势 龚德平 现代农业是市场化、工业化、科学化、集约化、社会化、补贴与福利化以及可持续发展的农业。发展现代农业,就是用现代物资条件装备农业,用现代科学技术武装农业,用现代产业体系组织农业,用现代经营形式管理农业,用现代市场发展理念引领农业,用培养知识文化型农民发展农业。现代农业高技术是发展现代农业的核心。 (一)、现代农业高技术的发展现状 随着生物技术、信息技术、新材料技术等高技术的不断发展,现代农业高技术发展迅速。以生物技术、信息技术为代表的高技术不断向农业科技领域渗透和融合,逐渐形成了分子育种技术、转基因技术、数字农业技术、节水农业技术、食品加工技术、航天育种技术等农业高技术体系。 1、农业生物技术发展迅速,成为经济发展新的制高点,对科学、技术、方法、理念、产业、社会与伦理产生一系列的革命性影响。现代分子育种学与传统动植物育种技术的结合,促进了新兴分子育种技术的发展。近年来由于转基因生物对生态环境和人类健康影响尚存在一些科学意义上的不确定性,科技界纷纷把研究重点转向动、植物分子标记辅助选择技术,该技术具有高效、安全的突出优点,已经展示出部分常规育种技术无法比拟的优越性。以转基因为核心的现代生物技术产业成为当今世界发展最快、最活跃的农业高技术产业领域之一。农业生物药物技术研究取得了一

批重大突破,成为农业高技术研究领域角逐的重点领域,目前以基因重组技术为代表的生物技术是农业生物药物研究的核心技术。生物技术在理论和技术上不断取得突破,为现代农业高技术的孕育、成熟、发展创造了条件。同时,生物技术的迅猛发展,越来越直接地影响着人类的精神生活,冲击着传统的伦理观念,衍生出许多新的伦理道德问题。 2、农业信息技术与数字化技术日新月异,对传统农业的改造显示出强劲的动力。农业信息化技术与数字化技术的应用主要有数据库技术、农业专家系统、3S技术、农业网络技术以及精确农业技术等。农业专家系统最早于1986年出现在美国,现在专家系统通过网络传送到田间和饲养场正成为一种趋势;以3S技术(遥感技术、地理信息系统、全球定位系统)与精确农业技术为基础的精确农业已经成为当今世界农业发展的新潮流;农业现代高技术装备迅速地吸收应用电子与信息技术、新材料技术发展成就开发出智能、高效、多功能和大型化农业现代装备。与此同时,农业信息技术与数字化技术的不断发展,对社会物资生活、精神生活方式、以及人类物资、精神文明空间的拓展与延伸产生深刻的变革。 3、高技术引领驱动和支撑农业生产方式转变,成为世界现代化农业发展的根本标志。现代生物技术、信息技术和新材料技术的迅猛发展,为解决农业资源高效利用、生态环境保护等现代农业综合发展问题提供了新的技术途径,农业资源利用与生态环境技术研究主要集中在节水农业技术、新型肥料技术、农业废弃物综合利用技术等方面。目前节水农业研究的目标是不断提高作物水分利用率和利用效率,依据作物生理需水确定作物用水;在新型肥料技术方面,目前主要研究主要集中在纵横向动态平衡施肥

