当前位置:文档之家› 波形钢腹板组合梁结构特点与设计要领

波形钢腹板组合梁结构特点与设计要领

波形钢腹板组合梁结构特点与设计要领
波形钢腹板组合梁结构特点与设计要领

河北工业大学钢结构设计原理复习题及参考答案

一、填空题 1. 钢结构计算的两种极限状态是和。 2. 钢结构具有、、、、 和等特点。 3. 钢材的破坏形式有和。 4. 影响钢材性能的主要因素有、、、 、、、和。 5. 影响钢材疲劳的主要因素有、、、 6. 建筑钢材的主要机械性能指标是、、、 和。 7. 钢结构的连接方法有、和。 8. 角焊缝的计算长度不得小于,也不得小于。侧面角焊缝承受静载时,其计算长度不宜大于。 9.普通螺栓抗剪连接中,其破坏有五种可能的形式,即、、、、和。 10. 高强度螺栓预拉力设计值与和有关。 11. 轴心压杆可能的屈曲形式有、、和。 12. 轴心受压构件的稳定系数 与、和有关。 13. 提高钢梁整体稳定性的有效途径是、

和。 14. 影响钢梁整体稳定的主要因素有、、、 和。 15.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则常采用的方法来解决。 二、问答题 1.钢结构具有哪些特点? 2.钢结构的合理应用范围是什么? 3.钢结构对材料性能有哪些要求? 4.钢材的主要机械性能指标是什么?各由什么试验得到? 5.影响钢材性能的主要因素是什么? 6.什么是钢材的疲劳?影响钢材疲劳的主要因素有哪些? 7.选用钢材通常应考虑哪些因素? 8.钢结构有哪些连接方法?各有什么优缺点? 9.焊缝可能存在的缺陷有哪些? 10.焊缝的质量级别有几级?各有哪些具体检验要求? 11.对接焊缝的构造要求有哪些? 12.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求? 13.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力 和焊接残余变形对结构性能有何影响?减少焊接残余应力和 焊接残余变形的方法有哪些?

箱梁波形钢腹板加工工艺讲解

箱梁波形钢腹板加工工艺 一、主要材料 1.钢材 Q345C 1: 波形钢腹板的第二节到第十四节4900mm,加工26件。 2:波形钢腹板的第一节和第十五节的长度为2750mm。高度分别为1733mm和1615mm各加工2件。共计4件。 3:波形钢腹板的第一节到第八节的高度分别为1733mm,1723mm,1705mm,1686mm,1668mm,1649mm,1631mm,1615mm,丛八节到十五节高度都是1615mm.1到8节拼接会出现错台.而图纸上测量都是1615mm。 焊接材料:通过焊接工艺评定试验采用与母材相匹配的焊丝、焊剂和手工焊条,且应符合相应的国标要求,CO2气体纯度不小于99.5%。 2.波形钢腹板施工 <1>钢结构的制作与安装应符合《钢结构工程施工及验收规范》(GB50205-2001)及《公路桥涵施工技术规范》(JTJ041-2000)中有关的规定。 <2>波形钢腹板采用冷加工制作前,应进行工艺试验,要求圆角外边缘不得有裂纹;冷弯加工,温度高于-5度,冷弯后冲击功不低于母材,严格控制氮含量。 我厂准备用1000T压力机.采用冷弯模压法。4道弯一次成型. 成型见(1000吨油压机示意图)

焊接: 我们主要以埋弧焊为主。焊剂HJ431 焊丝JW——1直径 4.0mm CO2气体保护焊为辅 现场焊接主要以CO2气体保护焊为主。手工焊电为辅.焊条用506高碳钢焊条。焊接电流。焊接电压要经过现场试验。 波形钢腹板之间采用贴角焊,根据接头形式做好焊接工艺评定试验,焊接尺寸高度16mm、焊接工艺和焊接参数,控制焊接变形和降低焊接残余应力。 <4>各构件焊接完毕后焊缝必须进行探伤. 各构件焊接完毕后焊缝必须进行探伤,探伤比例100%、探伤数量(全部探伤)和检验标准按照波形钢腹板制造工艺方案中有关要求执行,焊缝的一次探伤合格率须控制在95%以上。以减少焊缝的返修量和返修率,从而保证焊缝质量和结构的可靠性3.波形钢腹板防腐 波形钢腹板各部位的防护采用重防腐涂装,使用寿命为25年,设计文件提供涂装体系供业主选择,面漆的颜色按照全桥景观要求由业主进行选择。

