当前位置:文档之家› 单自由度系统的振动

单自由度系统的振动

单自由度系统的振动
单自由度系统的振动

第2章 单自由度(SDOF)系统振动

(Single Degree of freedom)

如果振动系统任意时刻的空间位置只需要一个独立参数来表达,则称为单自由度系统。本章介绍单自由度系统运动方程的建立,以及自由振动的特点和动力响应的计算问题。

2.1 运动方程的建立

此处分别应用基于达朗贝尔原理的直接平衡法、虚位移原理和哈密顿原理建立振动微分方程。

2.1.1 直接平衡法

承受动力荷载作用的任何单自由度系统均可以由图2—1所示的模型来代表。图2—1(a)中,m 为质量块的质量(kg ),是为弹簧的刚度(m N /),c 为粘滞阻尼系数(m s N /?),)(t P 为干扰力(N )。

将坐标原点设在质量块的静平衡位置处,

坐标y 即为相对于静平衡位置产生的质量块的

动位移。在任意瞬时取质量块的隔离体,如图

2—1(b)所示,作用于质量块上的力有下列四

种:

(1)弹性恢复力(它等于弹簧刚度k 与位

移y 的乘积),ky f s =,与位移的方向相反;

(2)阻尼力(假设为粘滞阻尼机理,它

等于阻尼常数c 与速度y 的乘积),y

c f D =,与速度的方向相反;

(3)惯性力(根据d ’Alembert 原理,它等于质量m 与加速度y 的乘积),

y

m f I =,与加速度的方向相反; (4)干扰力,)(t P .(根据竖向力的动平衡条件即直接平衡法得出)

)(t P ky y c y

m =++ (2—1) 在振动的任意时刻,这四种力都保持着平衡,只是各个力所占的比例不同而

已。由方程(2—1)可知,相对于动力系统的静力平衡位置所建立的运动方程是不受重力影响的。换言之,此类情况可以不考虑重力影响建立方程。由于这个原因,建立方程时,位移都以静力平衡位置作为坐标原点,由此方程仅能得到系统的动位移,而总的位移应该是动力位移响应和静力位移值的叠加。

2.1.2 虚位移原理

以图2—1所示的结构系统说明如何应用虚位移原理建立方程。令质量m 发生虚位移y δ,则作用在质量m 上的四个力所作的总虚功应该等于零,即

0)(=+---y t P y f y f y f s D I δδδδ

式中的负号是因为力的方向和虚位移的方向相反。因为上式中的虚位移不等于零,很容易得到式(2—1)所示的振动方程。

0)(=+---y t P y f y f y f s D I δδδδ, ?0)]([=+---y t P f f f s D I δ,

因为0≠y δ,将四种力的表达式代入前式可推出)12(-?式

在结构系统中某些结构具有这样的特点:弹性变形完全限定于局部的弹簧元件中发生,而结构本身没有弹性变形,

称此为刚体集合系统。现在介绍采用虚

位移原理建立这类振动系统的运动方

程。

例2.1 图2—2所示的系统由两根

刚性杆组成,两根杆用铰连接在一起。在O 点和D 点分别受到阻尼器和弹簧的约束,AD 杆的单位长度的质量m 是均匀的,在无重刚杆DB 中点有一个质量m ,并且m 上作用一个集中力)(t P ,现用虚位移原理建立该系统的振动方程。

解 因为两个杆都是刚性的,所以整个系统仅一个自由度,故其动力响应可以用一个方程来表达。该体系可以用直接平衡法建立方程,但是用虚位移原理更简便。

选择铰的垂向位移)(t y 为基本自由度,而其他的一切位移均可以通过它来表达。例如阻尼器处的位移为2y ,质量m 处的位移为2

y ,作用于结构上的全部力为:

①弹性力,)(t ky f s =;