生物技术在制药方面的应用与前景

生物技术在制药方面的应用与前景 21世纪是一个社会、经济和科技迅猛发展的时代,也是一个激烈竞争的时代。1882年诺贝尔奖获得者GoldsteinJB曾预言“21世纪是以生物制药为代表的生命科学与技术的世纪”。同时也有相关专家指出生物技术制药将永远是“朝阳产业”。所谓生物技术是指用活的生物体(或生物体的物质)来改进产品,改良植物和动物,或为特殊用途而培养微生物的技术。生物工程是指运用生物化学、分子生物学、微生物学、遗传学等原理与生化工程相结合来改造或重新创造设计细胞的遗传物质,培育出新品种,以工业规模利用现有生物体系,以生物化学过程来制造工业产品生物,生物技术制药简单的说就是以生物技术为主要手段来研究制造药物。生物技术应用于制药工业不仅可以大量生产廉价的防治人类重大疾病及疑难杂症的新型药物,而且引起制药工业技术的重大变革。 一、生物技术在制药方面的应用主要有以下内容: 1、基因工程制药 基因工程又称遗传工程,即重组DNA技术的实际应用。它是把体外重新组合的DNA引入到适当的细胞中进行复制和表达。利用基因工程细菌等表达人类一些重要基因片段,可产生具有生理活性的肽类和蛋白质药物。现代重组DNA 技术特别是基因显微注射技术的发展奠定了转基因动、植物发展的基础。转基因动、植物将发展成为生物药品的新一代药厂。 基因工程技术在医药工业上的应用主要有以下几个方面:基因工程多肽药物、基因工程药物、基因工程抗体、基因治疗与基因诊断、应用基因工程技术建立新药筛选模型、应用基因工程技术改良菌种,产生新的微生物药物、基因工程技术改进药物生产工艺、利用转基因动、植物生产蛋白类药物。 2、细胞工程制药 细胞工程是在细胞水平上的生物工程。细胞工程是在对细胞结构的深入认识和细胞遗传学的研究基础上发展而来的。人们认识到培养的动植物细胞可以通过无性繁殖扩大群体数量同时保持本身遗传性状一致;融合细胞通过容纳两个亲本细胞的基因载体而具有亲本双方的优良性状。现在应用较广泛的有单克隆抗体技术、植物细胞培养生产次级代谢产物、动物细胞培养。另外,细胞培养也是基因工程中利用转基因动、植物生产蛋白质类药物的基础技术之一。 3、微生物工程制药 微生物工程也称发酵工程,它在原有发酵技术的基础上又采用了新技术使工艺水平大大提高。所采用的新技术主要应用于3个方面:工艺改进、新药研制和菌种改造。现代发酵工程不但生产酒精类饮料、醋酸和面包,而且生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,生产天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶、维生素和单细胞蛋白等。由微生物产生的具有除抗感染、抗肿瘤作用以外还有其他有活性物质,如酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性超过了传统抗生素所包括的范围。 4、酶工程制药 酶工程就是利用酶的催化作用进行物质转化,生产人们所需产品的技术,是将酶学理论与化工技术结合起来的一项高新技术。酶工程对医药、医疗方面贡献巨大。酶工程可用完整的微生物细胞或从微生物细胞中提取酶作为生物催化剂,其区域和立体选择性强,反应条件温和,操作简便,成本低、公害少且能完成一般化学合成难以进行的反应。现在菠萝蛋白酶、纤维素酶、淀粉酶、胃蛋白酶等

生物质直燃锅炉设计计算

生物质直燃锅炉设计计算 生物质直燃锅炉设计计算 3.1锅炉设计时主要的结构尺寸 1)炉膛净空尺寸:250×250×1400 2)炉排有效面积250×600,共做3块,炉排小孔4mm,开孔率40%,炉排下两侧装导轨,机械传动 3)前拱高200,长50; 4)后拱高180,长300 3)炉顶出口:天圆地方结构,出口60mm 4)点火炉门80×80,装在侧强 5)看火孔42mm 6)炉前装料斗 7)料层厚度60mm 6)炉顶装省煤器,管子18mm,前后各布置测点一个。 8)每隔300mm一个测点,测点预留孔14mm,烟囱上布置一个测点 9)支架高度800mm 10)炉膛内衬80mm厚,布置抓钉 11)整体用不锈钢外包装 12)支架高度800mm 13)整体外形长宽高:760×410×2200