钢结构特点和应用

设计先进:采用最先进的设计方法,充分发挥钢材力学特性和钢构架的潜力,从而节省大量钢材。 结构新颖:结构简洁、轻巧,扩大了建筑物内部空间,彩钢夹芯板或双层彩板加保温棉等新型墙体屋面材料围护,更显示建筑的时代感。 安装快捷:构件标准,制作精良,施工安装简便、快捷、安全。 用途广泛:被广泛用于工业、民用建筑、尤其使用大跨度、大空间的大型厂房、仓库、体育馆。 第1章概述 1.1 钢结构的特点和应用 1.1.1 钢结构的特点 钢结构是用钢板,热轧型钢或冷加工成型的薄壁型钢制造而成的.和其他材 料的结构相比,钢结构有如下一些特点: (1)材料的强度高,塑性和韧性好. 钢材和其他建筑材料诸如混凝土,砖石和 木材相比,强度要高得多.因此,特别适用于 跨度大或荷载很大的构件和结构.钢材还具有 塑性和韧性好的特点.塑性好,结构在一般条 件下不会因超载而突然断裂;韧性好,结构对 动力荷载的适应性强.良好的吸能能力和延性 还使钢结构具有优越的抗震性能.另一方面, 由于钢材的强度高,做成的构件截面小而壁 薄,受压时需要满足稳定的要求,强度有时不 能充分发挥.图1-1给出同样断面的拉杆和压 杆受力性能的比较:拉杆的极限承载能力高于 压杆.这和混凝土抗压强度远远高于抗拉强度形成鲜明的对比. (2)材质均匀,和力学计算的假定比较符合. 钢材内部组织比较接近于匀质和各向同性体,而且在一定的应力幅度内几乎 是完全弹性的.因此,钢结构的实际受力情况和工程力学计算结果比较符合.钢 材在冶炼和轧制过程中质量可以严格控制,材质波动的范围小. (3)钢结构制造简便,施工周期短. 钢结构所用的材料单纯而且是成材,加工比较简便,并能使用机械操作.因 此,大量的钢结构一般在专业化的金属结构厂做成构件,精确度较高.构件在工 地拼装,可以采用安装简便的普通螺栓和高强度螺栓,有时还可以在地面拼装和 焊接成较大的单元再行吊装,以缩短施工周期.小量的钢结构和轻钢屋架,也可 以在现场就地制造,随即用简便机具吊装.此外,对已建成的钢结构也比较容易 进行改建和加固,用螺栓连接的结构还可以根据需要进行拆迁. (4)钢结构的质量轻. 钢材的密度虽比混凝土等建筑材料大,但钢结构却比钢筋混凝土结构轻,原 因是钢材的强度与密度之比要比混凝土大得多.以同样的跨度承受同样荷载,钢 屋架的质量最多不过钢筋混凝土屋架的1/3至1/4,冷弯薄壁型钢屋架甚至接

波形钢腹板组合梁桥的特性及应用

龙源期刊网 https://www.doczj.com/doc/e616143272.html, 波形钢腹板组合梁桥的特性及应用 作者:武林 来源:《中国科技纵横》2017年第22期 摘要:相对于传统混凝土类腹板,形钢腹板是一种新材料,能够很好地替代传统混凝土 腹板。波形钢腹板与混凝土顶及底板而构成的结构形式的桥梁称为波形钢腹板组合式桥梁。本文阐述了此桥梁的预应力力、结构设计及抗剪性、抗震性等功能特点,对其应用情况进行了分析,以期为其更好的应用提供参考。 关键词:波型刚腹板;组合桥梁;应用;特性 中图分类号:U448.216 文献标识码:A 文章编号:1671-2064(2017)22-0069-01 波型刚腹板组合桥梁以混凝土腹板的替代型腹板重新组合成的桥梁。该桥梁同传统的混凝土腹板桥梁的结构相比,取消了工字梁腹板的混凝土材料,代之的是钢腹板,钢腹板较混凝土材料更加轻巧,能够有效降低桥梁的重量[1]。同时,波形钢腹板的形状呈纵向刚度的较低波 纹形,克服了传统混凝土钢腹板中纵向桥变的限制所导致的截面预应力下降的问题。本文从波形钢腹板桥梁预应力、结构设计、抗震及抗剪性等方面来分析其特性,以探讨其在我国交通桥梁设计建设中的应用。 1 波形钢腹板组合桥梁的特征 1.1 材料性能的充分发挥 波形钢腹板的桥梁是利用其顶、钢腹板及底等混凝土翼缘板构成,且在箱梁的顶底板中施加其预应力[2]。波形钢腹板因其自身特征的抗剪性能高即轴向刚度低等特征,其比较适应于 截面剪力的成端,但其底及顶混凝土的抗剪性能不高及轴向强度强等特征,使其比较适用于截面轴向压力的承受。因此,其性能构建中的功能各异,其能够共同工作和各自发挥性能,并能在最大程度上提升钢材料及混凝土的效率。通过分析其结构发现,常规桥梁的内力分布较为均匀,分布特点同平截面假定的应力三角形分布不同,这表示钢腹板的梁材料具有较高的利用率。例如波形干板为1600型时可选择40-150米的跨径机芯组合,其板厚应为8-40毫米,波形钢腹板桥梁常用1000型、1200型、1600型等。此外,对于一个截面来说,其效率的衡量指标主要是其惯性半径的多少。因波形钢腹板-混凝土式桥梁的混凝土材料集中在截面上下缘,且能够自由增加截面惯性的半径,直至其极限值。因而,波形钢腹板能够明显提高截面和结构的效率。波形钢腹板桥梁的的尺寸应按照桥梁跨径的不同类型来选择。 1.2 箱梁自重的减轻 波形钢腹板的应用能够降低箱梁结构的恒载自重,进而对建设费用及材料使用量进行优化,可以有效降低项目造价。同时,主梁自重结构减轻后可以使地震响应显著降低,进而提高

钢结构设计步骤

钢结构设计步骤和设计思路 摘要:钢结构设计简单步骤和设计思路关键词: 钢结构结构设计步骤 (一) 判断结构是否适合用钢结构 钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、高温车间、密封性要求高、要求能活动或经常装拆的结构。直观的说:大厦、体育馆、歌剧院、大桥、电视塔、仓棚、工厂、住宅和临时建筑等。这是和钢结构自身的特点相一致的。 (二) 结构选型与结构布置 此处仅简单介绍. 详请参考相关专业书籍.由于结构选型涉及广泛,做结构选型及布置应该在经验丰富的工程师指 导下进行。 在钢结构设计的整个过程中都应该被强调的是\"概念设计\",它在结构选型与布置阶段尤其重要.对一些难以作出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部措施。运用概念设计可以在早期迅速、有效地进行构思、比较与选择。所得结构方案往往易于手算、概

念清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。 林同炎教授在《结构概念和体系》一书中介绍了用整体概念来规划结构方案的方法,以及结构总体系和个分体系间 的相互力学关系和简化近似设计方法。[20] 钢结构通常有框架、平面(木行)架、网架(壳)、索膜、轻钢、塔桅等结构型式。 其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设计方法,比如网壳的稳定等。 结构选型时,应考虑它们不同的特点。在轻钢工业厂房中,当有较大悬挂荷载或移动荷载,就可考虑放弃门式刚架而采用网架。基本雪压大的地区,屋面曲线应有利于积雪滑落(切线50度内需考虑雪载),如亚东水泥厂石灰石仓棚采用三心圆网壳。总雪载释放近一半。降雨量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用钢混凝土组合结构,在地震烈度高或很不规则的高层中,不

