当前位置:文档之家› 相位调制实验报告

相位调制实验报告

相位调制实验报告
相位调制实验报告

1.2 设计任务

本设计是基于MATLAB的模拟相位(PM)调制与解调仿真,主要设计思想是利用MATLAB这个强大的数学软件工具,其中的通信仿真模块通信工具箱以及M檔等,方便快捷灵活的功能实现仿真通信的调制解调设计。还借助MA TLAB可视化交互式的操作,对调制解调处理,降低噪声干扰,提高仿真的准确度和可靠性。要求基于MA TLAB的模拟调制与解调仿真,主要设计思想是利用MA TLAB、simulink檔、M檔等,方便快捷的实现模拟通信的多种调制解调设计。基于simulink对数字通信系统的调制和解调建模。并编写相应的m檔,得出调试及仿真结果并进行分析。

2.通信系统与MATLAB软件

2.1模拟通信系统简介

通信系统是为了有效可靠的传输信息,信息由信源发出,以语言、图像、数据为媒体,通过电(光)信号将信息传输,由信宿接收。通信系统又可分为数字通信与模拟通信。基于课程设计的要求,下面简要介绍模拟通信系统。

信源是模拟信号,信道中传输的也是模拟信号的系统为模拟通信。模拟通信系统的模型如图1所示。

图1 模拟通信系统模型

调制器: 使信号与信道相匹配, 便于频分复用等。发滤波器: 滤除调制器输出的无用信号。收滤波器: 滤除信号频带以外的噪声,一般设N(t)为高斯白噪声,则Ni(t)为窄带白噪声。

2.2 相位调制与解调

调制在通信系统中具有重要作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多任务的已调信号,而且它对系统的传输有效性和传输可靠性有着很大的影响。调制方式往往决定了一个通信系统的性能。

在无线电通信中,角度调制(简称角调)是一种重要的调制方式,它包括频率调制和

相位调制。频率调制简称调频用FM表示,它是使高频振荡信号的频率按调制信号的规律变化,而振幅保持不变的一种调制方式。我们称调频信号的解调为鉴频或频率检波。相位调制简称调相,用PM表示,它是使高频振荡信号的相位按调制信号的规律变化,其振幅也保持不变。调相信号的解调,称为鉴相或相位检波。角度调制属于频谱的非线性变换,即已调信号的频谱结构不再保持原调制信号频谱的内部结构,且调制后的信号带宽比原调制信号的贷款要大得多。虽然角度调制信号的频带利用率不高,但其抗干扰和噪声的能力较强。

由于从消息变换过来的原始信号具有频率较低的频谱分量,这种信号在许多信道中不适宜直接进行传输。因此,在通信系统的发送端通常需要有调制过程,而在接收端则需要有反调制过程——解调过程。

所谓载波调制,就是按调制信号(基带信号)的变化规律去改变载波某些参数过程。调制的载波可以分为两类:用正弦型信号作为载波;用脉冲串或一组数字信号作为载波。通常,调制可以分为模拟(连续)调制和数字元调制两种方式。在模拟调制中,调制信号的取值是连续的,而数字调制中的调制信号的取值则为离散的。目前常见的模—数变换可以看成是一种用脉冲串作为载波的数位调制,它又称为脉冲编码调制(PCM)。

2.3 SIMULINK

SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。在simulink 环境中,利用鼠标就可以在模型窗口中直观地“画”出系统模型,然后直接进行仿真。它为用户提供了方框图进行建模的图形接口,采用这种结构画模型就像你用手和纸来画一样容易。

而所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl檔进行存取),进而进行仿真与分析。SIMILINK 模块库按功能进行分类,包括以下8类子库:Continuous(连续模块),Discrete(离散模块),Function&Tables(函数和平台模块),Math (数学模块),Nonlinear(非线性模块),Signals&Systems(信号和系统模块),Sinks(接收器模块),Sources(输入源模块)。

3.原理分析

3.1调相信号

在模拟调制中,一个连续波有三个参数可以用来携带信息而构成已调信号。当幅度和频率保持不变时,改变载波的相位使之随未调信号的大小而改变,这就是调相的概念。 角度调制信号的一般表示形式为:

S m (t)=Acos[ωC t+φ(t)]