3.2试验原料 本试验是采用生物质颗粒燃料(玉米秸秆颗粒燃料),是由生物质燃料成型机压制而成的。其尺寸是圆柱形,直径是8mm,燃料颗粒自然堆积密度为554.7kg/m3,其颗粒密度为1200kg/m3。 实验前用氧弹式量热仪测定玉米颗粒燃料的收到基净发热量qnet,ar , qnet,ar=15132kJ/kg。 由燃料元素分析仪分别测定其收到基中C,H,N,S,O的含量,得到: Car=44.92%,Har=5.77%,Nar=0.98%,Sar=0.21%,Oar=31.26%。 用燃料工业分析仪分别测定其收到基水分含量(Mar),收到基挥发分含量(Var),收到基固定炭含量(Far),收到基灰分含量(Aar)。如下: Mar= 9.15%,Var= 75.58%,Far= 7.56%,Aar= 7.71%。 3.3直燃锅炉设计的相关参数 1)锅炉功率要求:10 kW; 2)温度:查阅暖通空调设计指南(P63)可以得到室内空气温度在16-24℃范围内[2],在试验期间实际测得当时温度为16℃,室外环境温度t0=10℃,排烟温度tpy低于烟气露点,150℃左右 [20],tpy =165℃; 3)热负荷:查相关锅炉设计手册得炉排单位面积热负荷经验值700~1050kW/m2 [3-8],由于低温及燃料易燃尽时取上限,所以取qF= 1050 kW/m2;炉膛单位容积热负荷经验值235~350kW/m3 [3-8],

生物传感器产业现状和发展前景

生物传感器产业现状和发展前景 冯德荣 1.1 生物传感器概述 生物传感器是一个非常活跃的研究和工程技术领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起,处在生命科学和信息科学的交叉区域。它们的共同特征是:探索和揭示出生命系统中信息的产生、存储、传输、加工、转换和控制等基本规律,探讨应用于人类经济活动的基本方法。生物传感器技术的研究重点是:广泛地应用各种生物活性材料与传感器结合,研究和开发具有识别功能的换能器,并成为制造新型的分析仪器和分析方法的原创技术,研究和开发它们的应用。生物传感器中应用的生物活性材料对象范围包括生物大分子、细胞、细胞器、组织、器官等,以及人工合成的分子印迹聚合物(molecularly imprinied polymer,MIP)。由于研究DNA分子或蛋白质分子的识别技术已形成生物芯片(DNA芯片、蛋白质芯片)独立学科领域,本文对这些领域将不进行讨论。 生物传感器研究起源于20世纪的60年代,1967年Updike和Hicks把葡萄糖氧化酶(GOD)固定化膜和氧电极组装在一起,首先制成了第一种生物传感器,即葡萄糖酶电极。到80年代生物传感器研究领域已基本形成。其标志性事件是:1985年“生物传感器”国际刊物在英国创刊;1987年生物传感器经典著作在牛津出版社出版;1990年首届世界生物传感器学术大会在新加坡召开,并且确定以后每隔二年召开一次。 此后包括酶传感器的生物传感器研究逐渐兴旺起来,从用一种或多种酶作为分子识别元件的传感器,逐渐发展设计出用其他的生物分子作识别元件的传感器,例如酶—底物、酶—辅酶、抗原—抗体、激素—受体、DNA双螺旋拆分的分子等,把它们的一方固定化后都可能作为分子识别元件来选择地测量另一方。除了生物大分子以外,还可以用细胞器、细胞、组织、微生物等具有对环境中某些成分识别功能的元件来作识别元件。甚至可以用人工合成的受体分子与传感器结合来测定微生物、细胞和相关的生物分子。 与生物活性材料组合的传感器可以是多种类型的物理或化学传感器,如电化学(电位测定、电导测定、阻抗测定)、光学(光致发光、共振表面等离子体)、机械(杠杆、压电反应)、热(热敏电阻)或者电(离子或者酶场效应晶体管)等等。所有这些具有生物识别功能的组合体通称为生物传感器。 按期召开的世界生物传感器学术大会记录了生物传感器技术发展的历程,总汇了这一领域的发展新动向。例如1992年在德国慕尼黑“国际生物传感器流动注射分析与生物工艺控制”学术会议上对生物工艺控制和在线系统进行研讨,至今仍作为研究者攻关的课题。2004年在西班牙格拉纳达会展中心召开的第八届世界生物传感器大会可以说是世界生物分析系统领域的一次大的盛会[1],参会代表人数和发表论文数量都创造了历史新高。共有700余名来自世界各地的学者参加了本届大会,第八届世界生物传感器大会涉及领域内容空前广泛,对9个专题进行了分组讨论。包括核酸传感器和DNA芯片、免疫传感器、酶传感器、组织和全细胞传感器、用于生物传感器的天然与合成受体、新的信号转导技术、系统整合/蛋白质组学/单细胞分析、生物电化学/生物燃料/微分析系统、商业发展和市场。其中,单分子/细胞分析和生物印迹生物传感器由于它们良好的发展态势及在生命科学研究中的重要位置成为与会学者讨论的热点问题。