钢结构优点

钢结构优点 抗震性 低层别墅的屋面大都为坡屋面,因此屋面结构基本上采用的是由冷弯型钢构件做成的三角型屋架体系,轻钢构件在封完结构性板材及石膏板之后,形成了非常坚固的"板肋结构体系",这种结构体系有着更强的抗震及抵抗水平荷载的能力,适用于抗震烈度为8度以上的地区。 抗风性 型钢结构建筑重量轻、强度高、整体刚性好、变形能力强。建筑物自重仅是砖混结构的五分之一,可抵抗每秒70米的飓风,使生命财产能得到有效的保护。 耐久性 轻钢结构住宅结构全部采用冷弯薄壁钢构件体系组成,钢骨采用超级防腐高强冷轧镀锌板制造,有效避免钢板在施工和使用过程中的锈蚀的影响,增加了轻钢构件的使用寿命。结构寿命可达100年。 保温性 采用的保温隔热材料以玻纤棉为主,具有良好的保温隔热效果。用以外墙的保温板,有效的避免墙体的“冷桥”现象,达到了更好的保温效果。100mm左右厚的R15保温棉热阻值可相当于1m厚的砖墙。 隔音性 隔音效果是评估住宅的一个重要指标,轻钢体系安装的窗均采用中空玻璃,隔音效果好,隔音达40分贝以上;由轻钢龙骨、保温材料石膏板组成的墙体,其隔音效果可高达60分贝。 健康性:干作业施工,减少废弃物对环境造成的污染,房屋钢结构材料可100%回收,其他配套材料也可大部分回收,符合当前环保意识;所有材料为绿色建材,满足生态环境要求,有利于健康。 ? 舒适性

轻钢墙体采用高效节能体系,具有呼吸功能,可调节室内空气干湿度;屋顶具有通风功能,可以使屋内部上空形成流动的空气间,保证屋顶内部的通风及散热需求。dd 快捷 全部干作业施工,不受环境季节影响。一栋300平方米左右的建筑,只需5个工人30个工作日可以完成从地基到装修的全过程。 环保 材料可100%回收,真正做到绿色无污染。 节能 全部采用高效节能墙体,保温、隔热、隔音效果好,可达到50%的节能标准。 钢结构的优势 钢结构与其它建设相比,在使用中、设计、施工及综合经济方面都具有优势,造价低,可随时移动。 一、钢结构住宅比传统建筑能更好的满足建筑上大开间灵活分隔的要求,并可通过减少柱的截面面积和使用轻质墙板,提高面积使用率,户内有效使用面积提高约6%。 二、节能效果好,墙体采用轻型节能标准化的C型钢、方钢、夹芯板,保温性能好,抗震度好。节能50%, 三、将钢结构体系用于住宅建筑可充分发挥钢结构的延性好、塑性变形能力强,具有优良的抗震抗风性能,大大提高了住宅的安全可靠性。尤其在遭遇地震、台风灾害的情况下,钢结构能够避免建筑物的倒塌性破坏。 四、建筑总重轻,钢结构住宅体系自重轻,约为混凝土结构的一半,可以大大减少基础造价。 五、施工速度快,工期比传统住宅体系至少缩短三分之一,一栋1000平米只需20天、五个工人方可完工。 六、环保效果好。钢结构住宅施工时大大减少了砂、石、灰的用量,所用的材料主要是绿色,100%回收或降解的材料,在建筑物拆除时,大部分材料可以再用或降解,不会造成垃圾。 七、以灵活、丰实。大开间设计,户内空间可多方案分割,可满足用户的不同需求。

波 形 钢 腹 板 简 介

波形钢腹板简介 波形钢腹板PC组合箱梁是一种经济、高效、施工简便的新型钢-混凝土组合结构形式,这种结构彻底地解决了传统预应力混凝土箱梁腹板的裂缝问题,对于实现桥梁轻型化,美化桥梁景观,实现桥梁建设节能降耗和可持续发展具有重要的现实意义(1)结构重量比PC 桥梁减轻约30% (2)采用体外预应力体系(3)钢腹板受力优于混凝土(4)收缩、徐变影响较大(5)钢板受压、加劲板较多波形钢腹板桥可以说完全解决了腹板开裂的问题,因为腹板是钢材抗拉、抗剪强度较高,跨中下挠不敢说完全解决至少会减少,因为体外索可以补张,相当于现在的很多桥的加固,大多是增加体外索。下面是波形钢腹板桥的优点:顾名思义波形钢腹板预应力混凝土箱形梁就是用波形钢板取代预应力混凝土箱梁的混凝土腹板作腹板的箱形梁。其显著特点是用10mm左右厚的钢板取代厚30~80cm厚的混凝土腹板。鉴于顶底板预应力束放置空间有限,导致体外索的应用则是波形钢腹板预应力混凝土箱梁的第二个特点。 这两个构造特点使波形钢腹板预应力混凝土组合箱梁与预应力混凝土箱梁桥相比有如下优点:经济效益显著,节省建筑材料:采用波形钢腹板代替厚重的砼腹板,减轻了上部结构的自重20~30%, 从而使使上、下部结构的工程量获得减少,降低了工程总造价。 1、提高预应力效率,改善结构性能:波形钢腹板的纵向刚度较小, 几乎不抵抗轴向力, 因而在导入预应力时不受抵抗, 纵向预应力束可以集中加载于顶、底板, 从而有效地提高预应力效率。 2、提高了材料的使用效率:在波形钢腹板PC 箱梁桥中, 砼用来抗弯, 而波形钢腹板用来抗剪,弯矩与剪力分别由顶、底板和波形钢腹板承担,其腹板内的应力分布近似为均布图形, 而非传统意义上的三角形, 有利于材料发挥作用。 3、提高了断面结构效率:波形钢腹板PC 箱梁桥中的砼均集中在顶、底板处, 回转半径几乎增加到最大值, 大大地提高了截面的结构效率。 4、自重降低, 抗震性能好:波形钢腹板预应力混凝土箱形梁桥的腹板采用较轻的波形钢板, 其桥梁自重与一般的预应力砼箱梁桥相比大约减轻20%, 致使地震激励作用效果显著降低, 抗震性能获得一定的提高。 5、可减少现场作业, 加快施工进程:波形钢腹板PC 箱梁桥在施工过程中, 可减少大量的模板、支架和砼浇注工程, 免除在砼腹板内预埋管道的烦杂工艺, 而且波形钢腹板可以工厂化生产, 现场拼装施工, 从而加快了施工进程。施工时可利用波形钢腹板作临时