②阻尼力,)(2

1t y c f D =; ③质量m 惯性力,)(2

11t y m f I =; ④刚性杆平动惯性力,)(2

122t y l m f I ??=; ⑤刚性杆绕质心O 转动惯性矩; ⑥干扰力)(t P 。

根据作用于系统上的所有力在发生虚位移y δ时所做的总功等于零来建立运动方程。根据虚位移y δ和)(t y 成比例这一特性,可以写出总的虚功: 令总的虚功等于零并化简得:

2

)(4)64(t P ky y c y l m m =+++ 或者写成: )(****t p y k y c y m =++

其中, 64*l m m m +=,4*c c =,k k =*,2

)()(*t P t p =分别称为“广义质量、广义阻尼、广义刚度和广义荷载”,又可称为“等效质量、等效阻尼、等效刚度和等效荷载”。

2.1.3 哈密顿原理 针对图2—1

由图2—1得系统的动能和势能分别为:22y m T =,22

ky V = 非保守力即阻尼力和干扰力所做的功的变分为:

y y c y t P W nc δδδ -=)( (2—2)

引进:“广义质量、广义阻尼、广义刚度和广

义荷载”的概念

解释:该项相当于虚位移原理的方程中与力有关的虚功表达式。

根据式(1—6),[??=+-212

10)(t t t t nc dt W dt V T δδ]将动能对于速度求变分,将势能对于位移求变分,得到:

y y m y m T δδδ==)21(2,y ky ky V δδδ==)2

1(2 (2—3) 将式(2-2)和式(2—3)代入式(1-6)得:

?=+--210])([t t dt y t P y ky y y c y y

m δδδδ (2—4) 以上各项积分中,仅第一项含有速度的变分,通过分部积分得:

?

?-=212

121t t t t t t ydt y m y y m dt y y m δδδ

因为在1t 和2t 时刻的位移是给定的,故其变分y δ等于零。于是可得:

?

?-=2121t t t t ydt y m dt y y m δδ (2—5) 将式(2—5)代入式(2—4),得: ?=+---2

10)]([t t ydt t P ky y c y

m δ (2—6) 考虑到1t ~2t 时间区间内变分的任意性(0≠y δ),上式如果成立,被积分函数必

须等于零。于是得到与式(2—1)相同的运动方程0)(=+---t P ky y c y

m 。 以上的例题说明,同一运动方程可以用三种基本方法中的任一种来导出,显然对于不同的系统可以选择不同的方法建立运动方程,以简单方法建立为好。(对简单的体系,使用直接平衡法将比较简单)

2.1.4 重力的影响

现在讨论图(2—1))所示的体系,重力沿着位移的方向作用,此时,作用在质量上的力系如图(2—3b )所示,当引用各力的表达式后,体系的平衡关系可以写作

W t P ky y c y

m +=++)( (附2—1) 其中W 是刚体的重量。

图2—3 重力对单自由度体系平衡的影响

但是,如果总位移y 用由重量W 引起的静位移st ?及附加动力位移y 的和来表示,如图(2—3c )所示,即:

y y st +?= (附2—2)

则弹簧力可写为:

y k k ky f st s +?== (附2—3)

将方程 (附2—3)代入方程(附2—1)得:

W t P y k k y c y m st +=+?++)( (附2—4)

注意到W k st =?,则导致

)(t P y k y c y m =++ (附2—5)

对方程(附2—2)求导数,同时注意到st ?是不随时间变化的,因此显然有y y

=等关系,所以方程(附2—5)可改写为:

)(t P y k y c y

m =++ (附2—6) 比较方程(附2—6)及方程(2—1)可见,相对于动力体系的静力平衡位置所写出的运动方程是不受重力影响的(因此单自由度系统的物理模型可以简化为图2—4所示的分析模型)。由于这个原因,在今后所有的讨论中,位移都以静力平y y y