生物工程的现状及发展

生物工程的现状及发展 摘要:本文论述了什么是生物工程以及发展生物工程的重要意义,并介绍了当代的生物技术和研究成果,并对生物工程的发展前景做了简单的叙述。 关键词:生物工程酶工程工程前景 1 什么是生物工程 遗传工程是在分子生物学基础上发展起来的一项新兴技术,它通过人工转移或重组DNA大分子,增加生命体的基因种类,从而重新安排、设计人类所需要的新生命。生物工程就是把生命科学的最新成果和最新知识直接或间接地用于工农业生产、医药卫生、环境保护等各个领域的工艺学。一般认为它主要包括遗传工程、细胞工程、酶学工程和发酵工程。 繁衍或用传统的选择自发突变的方法既快又好。如育种,用传统的选择自发突变的方法比自然界进化产生新组合性状的速度快一万倍,而运用遗传工程技术,则快一亿倍。 细胞工程包括植物细胞组织培养和细胞杂交等。前者

是把植物的胚轴、叶片、茎段、根、花茎、花粉、胚、分生组织等离体培养成为植株。后者是指把植物的细胞,从植物体上分离下来,除去细胞壁,变成原生质体,在融合诱导剂促进下,使甲、乙两个种的细胞完成融合过程,继而培养成杂种植株。 酶工程是利用生物学使一种物质转化为另种物质的方法。酶工程避开了传统化学转化所需要的高温、高压、强酸、强碱等苛刻条件,在化学工业中显示出巨大的优越性。 发酵工程就是利用不同的微生物,在无氧或有氧条件下,将各种不同的原料转化成各种不同的物质,如酒精、糖类、氨基酸、蛋白质、维生素等。 2 发展生物工程的重要意义 人类在长期科学和生产实践中掌握了很多创造生物新类型的手段。到目前为止最有效的还是有性杂交方法。但是,这种方法也有其一定的局限性,种间、属间远缘杂交往往不易成功,至于亲缘关系更远的物种,如动物与细菌之间,就更不可能了。然而基因工程却可以越过这个杂交屏障,发挥它自己的特长。它不但能把不同微生物的优良性状结合在一起,而且还能使动物、植物、微生物的基因

生物技术制药目前发展状况及未来瞻望

高等教育自学考试 毕业设计(论文)说明书 生物技术(本科) 市地信阳 XX号 5 XX 周志远 XX科技大学高等教育自学考试办公室

高等教育自学考试 毕业设计(论文)任务书 一、题目:生物技术制药目前发展状况及未来瞻望 二、本环节自2008年4月25日起至2009年3月28日 三、进行地点:XX科技大学 四、内容要求:综述简练完整,有见解;立论正确,论述充分,结论严谨合理,实验正确,分析处理科学;文字通顺,技术用语准确,符号统一,编号齐全,书写工整规X,图表完备、整洁、正确;论文结果有应用价值。 指导教师:成泽艳职称讲师 批准日期:2009年 5 月20 日

摘要:生物技术已经深入药类研究和开发的各个领域,特别是在制药工业中,更是发挥着极大的作用。生物技术的引进和导入是当今高新技术引起制药工业研究和发展的一场变革。它将促使整个制药工业在研究开发利用上发生一个新的突破,产生一个新的起点。 关键词:生物技术;制药工业;发展状况;未来瞻望

Abstract:Bio-technology has depth-type research and development in various fields, especially in the pharmaceutical industry, but also plays a great role. And the introduction of biotechnology into the pharmaceutical industry caused by today's high-tech research and development of a process of change. It will make the entire pharmaceutical industry in research and developmenthas taken place in the use of a new breakthrough, a new starting point. Key words:biotechnology; pharmaceuticals industry;Status of development;looking into the future