(完整版)钢结构设计原理复习

钢结构设计原理复习 第一章绪论 1、钢结构的特点(前5为优点,后三为缺点) 1)强度高、重量轻2)材质均匀,塑性、韧性好 3)良好的加工性能和焊接性能(易于工厂化生产,施工周期短,效率高、质量好) 4)密封性能好 5 )可重复性使用性 6 ) 耐热性较好,耐火性差 7)耐腐蚀性差8)低温冷脆倾向 2、钢结构的应用 1)大跨结构【钢材强度高、结构重量轻】(体育馆、会展、机场、厂房) 2)工业厂房【具有耐热性】 3)受动力荷载影响的结构【钢材具有良好的韧性】 4)多层与高层建筑【钢结构的综合效益指标优良】(宾馆、办公楼、住宅等) 3、结构的可靠度:结构在规定的时间(50年),规定的条件(正常设计、正常施工、正常使用、正常维护)下,完成预定功能的概率。 4、结构的极限状态:承载能力极限状态(计算时使用荷载设计值)、正常使用极限状态(荷载取标准值) 5、涉及标准值转化为设计值的分项系数:恒荷载取1.2 活荷载取1.4 第二章钢结构的材料 1、钢材的加工 ①热加工:指将钢坯加热至塑性状态,依靠外力改变其形状,生产出各种厚度的钢板和 型钢。(热加工的开轧和锻压温度控制在1150-1300℃) ②冷加工:指在常温下对钢材进行加工。(冷作硬化现象:钢材经冷加工后,会产生局 部或整体硬化,即在局部或整体上提高了钢材的强度和硬度,降低了塑性和韧性的现象) ③热处理:指通过加热、保温、冷却的操作方法,使钢材的组织结构发生变化,以获得 所需性能的加工工艺。(退火、正火、淬火和回火) 3、钢材的六大机械性能指标 屈服点f y:它是衡量钢材的承载能力和确定钢材强度设计值的重要指标。(作为钢结构设计可以达到的最大应力) 抗拉强度f u:它是钢材破坏前所能承受的最大应力。(强度的安全储备)

钢结构设计的八大要点

钢结构设计的八大要点 钢结构设计要点 钢结构设计简单步骤和设计思路 (一)判断结构是否适合用钢结构 钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有 较大振动、高温车间、密封性要求高、要求能活动或经常装拆的结构。直观的说:大厦、体育馆、歌剧院、大桥、电视塔、仓棚、工厂、住 宅和临时建筑等。这是和钢结构自身的特点相一致的。 (二)结构选型与结构布置 此处仅简单介绍。详请参考相关专业书籍。由于结构选型涉及广泛, 做结构选型及布置应该在经验丰富的工程师指导下进行。 在钢结构设计的整个过程中都应该被强调的是“概念设计”,它在结构 选型与布置阶段尤其重要。对一些难以作出精确理性分析或规范未规 定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来 确定控制结构的布置及细部措施。运用概念设计可以在早期迅速、有 效地进行构思、比较与选择。所得结构方案往往易于手算、概念清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是 判断计算机内力分析输出数据可靠与否的主要依据。(无论结构软件 如何强大,扎实的结构概念和力学分析,及可靠的手算能力,才是过 硬的素质。)钢结构通常有框架、平面(木行)架、网架(壳)、索膜、轻钢、塔桅等结构型式。 其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设 计方法,比如网壳的稳定等。 结构选型时,应考虑它们不同的特点。在轻钢工业厂房中,当有较大 悬挂荷载或移动荷载,就可考虑放弃门式刚架而采用网架。屋面上雪

压大的地区,屋面曲线应有利于积雪滑落(切线50度内需考虑雪载),如亚东水泥厂石灰石仓棚采用三心圆网壳。总雪载释放近一半。降雨 量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节 点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选 择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用 钢混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为 了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型src 柱,核心为支撑框架的结构体系。我国半数以上的此类高层为前者。 对抗震不利。(把受力单元尽可能的向结构外围布置,是充分利用材 料性能的关键,就像中空的竹子一样,所以外强内弱很重要。) 结构的布置要根据体系特征,荷载分布情况及性质等综合考虑。一般的 说要刚度均匀。力学模型清晰。尽可能限制大荷载或移动荷载的影响 范围,使其以最直接的线路传递到基础。柱间抗侧支撑的分布应均匀。 其形心要尽量靠近侧向力(风震)的作用线。否则应考虑结构的扭转。 结构的抗侧应有多道防线。比如有支撑框架结构,柱子至少应能单独承 受1/4的总水平力。 框架结构的楼层平面次梁的布置,有时可以调整其荷载传递方向以满足 不同的要求。通常为了减小截面沿短向布置次梁,但是这会使主梁截 面加大,减少了楼层净高,顶层边柱也有时会吃不消,此时把次梁支撑 在较短的主梁上可以牺牲次梁保住主梁和柱子。 (三)预估截面 结构布置结束后,需对构件截面作初步估算。主要是梁柱和支撑等的 断面形状与尺寸的假定。 钢梁可选择槽钢、轧制或焊接h型钢截面等。根据荷载与支座情况, 其截面高度通常在跨度的1/20~1/50之间选择。翼缘宽度根据梁间侧 向支撑的间距按l/b限值确定时,可回避钢梁的整体稳定的复杂计算,这种方法很受欢迎。确定了截面高度和翼缘宽度后,其板件厚度可按 规范中局部稳定的构造规定预估。