图2—4

y y

衡位置作为基准,而这样确定的位移即为动力反应。因此,求总挠度、应力等等时,只要把动力分析的结果与相应的静力量相加即可。

2.1.5支座扰动的影响

结构的动应力和动位移不仅可以由随时间变化的荷载引起,如图2—1所表示的那样,而且也可以由于结构支承点的运动而产生。由于地震引起的建筑物基础的运动,或由于建筑物的振动而引起放在建筑物内的设备基底的运动等等,就是这类扰动的重要的例子.地震振动问题的一个简化模型如图2—5所示。图中由于地震引起的地面水平运动用相对于固定参考轴的结构基底位移g y 来表示。

在这个刚架里水平横梁假定是刚性的,而且它包含了结构所有的移动质量。立柱假定为无重且在竖直方向(轴向)不能伸长,抵抗横梁位移的恢复力,由每一根弹簧常数为2

k 的立柱来提供。这样,这个质量具有一个自由度y ,它与立柱的弯曲有关,而且阻尼器c 则提供了对这个变形的抗力,这个抗力与速度成比例。

如图2—5(b)所示,对于这个体系的平衡可以写为:

0=++s D I f f f (附2—7)

式中阻尼力和弹性力可以用前述方程表示,而在这种情况下,惯性力由下式给出:

t I y m f = (附2—8)

式中t y 表示质量对参考轴的总位移。将惯性力、阻尼力和弹性力的表达式代入方程(附2—7)可得:

0=++ky y c y m t (附2—9)

在解这个方程之前,所有的力都必须用单一的变量来表达,为此,把质量的总位)

(

t y g

图2—5制作扰动对单自由度体系平衡的影响:(a )体系的运动;(b )平衡力系

移表示为地面运动和柱子变形的和即可,即:

g t y y y += (附2—10)

对方程(附2—10)求导,获得两个加速度分量,以它们表示惯性力,并代入方程(附2—9),可得:

0=+++ky y c y m y m g (附2—11)

或由于地面加速度代表对结构特定的动力输入,运动方程可以很方便地写成:

)()(t p t y m ky y c y m eff g =-=++ (附2—12)

在这个方程中,)(t p eff 表示等效支承扰动荷载。换句话说,在地面加速度)(t y g 作用下,结构的反应就和在外荷载)(t p 下产生的反应一样,只是外荷载)(t p 等于质量和地面加速度的乘积而已。方程(附2—12)中的负号表示等效力的方向和地面加速度方向相反;因为—般必须假定基底输入的作用方向不定,因此这一符号实际上是不重要的。

附:2.1.5广义单自由度体系:刚体集合——刚体质量和质量惯性矩

直到目前,所讨论的所有例子都是十分简单的.因为,体系的物理特性—质量、阻尼和弹性中每一个都用单个离散单元来表示。然而,大多数实际体系的分析,即使可以把它们当作单自由度结构考虑,仍需要用更复杂的理想化模型。为了这个讨论目的,将广义单自由度结构区分为二类较为方便:(1)刚体的集合,在这种集合中弹性变形完全限定于在局部的弹簧元件中发生。(2)体系具有分布弹性,在这个体系里变形可以在整个结构上或在它的某些元件上连续.在这两种情况里,都假定只允许有某种单一形式的位移,从而迫使结构的性状象单自由度体系一样。对于此处所讨论的刚体集合类结构,其所允许的单一位移形式常常是由刚体集合的构造来决定的,也就是说这些刚体被支承和铰所约束,因而仅能有一种位移形式。对具有分布弹性的结构,对它们的单自由度的形状限制仅是一个假定,分布弹性实际上允许发生无限多种位移形式。

建立刚体集合的运动方程时,单自由度位移所产生的弹性力可以容易的用位移振幅来表达,因每一个弹性单元都是一个承受特定变形的离散弹簧。同样,阻尼力可以用离散阻尼器连接点的特定的速度来表达。另一方面,刚体的质量不需要集中,分布的惯性力一般将由所假定的加速度而得到。但是,为了动力分析的