生物质直燃发电机组效率计算

生物质直燃发电机组效率计算方法和说明国能生物发电集团有限公司生产技术部本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。 一、生物质锅炉效率计算 (一)基本原则 (1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。 (2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。 (3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。 (二)正平衡计算 1、正平衡热效率计算(η1) (1-1) 式中:——锅炉热效率,%; ——输入热量,kJ; ——输出热量,kJ。 2、输入热量(Qr)

因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到 基低位发热量作为输入热量。即(1-2) 式中:——燃料收到基低位发热量,kJ/kg。 3、输出热量(Q1) (1-3) 式中: ——燃料消耗量,kg; ——锅炉主汽流量,kg/h; ——锅炉主蒸汽出口焓值,kJ/kg; ——锅炉给水焓值,kJ/kg; ——锅炉排污水量,%; ——锅炉排污水的焓值,kJ/kg。 因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。 蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS—IF97编程实现。 (三)反平衡计算 1、入炉燃料元素成分的确定 由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实

际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。 (1)典型燃料元素分析成分 因入炉燃料种类多,所以选择国能高唐电厂性能试验时入炉燃料作为典型燃料。具体如下: (2)入炉燃料元素成分的拟合方法 根据现场工业分析所得的水分(Mar)和灰分(Aar)数值,按照公式(1-4)进行拟合计算入炉燃料的元素成分: (1-4) 式中:——拟合的入炉燃料收到基下含碳量; 、——入炉燃料工业分析收到基下水分和灰分; 、、——典型燃料收到基下含碳量、水分和灰分。 含氢量、含氧量、含氮量和含硫量计算同含碳量。 2、反平衡热效率计算(η2) (1-5) 式中:——锅炉热效率,%;

现代生物技术产业化发展的现状与趋势

现代生物技术产业化发展的现状与趋势 摘要:综述了现代生物技术的发展现状,介绍了农业生物技术的疫苗、工业生物技术、医药生物技术及其在生物技术领域中的应用情况,介绍了生物技术领域重点攻关课题研究进展,展望了今后的发展方向。 关键词:现代生物技术产业化现状与趋势 1 前言 生物技术也称生物工程,它是在分子生物学基础上建立的、为创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。具体而言,生物工程技术包括转基因植物、动物生物技术、农作物的分子育种技术、医药生物技术、纳米生物技术、重要疾病的生物治疗等。当前,世界生物技术发展已进入大规模产业化的起始阶段,蓬勃兴起和迅猛发展的生物医药、生物农业、生物能源、生物制造、生物环保等领域,正在促使生物产业成为世界经济中继信息产业之后又一个新的主导产业[1]。 现代生物技术以20世纪70年代DNA重组技术的建立为标志,以世界上第一家生物技术公司——Gene-Tech的诞生(1976)年为纪元[2]。此后,越来越多的科学家投身于分子生物学研究领域,并取得了许多重大的进展。至此,以基因工程为核心的技术上的革命带动了现代发酵工程、酶工程、细胞工程以及蛋白质工程的发展,形成了具有划时代意义和战略价值的现代生物技术。生物技术的最大特点是具有再生性,可以循环利用生物体为操作对象,在节约原材料和能源方面有巨大的潜力,而且投资少、周期短、经济效益大,并且没有污染。他是推动经济发展、社会进步的一项关键技术,在解决人类社会面临的一系列重大问题,如粮食、健康、环境和能源方面已经取得并将取得更大进展,对促进社会经济诸领域的发展有着不可估量的影响。 2 全球现代生物技术的发展现状 产值继续增长 2013年,全球生物工程药品市场规模为2705亿美元,2014年增长至3051亿美元。基于疾病诊断和治疗对重组技术、医药生物技术以及DNA测序技术等的需求不断增加,全球生物技术市场预计以%的年复合增长率增长,至2020年全球