钢结构的优点及施工质量控制(一)

钢结构的优点及施工质量控制(一) 摘要:材料的特性是推出新型建筑形式的出发点,钢结构以其众多优势,应用于建筑领域。关键词:钢结构;优点;厂房屋架体系;质量控制 随着现代化建设的不断深入,建筑科技也在日新月异的发展,在众多的建筑工程学科中,钢结构一直以其显著的优点,应用于国民建设的各个领域,发挥着重要作用。 一般来说,材料的特性是推出新型建筑形式的出发点。钢结构是用钢板、热轧型钢或冷加工成型的薄壁型钢制造而成的。和其它材料的结构相比,钢结构有如下一些特点: 材料的强度高,塑性和韧性好过钢材和其它建筑材料,诸如与混凝土、砖石和木材相比,强度要高得多。因此,特别适用于跨度大或荷载很大的构件和结构。钢材还具有塑性和韧性好的特点。塑性好,结构在一般条件下不会因超载而突然断裂;韧性好,结构对动力荷载的适应性强。良好的吸能能力和延伸性能还使钢结构具有优越的抗震性能。另一方面,由于钢材的强度高,做成的构件截面小而壁薄,受压时需要满足稳定的要求,强度有时不能充分发挥。材质均匀,钢材内部组织比较接近于匀质和各向同性,而且在一定的应力幅度内几乎是完全弹性的。因此,钢结构的实际受力情况和工程力学计算结果比较符合。钢材在冶炼和轧制过程中质量可以得到严格控制,材质波动的范围小。 钢结构制造简便,施工周期短。钢结构所用的材料单纯而且是成材,加工比较简便,并能使用机械操作,因此,大量的钢结构一般在专业化的金属结构厂做成构件,精确度较高。构件在工地拼装,可以采用安设简便的普通螺栓和高强度螺栓,有时还可以在地面拼装和焊接成较大的单元再行吊装,以缩短施工周期。此外,对已建成的钢结构也比较容易进行改建和加固,用螺栓连接的结构还可以根据需要进行拆迁。 钢结构的重量轻。钢材的比重虽比混凝土等建筑材料大,但钢结构却比钢筋混凝土结构轻,原因是钢材的强度与比重之比要比混凝土大得多。以同样的跨度承受同样荷载,钢屋架的重量最多不超过钢筋混凝土屋架的1/3至1/4,冷弯薄壁型钢屋架甚至接近1/10,为吊装提供了方便条件。对于需要远距离运输的结构,重量轻也是一个重要的有利条件。 钢结构在有众多优点的同时,其施工质量控制则是其应用中的重要环节。在东北轻合金有限责任公司熔铸车间厂房工程中,就大量的应用了钢结构,其屋面体系整体采用钢结构屋架结合大型屋面板,总量约2000t,竣工后使用效果良好。现结合具体工程的特点,概括钢结构施工质量控制中容易出现的问题要点有如下几个方面: 一、柱脚的制作安装 预埋地脚螺栓与砼短柱边距离过近。在钢屋架吊装时,经常不可避免的会人为产生一些侧向外力,而将柱顶部砼拉碎或拉崩。在预埋螺栓时,钢柱侧边螺栓不能过于靠边,应与柱边留有足够的距离。同时,砼短柱要保证达到设计强度后,方可组织钢屋架的吊装工作。 往往容易遗忘抗剪槽的留设和抗剪件的设置。柱脚锚栓按承受拉力设计,计算时不考虑锚栓承受水平力。若未设置抗剪件,所有由侧向风荷载、水平地震荷载、吊车水平荷载等产生的柱底剪力,几乎都有柱脚锚栓承担,从而破坏柱脚锚栓。 柱脚底板与砼柱间空隙过小,使得灌浆料难以填入或填实。一般二次灌料空隙为50mm。 地脚螺栓位置不准确。为了方便刚架吊装就位,在现场对底板进行二次打孔,任意切割,造成柱脚底板开孔过大,使得柱脚固定不牢,锚栓最小边(端)距亦不能满足规范要求。