单自由度机械振动系统习题

单自由度系统机械振动 1. 图示系统的轮和绳之间无相对滑动,只作纯 滚动,建立系统的运动微分方程,并求系统 的固有频率,圆盘转动惯量为J ,质量块的 质量为m ,弹簧刚度为K 。 2. 图所示,W=1000N ,k=2 104N/m ,图示位 置弹簧已承受初压力F 0=100N ,现将支承突 然撤去,重块落下后作自由振动时的振动位 移表达式?(取重力加速度g=10m/s 2) 3.如图所示为一台机器,其总质 量为M ,安装在一个弹簧和一 个阻尼器上,弹簧常数为k ,阻 尼系数为c 。机器工作时旋转中 心为O ,角速度为ω,不平衡 质量大小为m ,偏心距离为e 。 机器只能在垂直方向运动。求机器振动时传给地面的力的最大值。 W K

4.图示系统中,质量m 上受激励力为 F (t )=sin ωt+10sin10ωt 时, 求质量m 的稳态响应 5. 图示系统的轮和绳之间无相对滑动,只作纯滚动,建立系统的运动微分方程,并求系统的固 有频率,圆盘转动惯量为J ,质量块的质量为m , 弹簧刚度为K 6. 一重块与两弹簧相连,W=490N ,k=9800N/m , 图示位置弹簧不受力,现将支承突然撤去,重块 落下后作自由振动时的振动位移表达式? 7. 如图所示为一台机器,其总质量为m ,通过一个弹簧和一个阻尼器安装在基础上,弹 簧常数为k ,阻尼系数为c 。基础的运动为 y(t)=Ysin ωt ,机器只能在垂直方向运动。求 基础振动时传给机器的力的最大值。 W K K

8.图示系统中,质量m上受激励力为 F(t)=sinωt+10sin10ωt时, 求质量m的稳态响应。 9.一般振动问题,如图所示: 三类振动问题分别是: (1)振动分析,已知,求; (2)振动环境预测或载荷分析,已知,求; (3)系统识别,已知,求。 10. 振动问题的分类,根据自由度数分,有, 和。 11. 简谐振动x=Asin(ωt+φ),其中的振动位移为,振幅 为, 振动频率为为,振动的初相位为 12. n个自由度振动系统有个固有频率,有个固有 振型, 其中的第i阶主振型有个节点。

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角 2 a =h 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 F sin α 2 θ h mg

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2= == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

机械振动课程期终考试卷-答案

一、填空题 1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。 2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或( 余弦)函数。 3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。 6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 2、在离散系统中,弹性元件储存( 势能),惯性元件储存(动能),(阻尼)元件耗散能量。 4、叠加原理是分析(线性)系统的基础。 5、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。(本小题2分) 2.振动按激励情况可分为自由振动和强迫振动两类。(本小题2分)。 3.图(a)所示n个弹簧串联的等效刚度= k ∑ = n i i k1 1 1 ;图(b)所示n个粘性阻尼串联的等效粘 性阻尼系数= e C ∑ = n i i c1 1 1 。(本小题3分) (a)(b) 题一 3 题图 4.已知简谐振动的物体通过距离静平衡位置为cm x5 1 =和cm x10 2 =时的速度分别为s cm x20 1 = &和s cm x8 2 = &,则其振动周期= T;振幅= A10.69cm。(本小题4分) 5.如图(a)所示扭转振动系统,等效为如图(b)所示以转角 2 ?描述系统运动的单自由度 系统后,则系统的等效转动惯量= eq I 2 2 1 I i I+,等效扭转刚度= teq k 2 2 1t t k i k+。(本小题4分)

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

第5章--两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-1车辆模型 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