生物制药在中国之现状、问题及解决策略

生物制药在中国之现状、问题及解决策略 F1640201 瞿清辉716401910019 1国内外生物制药产业的现状 1.1国外生物制药产业的发展现状自1971年世界上第一家生物制药公司诞生以来,国外很多国家和地区都在发展生物制药产业,从目前来看,生物制药产业主要集中在美国、欧洲和日本等发达国家和地区。美国目前已有超过1000家从事生物制药的企业,约占世界总量的2/3,每年的科研经费也超过了50亿美元,已经成功研发和正式投放市场的生物工程药物也有40多个,总的来说,美国在生物制药产业发展方面遥遥领先世界其他国家。欧洲在生物制药方面虽然整体落后于美国,但其发展势头迅猛,在生物制药的某些领域可以和美国平起平坐甚至超过美国。日本在生物制药产业上的发展速度也比较快,研发经费投入较多,部分公司的实力甚至超过美国和欧洲。除此之外,其他国家如澳大利亚、印度等在国家政策引导下,不断吸纳世界范围内的投资和引进先进技术,生物制药产业已经有了长足的发展和进步。 1.2我国生物制药产业的发展现状我国生物制药产业起步比较晚,经过了将近20年的发展,目前以基因工程药物为核心的研制、开发和产业化已经初具规模。据统计,目前全国注册成立的生物技术公司已经超过了200家,主要分布在北京、上海、广东、浙江、江苏、吉林、山东、辽宁等环渤海、长江三角洲、珠江三角洲等经济发达的地区。 虽然我国生物制药产业起步比较晚,但是我国非常重视生物制药产业的发展,目前国家发展规划已经将生物制药作为经济发展的重点建设行业和高新技术的支柱产业来发展。许多地区已经建立了生物制药产业基地,有效地带动相关产业的发展。总体而言,我国的生物制药产业未来充满希望,发展形势良好,必将对我国经济的发展起到推动作用。 2我国生物制药产业存在的问题 2.1产业结构不合理 截至目前,我国虽然已有200多家从事生物制药的公司,但是这些公司大多规模较小,大多是一些民营企业和外商企业,无法与国际大鳄相竞争,此外,市场陷入同质化竞争格局,另一方面,虽然这些公司打着生物制药的旗号但实际生产的生物药物所占比重并不高。更重要的是,我国生物制药产业在整个制药产业中所占的比重约为7.36%,远低于全球生物制药业在整个制药行业所占的比重。 2.2自主创新能力不足 发达国家每年投入大量经费用于生物制药的研发和生产,相比而言我国的投入远远不够。另外,从申请的生产专利来看,美国、欧洲等发达国家和地区申请的生物技术专利可以达到全部专利的50%以上,而我国申请的生物技术专利不足全部专利的1%。此外,由于我国生物制药缺乏核心技术,至今没有一个在技术和市场上有明显优势的产品,目前所畅销的药品还是十几年前开发的旧品种,新上马的生物制药企业还处于低水平重复建设阶段。 2.3生物医药系统平台建设不足 生物制药产业发展还存在着一些深层次、长期性的平台建设和大环境建设的问题[4]。如国内资本市场不完善,生物制药技术企业融资渠道单一,融资困难,限制了生物制药企业的资金投入;科技成果转化率低,新研发的技术无法很快投入实际应用;专利保护不到位,生物制药领域浮躁作风现象严重;现行药品招投标机制、流通体制等不适应快速发展的生物制药产业等。所有这些问题都与生物医药系统平台建设水平不足有关,都严重制约我国生物制药产业的持续、健康、快速发展。 2.4产业规模小 2002年,美国3000多家生物技术公司的净销售额就达到5670亿美元。而我国生物产业规模

生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明 生物质直燃发电机组效率计算方法和说明 本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。 一、生物质锅炉效率计算 (一)基本原则 (1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。 (2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。 (3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。 (二)正平衡计算 1、正平衡热效率计算(η1) %1001 1?= r Q Q η (1-1) 式中:1η——锅炉热效率,%; r Q ——输入热量,kJ; 1Q ——输出热量,kJ 。 2、输入热量(Qr ) 因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到基低位