钢结构基础第二章习题答案

第二章 1.钢结构和其他材料的结构相比具有哪些特点? 答(1)强度高,塑性和韧性好(2)钢结构的重量轻(3)材质均匀,和力学计算的假定比较符合(4)钢结构制作简便,施工工期短(5)钢结构密闭性较好(6)钢结构耐腐蚀性差(7)钢材耐热但不耐火(8)钢结构在低温和其他条件下,可能发生脆性断裂,还有厚板的层状撕裂,应引起设计者的特别注意。 2.《钢结构设计规范》(GB500l7—2003)(以下简称《规范》)采用什么设计方法? 答:《规范》除疲劳计算外,均采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。 3.什么是极限状态?钢结构的极限状态可分为哪两种?各包括哪些内容? 答:当结构或其组成部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态就称为该功能的极限状态。 4.钢结构的极限状态可分为:承载能力极限状态与正常使用极限状态。 (1)承载能力极限状态:包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载,结构和构件丧失稳定,结构转变为机动体系和结构倾覆。 (2)正常使用极限状态:包括影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部损坏(包括混凝土裂缝)。 5.结构的可靠性与结构的安全性有何区别? 建筑结构的可靠性包括安全性、适用性和耐久性三项要求。结构可靠度是结构可靠性的概率度量,其定义是:结构在规定的时间内,在规定的条件下,完成预定功能的概率,称为结构可靠度 6.钢结构设计的基准期是多少?当结构使用超过基淮期后是否可继续使用? 规定时间:一般指结构设计基准期,一般结构的设计基准期为 50年,桥梁工程的设计基准期为100年。设计基准期(design reference period):为了确定可变作用及与时间有关的材料性能等取值而选用的时间参数。※设计使用期与设计使用寿命的关系:当结构的设计使用年限超过设计基准期时,表明它的失效概率可能会增大,但并不等于结构丧失所要求的功能甚至报废。规定条件:指正常设计、正常施工、正常使用条件,不考虑人为或过失因素 8.简述建筑钢结构对钢材的要求、指标,规范推荐使用的钢材有哪些? 1.较高的强度。 2.足够的变形能力。 3.良好的加工性能。 此外,根据结构的具体工作条件,在必须是还应该具有适合低温、有害介质侵蚀(包括大气锈蚀)以及重复荷载作用等的性能。《钢结构设计规范》(GB 50017-2003)推荐的普通碳素结构钢Q235钢和低合金高强度结构钢Q345、Q390及Q420是符合上述要求的。 9.衡量材料力学性能的好坏,常用那些指标?它们的作用如何? 1.强度性能: 2.塑性性能 3.冷弯性能 4.冲击韧性 10.哪些因素可使钢材变脆,从设计角度防止构件脆断的措施有哪些? 从理论角度来讲影响钢材脆性的主要因素是钢材中硫和磷的含量问题;如果你的工艺路线不经过热处理那么这个因素影响就小一些;如果工艺路线走热处理这一步(含锻打,铸造)那么这个影响就相当的明显;就必须采取必要的措施;1;设计选材上尽量避开对热影响区和淬火区敏感的材料;2不得已而用之的话那么就要在工艺上采取预防措施;建议你再仔细查阅一下金属材料学;3设计过程中采取防脆断措施如工艺圆角;加强筋;拔模等;有很多;建议你查阅机械设计手册中的工艺预防措施和手段; 11.碳、硫、磷对钢材的性能有哪些影响?、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变

某波形钢腹板Pc箱梁桥计算报告

南水北调波形钢腹板PC组合梁桥 计算报告 计算: 复核: 东南大学交通学院 二○一一年三月二十九日

1计算模型介绍 1.1 工程概况 本桥位于邢台至衡水高速公路邢台段上,桥梁中心桩号为K24+353.185,起点桩号为K24+218.935,终点桩号为K24+487.435,全长268.5米,跨径组合为70+120+70米,桥梁跨越南水北调渠,桥轴线与南水北调渠呈90°。本桥为(70+120+70)米的波形钢腹板预应力混凝土变截面连续箱桥。最大梁高为7.5m,最小梁高为3.5m,梁高按二次抛物线变化。桥梁平面位于直线上,纵断面位于R=20000米竖曲线上,纵坡分别为0.220%、-3.522%,桥梁总体布置图如图1-1所示。 0#1#2#3# 图1-1 南水北调大桥立面图 1.2 计算模型及参数 1.2.1 计算模型概况及计算假定 上部结构计算采用Midas/Civil-2010进行计算,单幅主梁采用空间梁单元进行模拟,全桥共88个单元和93个节点。阶段按结构特点及悬臂施工流程进行划分,共47个施工阶段。由于桥梁位于曲线半径较大,故按直桥进行计算,有限元模型如图1-2所示: 图1-2 南水北调大桥有限元模型 支承条件按图纸说明进行约束,对0#、1#、3#支座约束横向及竖向位移,对于2#

支座约束3个方向位移。 墩顶截面采用混凝土截面,波形钢腹板截面采用midas自带波形钢腹板截面,对于内衬混凝土的波形钢腹板段,等效为混凝土截面进行计算。墩顶及跨中截面如图1-3所示: (a)墩顶截面(b)跨中截面 图1-3 南水北调大桥截面示意图 混凝土采用C55,弹性模量为3.45E4MPa,混凝土线膨胀系数(以摄氏温度计)为1.0E-5。C55混凝土轴心抗压强度标准值为35.5 MPa,轴心抗拉强度标准值为2.74 MPa,轴心抗压强度设计值为24.4 MPa,轴心抗拉强度设计值为1.89 MPa。 波形钢腹板采用Q345钢材,钢板材质符合现行标准国标GB1591-94要求,弹性模量为2.06E5 MPa,热膨胀系数(以摄氏度计)为1.2E-5,计算容重为78.5kN/m3。容许轴向应力] [σ为200 MPa,容许剪应力] [τ为120 MPa。 mm,预应力钢筋采用低松弛1860钢绞线,单根钢绞线直径为15.2mm,面积为1392 弹性模量为1.95E5 MPa,标准强度为1860 MPa,热膨胀系数(以摄氏温度计)为1.2E-5。 计算中认为箱梁符合平截面假定,腹板与顶底板能共同工作且不发生相对滑移。忽略波形钢腹板对结构抗弯的贡献,由混凝土顶、底板承受全部弯矩;波形钢腹板承担所有剪力,其应力状态一般视为纯剪且沿腹板高度方向等值分布;波形钢腹板箱梁弯矩和剪力不发生相互作用。 1.2.2 荷载及荷载组合 计算中主要考虑一下几种荷载: (1)结构自重:混凝土容重为26 kN/m3,钢材为78.5 kN/m3。