第1章 单自由度系统的振动

第1章 单自由度系统的振动 1.1概述 机械振动是工程中常见的物理现象。悬挂在弹簧上的物体在外界干扰下所作的往复运动就是最简单直观的机械振动。广泛地说,各种机器设备及其零部件和基础,都可以看成是不同程度的弹性系统。例如桥梁在车辆通过时引起的振动,汽轮机、发电机由于转子不平衡引起的振动等。因此,机械振动就是在一定的条件下,振 动体在其平衡位置附近所作的往复性的机械运动。 实际中的振动系统是很复杂的。为了便于分析研究和运用数学工具进行计算,需要在满足工程要求的条件下,把实际的振动系统简化为力学模型。例如图示1.1-1 就是个最简单的单自由度质量(m )—弹簧(k )系统。 如果实际系统很复杂,要求的精度较高,简化的力学模型也就复杂。 振动系统中和参数的动态特性,可以用常系数线性微分方程来描述的,称为线性振动。但工程实际中也有很多振动系统是不能线性化的,如果勉强线性化,就会使系统的性质改变,所得的系统只能按非线性振动系统处理。 机械振动分析方法很多。对于简单的振动系统,可以直接求解其微分方程的通解。由于计算机进行数值计算非常方便,所以振动仿真是一种最直接的方法。 由于振动模型中尤其是多自由度振动很方便用矩阵微分方程来描述,所以MATLAB 语言在振动仿真中体现出十分优越的特性。 本章先介绍机械振动的单自由度、多自由度振动的基础,然后介绍仿真计算的各种计算公式,最后通过MATLAB 语言来实现。 1.2单自由度系统的振动 1.2.1 无阻尼自由振动 如图1.1-1所示的单自由度振动系统可以用如下微分方程描述 : 0=+kx x m (1.2.1-1) 令 m k n = 2ω ,方程的通解为 t b t a x n n ωωcos sin += (1.2.1-2) 式(1.2.1-2)表示了图示(1.1-1)中质量m 的位置随时间而变化的函数关系,反映了振动的形式与特点,称为振动函数。 式(1.2.1-2)中,a 、b 为积分常数,它决定于振动的初始条件。如假定t =0时,质量块的位移 x=x 0,其速度 00V x x == ,则 00 ,x b V a n == ω 即 图 1.1-1

两自由度系统的振动

x 1 ax 1 bx 2 x 2 cx 1 dx 2 显然此时 m 2 但对不同的系统, 式(5-2)中各系数的意义并不相同。 第5章两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问 题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自 由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两 自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以 由质心C 偏离其平衡位置的铅直位移 z 及平板的 转角 来确定。这样,车辆在铅直面内的振动问 题就被简化为一个两自由度的系统。 图 21-1 5.1双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩 擦力及其它阻尼,以它们各自的静平衡位置为坐标 X 1、X 2的原点,物体离开其平衡位置的位移用 X 1、X 2 何 表示。两物体在水平方向的受力图如图 5-2(b)所示, 由牛顿第二定律得 图5-2两自由度的弹簧质量系统 m 1x 1 (k 1 k 2)x 1 k 2x 2 0 m 2x 2 k 2 x 1 k 2x 2 0 (5-1) 这就是两自由度系统的自由振动微分方程 。习惯上写成下列形式 (5-2) k 1 k 2 k 2 k 2 m 1

5.1.2 固有频率和主振型 根据微分方程的理论,设方程 (5-2)的解,即两自由度无阻尼自由振动系统的解为 x i A i sin( pt ) x 2 A 2 sin( pt ) 或写成以下的矩阵形式 将式(5-4)代入式(5-2),可得代数齐次方程组 a p 2 b A i 0 c d p 2 A 2 保证式(5-5)具有非零解的充分必要条件是式 (5-5)的系数行列式等于零,即 2 a p 2 b (p 2) p 2 c d p 展开后为 p 4 (a d) p 2 ad be 0 的两个特征根为 (ad bc) (5-7) 由于式(5-7)确定的p 2的两个正实根仅取决于系统本身的物理性质, 与运动的初始条件无关, 因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率P 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的 振幅比 (5-3) x i X 2 A i sin( pt ) A 2 (5-4) (5-5) (5-6) 式(5-6)唯一确定了频率 p 满足的条件, 通常称为频率分程或特征方程。 它是p 2的二次代数方程,它 2 a d 2 bc

相关主题
文本预览
相关文档 最新文档