发热量作为输入热量。即ar net Q ,r Q = (1-2) 式中:ar net Q ,——燃料收到基低位发热量,kJ/kg 。 3、输出热量(Q1) )]()([1 1gs ps ps gs gr gr h h D h h D B Q -?+-??= (1-3) 式中: B ——燃料消耗量,kg; gr D ——锅炉主汽流量,kg/h ; gr h ——锅炉主蒸汽出口焓值,kJ/kg ; gs h ——锅炉给水焓值,kJ/kg ; ps D ——锅炉排污水量,%; ps h ——锅炉排污水的焓值,kJ/kg 。 因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。 蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS —IF97编程实现。 (三)反平衡计算 1、入炉燃料元素成分的确定 由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。 (1)典型燃料元素分析成分 因入炉燃料种类多,所以选择国能高唐电厂性能试验时入

生物质直接燃烧技术

生物质直接燃烧技术 、引言 目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。 、生物质燃烧的特性 了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。 由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低; 3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小, 尤其是农作物秸秆。因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。 三、生物质燃料直接燃烧技术 直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。 目前,生物质直接燃烧技术主要有以下几种: 3.1 生物质直接燃烧流化床技术 采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。 生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可

我国生物技术产业发展现状课件

我国生物技术产业发展现状、问题与对策【摘要】经过近20年的发展,我国生物产业取得了快速发展,为经济建设和社会发展做出了重要贡献,总体水平在发展中国家中处于领先地位。本文综述了我国与国际生物产业的发展现状,简要分析了我国与国外在生物产业上的优势和差距,并提出了针对我国生物技术产业发展的对策。【引言】随着生命科学和生物技术基础研究不断取得重大突破,生物产业的雏形在世界范围内已逐渐形成,各国都逐渐将发展生物产业放到重要地位。发展中国家更应意识到这一点,因为传统工业技术领域与发达国家已形成较大差距,而今天生物技术的发展却为其带来了新的机遇和挑战。一、我国生物技术产业发展现状经过近20年的发展,我国生物技术产业取得了长足进步,产业发展稳步增长。目前,我国已拥有国家、部门和地方政府资助的生物技术重点实验室近200个,已获得了一批具有知识产权的新基因、新表达系统,生物工程药物进入了创制阶段,建立了一系列关键平台技术,动、植物转基因技术已经成熟,具备了大规模基因测序和生物芯片、生物信息的研究条件。生物技术已广泛应用于农业、医药、环保、轻化工等重要领域,对提高人类健康水平、提高农牧业和工业产量与质量,改善环境正发挥着越来越重要的作用。2000年我国生物技术产业产值已经达到200多亿元,北京、上海、广州、深圳等地已建立了20多个生物技术园区。目前,涉及现代生物技术的企业约500家,其中涉及医药生物技术的企业300多家,涉及农业生物技术的企业200多家。从业人员超过5万人,从事生物技术研究和开发的人员已有2万人,每年还有约4600

名生物技术专业的大学生和研究生毕业加入这一行列。在生物技术研究开发方面已经形成了一个初具规模和有一定竞争力的研究队伍。在国际合作方面,我国已经与95个国家签订了政府间科技合作协议,与150多个国家开展了多种形式的合作与交流。与亚太地区各国在涉及农业,医药、环境保护和自然资源开发等方面形成重点合作。二、国际发展现状与趋势目前,我国生物技术产业集中化程度低,没有具有一定规模的企业产业。2000年实现产值200多亿元,相对于美国2000年的200多亿美元的生物技术产业产值差距很大。全球生物技术行业发展表现出以下特点:①出现一批影响未来的重大技术:人类基因组学/蛋白质组学、干细胞技术与组织工程、生物信息学、转基因技术、克隆技术、生物芯片/蛋白芯片/组织芯片、基 因治疗与细胞治疗、反义核酸技术、单抗技术等对现代生命科学及生物技术产业产生了巨大的影响。②生物技术产业格局从治病为主向治病、保健、提高生活质量的健康产业过渡。③跨国公司平均R&D 投入与销售收入的比例已超过10%,创新型重磅产品不断涌现,美国最大的生物技术公司2000年销售收人为24亿美元,净利达6亿多美元。④兼并重组愈演愈烈,大企业愈来愈大,协作型竞争已成为当今生物技术产业的主流;1998年以来,世界生物制药业格局发生了剧烈变化,全球市场排名前五强中四席是重组的结果,二十强的市场集中度高达67.8%。⑤小型企业走向专业化的道路,在生物制药行业尤其明显。如Amgen公司、Genentech公司、Celera公司、Isis