钢结构的特点

钢结构的特点:1.轻质高强2.塑性、韧性好3.各向同性,性能稳定4.可焊性5.不易渗漏 6.制造简便,施工周期短 7.耐腐蚀性差 8.耐热但不耐火 9.存在稳定性问题。 应用范围:重型工业厂房,大跨度结构,高耸结构,和高层结构受动力荷载作用的结构,可拆卸和移动的结构,容器和管道,轻型钢结构其他建筑——支架等。 钢结构的设计方法主要以概率极限状态设计法为主,对疲劳以及压力容器沿用以经验为主的容许应力设计法。 钢材力学性能指标包括:抗拉强度FU反映钢材受拉时所能承受的极限应力,伸长率衡量钢材断裂前所具有的塑性形变能力指标,以试件破坏后在标定的长度内残余应变表示,屈服点,断面收缩率衡量钢材塑性和韧性,冷弯性能判断钢材塑性变形能力和冶金质量和冲击韧性用于比较韧性的好坏。 钢结构的破坏形式:1. 塑性破坏。特征:构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形。断口:色泽发暗。后果:在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。2.脆性破坏:在破坏前无明显变形,没有任何预兆。断口:平齐和呈有光泽的晶粒。后果:突然发生的,危险性大,应尽量避免。 1)屈服点fy——应力应变曲线开始产生塑性流动时对应的应力(取屈服阶段波动部分的应力最低值),它是衡量钢材的承载能力和确定钢材强度设计值的重要指标。 (2)抗拉强度fu ——应力应变曲线最高点对应的应力,它是钢材破坏前所能承受的最大应力。 3)钢材的塑性——当应力超过屈服点后,钢材能产生显著的残余变形(塑性变形)而不立即断裂的性质。 塑性好坏可用断面收缩率 和伸长率表示,通过静力拉伸试验得到。 元素对钢结构性能的影响:碳(C)——钢材强度的主要来源,但是随其含量增加,强度增加,塑性、冷弯、冲击、抗疲劳降低,可焊性降低,抗腐蚀性降低。硫(S)——有害元素,引起热脆和分层。磷(P)——冷脆性。抗腐蚀性略有提高,但可焊性、塑性和韧性降低。锰(Mn)——合金元素。弱脱氧剂。与S形成MnS,(熔点为1600℃),可以消除一部分S的有害作用,改善钢的冷脆倾向,但对焊接不利,不宜过多。硅(Si)——合金元素。是强脱氧剂,可细化精粒,提高强度,且不影响其它性能,但过量会恶化焊接性和抗锈性。钒(V)——合金元素。细化晶粒,提高强度,其碳化物具有高温稳定性,适用于受荷较大的焊接结构。氧(O)——有害杂质。降低钢材的力学性能,特别是降低韧性,还有促进钢材的时效敏感性,使热脆性增加,可焊性变差。氮(N)——有害杂质。使钢材塑性下降,韧性显著下降,加剧钢材的时效敏感性和冷脆性。 冶金缺陷的影响:偏析金属结晶后化学成分分布不均匀的现象。主要是硫、磷偏析,其后果是偏析区钢材的塑性、韧性、可焊性变坏。非金属夹杂指钢材中的非金属化合物,如硫化物、氧化物,他们使钢材性能变脆。裂纹钢材中存在的微观裂纹。气泡浇铸时由FeO和C作用所生成的CO气体不能充分逸出而滞留在钢锭那形成的微小空洞。分层浇铸时的非金属夹杂在轧制后可能造成钢材的分层。 影响钢材性能的因素:化学成分的影响。冶金缺陷的影响,荷载的影响,构造缺陷的影响,温度的影响,硬化时间和间歇的影响,残余应力的影响。 防止脆性断裂的方法:合理设计,正确制造,合理使用。 钢材在循环荷载作用下,应力虽然低于极限强度,甚至低于屈服强度,但仍然会发生断裂破坏,这种破坏形式就称为疲劳破坏。 1. 破坏过程:裂纹的形成----裂纹的扩展----最后的迅速断裂而破坏。 2. 破坏特点 疲劳破坏时的应力小于钢材的屈服强度,钢材的塑性还没有展开,属于脆性破坏。疲劳破坏的断口与一般脆性破坏的断口不同。一般脆性破坏后的断口平直,呈有光泽的晶粒状或人字纹。而疲劳破坏的主要断口特征是放射和年轮状花纹。疲劳对缺陷十分敏感。影响疲劳破坏的主要因素:应力幅,循环次数,缺陷。 提高疲劳强度和疲劳寿命的措施:(a)采取合理构造细节设计,尽可能减少应力集中;(b)严格控制施工质量,减小初始裂纹尺寸;(c)采取必要的工艺措施如打磨、敲打等。 连接:连接的形式有焊接连接,铆钉连接,螺栓连接,轻型钢结构用的紧固件连接。焊缝的连接形式有:对接,搭接,T形连接,角部连接。对接焊缝按受力方向分为正对接焊缝,和斜对接焊缝,角焊缝分为正面角焊缝,侧面角焊缝和斜角焊缝。焊缝连接优点:用料经济,不削弱截面;构造简单,任何形式的构件都可直接相连;连接的密闭性好,结构刚度大;制作加工方便,可实现自动化操作;焊缝连接缺点:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形,对结构工作不利,使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。焊接方法可以分为两大类,即熔化焊(手工电弧焊、自动埋弧焊、气焊、电渣焊)和压力焊。手工电弧焊设备简单,操作灵活方便,适用于任意空间位置的焊接,特别适用于焊接短焊缝和曲折焊缝。高空焊接时,只能采用手工焊。

波折钢腹板组合桥梁

波折钢腹板组合桥梁 1.国内外发展现状 国外将波形钢腹板运用的桥梁结构的建设可追溯至1986年,法国建成了世界上第一座波形钢腹板梁桥——Cognac,之后又接连修建了maupre桥、asterix桥及dole桥。日本从法国引进了波形腹板箱梁技术,并陆续修建了几十座波形钢腹板箱梁桥,对波形钢腹板梁技术进行了全方面的研究,将它用在连续刚构桥和部分斜拉桥中,拓展了波形形钢腹板的应用范围。 国内波形钢腹板混凝土组合结构的研究起步较晚,最近几年才开始发展,国内类似结构桥梁不多。国内先后建成的有2005年建成的江苏淮安的长征桥和河南的泼河大桥,2007年建成的青海三道河桥、南京滁河大桥等,相比国外的建设,我国技术还不够成熟,尚处于研究当中。通过采用折形钢腹板取代混凝土腹板,形成组合截面体系,减轻结构的自重,提高预应力施加效率,同时又可以解除箱梁腹板与底板的相互约束、减少温差、干燥收缩、徐变的不利影响,提高了结构的稳定性,强度及材料的使用效率,在公路桥和铁路桥具有很好的发展前景。 2.波形腹板桥的技术特点 波形腹板桥梁是采用波形腹板代替预应力混凝土箱梁中的混凝土腹板的一种组合结构,如图1所示。在传统的预应力混凝土箱梁桥中,混凝土腹板占了主梁自重的30%-40%,因此波形钢腹板桥梁可以大大减轻上部结构的自重。同时,波形钢腹板由于其折叠效应,不承受轴向力和弯矩,具有很高的抗剪屈曲性能。从这些特性上来看,波形钢腹板用于预应力混凝土桥梁极为合理,能提高混凝土顶板和底板的预应力效率,能承受足够的剪力。施工方面,由于不需要腹板的模板等施工,大大减轻了施工现场的工作量。 3.结构布置特点

预应力折腹式组合箱梁是由混凝土顶底板、折形钢腹板、横隔梁、体内外预应力钢束等组成。通过采用波折形状的钢腹板,构成钢板与混凝土组合箱梁截面体系,能够更加有 效的施加预应力。图2是该型桥梁的各种结构体系与最大跨径的关系以及结构形式和数量。图3是墩顶截面高度与主跨跨径关系,图4 是跨中截面高度与主跨跨径关系。 图2 结构体系和最大跨径的关系和结构形式和数量关系 图3 墩顶截面高度与主跨跨径关系 图4 跨中截面高度与主跨跨径关系 4.箱梁截面的连接

钢结构设计步骤与思路

钢结构设计步骤与思路 钢结构设计步骤与思路作者:佚名 时间:2008-7-30 浏览量: 判断结构是否适合用钢结构 钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、高温车间、密封性要求高、要求能活动或经常装拆的结构。直观的说:大厦、体育馆、歌剧院、大桥、电视塔、仓棚、工厂、住宅和临时建筑等。这是和钢结构自身的特点相一致的。 结构选型与结构布置 此处仅简单介绍。详请参考相关专业书籍。由于结构选型涉及广泛,做结构选型及布置应该在经验丰富的工程师指导下进行。

在钢结构设计的整个过程中都应该被强调的是"概念设计",它在结构选型与布置阶段尤其重要。对一些难以作出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部措施。运用概念设计可以在早期迅速、有效地进行构思、比较与选择。所得结构方案往往易于手算、概念清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。 林同炎教授在《结构概念和体系》一书中介绍了用整体概念来规划结构方案的方法,以及结构总体系和个分体系间的相互力学关系和简化近似设计方法。[20] 钢结构通常有框架、平面架、网架、索膜、轻钢、塔桅等结构型式。

其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设计方法,比如网壳的稳定等。 结构选型时,应考虑它们不同的特点。在轻钢工业厂房中,当有较大悬挂荷载或移动荷载,就可考虑放弃门式刚架而采用网架。基本雪压大的地区,屋面曲线应有利于积雪滑落,如亚东水泥厂石灰石仓棚采用三心圆网壳。总雪载释放近一半。降雨量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用钢混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型SRc柱,核心为支撑框架的结构体系。我国半数以上的此类高层为前者。对抗震不利。[19] 结构的布置要根据体系特征,荷载分布情况及性质等综合考虑。一般的说要刚度均匀。力学模型清晰。尽可能限制大荷载或移动荷载的影响范围,使其以最直接的线路传递到基础。柱间抗侧支撑的分布应均匀。其形心要尽量靠近侧向力

波形钢腹板组合梁桥课程设计

波形钢腹板组合梁桥课程设计 : 班级: 学号: 指导老师:

摘要 波形钢腹板组合梁桥由于具有比较优越的结构性能,近几年来在国国外的运用越来越多,主要特点体现在:(1)自重小(相比与传统PC梁桥),有利于减轻结构自重,抗震性能好(2)波形钢腹板主要承担剪力,不能承担纵向轴力,纵向弯曲可不计入波形腹板的影响(3)波形钢腹板PC箱梁抗弯刚度、抗扭刚度与横向刚度均比混凝土PC箱梁小,设计中应注意按适当间距设计横隔板以增大其抗扭能力。除此之外,波形钢腹板组合箱梁特别适合于大、中跨径的多跨连续梁桥及连续刚构桥,当跨径超过50米时,经济效果很明显。MIDAS/Civil是针对土木结构,特别是分析象预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析,通过建模分析运算可以可以大大减轻工程计算量,提高分析设计效率,给土木工程结构分析带来很大的方便。 关键词:波形钢腹板桥梁;迈达斯;有限元分析 Abstract Corrugated steel web composite girder bridge due to structure with superior performance, more and more used in recent years at home and abroad, the main characteristics embodied in: (1) the small weight, good seismic performance of corrugated steel web plate (2) the main bear shear (3) the corrugated steel web PC box girder bending stiffness and torsional stiffness and lateral stiffness are smaller than the PC box girder concrete.In addition, corrugated steel web composite box girder is particularly suitable for large, medium span of multi-span continuous beam bridge and continuous rigid frame bridge, when the span of more than 50 m, the economic effect is obvious.MIDAS/Civil is for Civil structure, at the same time, can do a nonlinear boundary, hydration heat, the material nonlinear analysis, static elastoplastic analysis and dynamic elastoplastic analysis, through the analysis of the modeling algorithm can greatly reduce the engineering calculation, improve the efficiency of analysis and design, to make a lot of convenient for Civil engineering structure analysis.

相关主题
文本预览
相关文档 最新文档