最新生物质发电十二五规划说课讲解

山东省农林生物质直接燃烧发电 发展规划 山东省发展和改革委员会

前言 能源是支撑和保障经济社会发展的重要物质基础。山东省是能源消费大省,能源消费主要以煤炭、石油和天然气等化石能源为主。随着经济社会的快速发展,能源资源瓶颈制约日益突出,环境约束日益加剧。保障能源供给、优化能源结构、保护生态环境已经成为事关山东省可持续发展的重大战略性任务。 近年来,可再生能源开发利用越来越受到世界各国和地区的高度重视。开发利用可再生能源,是转方式、调结构的必然要求,有利于优化能源结构、缓解能源约束、促进节能减排、保护生态环境,保障经济健康、快速、可持续发展。 生物质直燃发电作为生物质能综合利用领域发展最快的产业,有着技术成熟、能质好、清洁度高、可靠性强等优点。发展农林生物质直燃发电,可以扩大能源供给,提高生物质综合利用率,变废为宝,具有较高的社会效益、环保效益与经济价值。因此,当前大力发展生物质直燃发电具有重大的现实意义和经济意义。 山东省可再生能源资源丰富,“十一五”以来,风能、太阳能、生物质能等可再生能源开发利用取得重大进展。特别是在生物质直燃发电方面,国内首家生物质直燃发电项目即落户在菏泽市单县,单县项目的投产大大推动了全省生物质直接燃烧发电的发展。目前全省生物质直燃发电装机容量已达21.6万千瓦,年消耗秸秆约200万吨,极大地促进了可再生能源的发展,也带动了农民增收。但在生物质直燃发电快速发展过程中,生物质燃料收集、运输困难、生物质电厂运营困难等问题也逐渐显现。 为了规范农林生物质直燃发电产业发展,促进全省农林生物质直燃发电统筹规划、有序开发,在科学调研我省农林生物质资源,全面掌握生物质直燃发电技术及产业发展状况,借鉴国内外发展经验基础上,研究制定了《山东省农林生物质直接燃烧发电发展规划》,提出了未来我省农林生物质直接燃烧发电的指导思想、发展思路和目标、项目布局和保障措施,以此指导全省农林生物质直接燃烧发电产业发展和项目建设。

生物质直接燃烧技术

生物质直接燃烧技术 一、引言 目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。 二、生物质燃烧的特性 了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。 由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低;(3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小,尤其是农作物秸秆。因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。 三、生物质燃料直接燃烧技术 直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。 目前,生物质直接燃烧技术主要有以下几种:

3.1生物质直接燃烧流化床技术 采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。 生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可燃气体和固体颗粒进一步燃尽,同时可以将烟气中所携带的飞灰、床料分离下来,减轻尾部受热面和除尘设备的磨损。现在我国部分锅炉厂家与高等院校合作,已开发出甘蔗渣、稻壳、果穗、木屑等生物废料的流化床锅炉,并取得成功运行。 3.2生物质直接燃烧层燃技术 生物质直接燃烧层燃技术使用的燃料主要可分为农林业废弃物及城市生活垃圾,由于这两种生物质燃料的燃烧特点不同,因此,所设计的层燃锅炉结构也有所不同。 3.2.1农林业废弃物焚烧技术 一般农林业废弃物的挥发物含量高,析出速度快,着火迅速,而固定碳的燃烧则比较慢,因此对于此类锅炉的设计主要采用采用风力吹送的炉内悬浮燃烧加层燃的燃烧方式。农林业废弃物进入喷料装置,依靠高速喷料风喷射到炉膛内,调节喷料风量的大小和导向板的角度以改变草渣落入

相关主题
文本预览
相关文档 最新文档