式中,A 是载波的恒定振幅;[ω

C t+φ(t)]是信号的瞬时相位,而φ(t)称为瞬时相位偏移;d[ωC t+φ(t)]/dt 为信号的瞬时频率,而d φ(t)/dt 称为瞬时频率偏移,即相对于ωC 的瞬时频率偏移。

设高频载波为u c =U cm cos ωc t ,调制信号为U Ω(t),则调相信号的瞬时相位

φ(t)=ωct +K p U Ω(t)

瞬时角频率 ω(t)=dt (t)d φ=ωc +K p dt

)t (du Ω 调相信号 u PM =U cm cos [ωc t+K p u Ω(t)]

将信号的信息加在载波的相位上则形成调相信号,调相的表达式为:

S PM (t)=Acos[ωC t+K PM f(t)+φ0]

这里K PM 称为相移指数,这种调制方式,载波的幅度和角频率不变,而瞬时相位偏移是调制信号f(t)的线性函数,称为相位调制。

调相与调频有着相当密切的关系,我们知道相位与频率有如下关系式:

ω=dt t d )(φ=ωC +K PM f(t)

φ(t)=?=dt ωωC t+K PM dt t ?)(f

所以在调相时可以先将调制信号进行微分后在进行频率调制,这样等效于调相,此方法称为间接调相,与此相对应,上述方法称为直接调相。调相信号的产生如图2所示:

图2 PM 调相信号的产生

3.2 调制原理

实现相位调制的基本原理是使角频率为ω

c 的高频载波u

c

(t)通过一个可控相移网络,

此网络产生的相移Δφ受调制电压uΩ(t)控制, 满足Δφ=K

p

uΩ(t)的关系, 所以网络输出就是调相信号,可控相移网络调相原理图如图3所示:

图3 可控相移网络调相原理图

3.3 解调原理

已调波的解调电路称为检波器,调相波的解调电路称为相位检波器或鉴相器。采用乘积鉴相是最常用的方法。若调相信号为

u PM =U

cm

cos[ω

c

t+Δφ(t)] 其中Δφ(t)=K

pu

Ω(t)

同步信号与载波信号相差2

π

u 01=

2

rm

cm

U

KU

sinΔφ(t)-sin[2ω

c

t+Δφ(t)] 式中k为乘法器增益, 低通滤波器增益为1,

可以看到乘积鉴相的线性鉴相范围较小,只能解调M

p ≦6

π的调相信号。乘积鉴相器的原

理图如图4所示,由于相乘的两个信号有900的固定相位差,故这种方法又称为正交乘积鉴相。

图4 正交乘积鉴相原理图

4.M函数实现的仿真

4.1源代码

首先任意给定一个已知调制信号m(t)=sin(100*t)

进行相位调制时要用到傅里叶变换,因此先编写傅里叶变换的m文件用作主函数调用,其m文件代码如下:

%求傅里叶变换的子函数

function [M,m,df]=fftseq(m,ts,df)

fs=1/ts;

if nargin==2 n1=0; %nargin为输入参量的个数

else n1=fs/df;

end

n2=length(m);

n=2^(max(nextpow2(n1),nextpow2(n2))); %nextpow2(n)取n最接近的较大2次幂M=fft(m,n); %M为信号m的傅里叶变换,n为快速傅

里叶变换的点数,及基n-FFT变换m=[m,zeros(1,n-n2)]; %构建新的m信号

df=fs/n; %重新定义频率分辨率

上述m文件以“fftseq.m”保存。

在实现相位解调时要调用两个子函数,分述如下:

%求信号相角的子函数,这是调频、调相都要用到的方法

function [v,phi]=env_phas(x,ts,f0)

if nargout==2 %nargout为输出变数的个数

z=loweq(x,ts,f0); %产生调制信号的正交分量

phi=angle(z); %angle是对一个复数求相角的函数

end

v=abs(hilbert(x)); %abs用来求复数hilbert(x)的模

上述m文件以“env_phas.m”保存。

%产生调制信号的正交分量

function x1=loweq(x,ts,f0)

t=[0:ts:ts*(length(x)-1)];

z=hilbert(x); %希尔伯特变换对的利用---通过实部来求虚部

x1=z.*exp(-j*2*pi*f0*t); %产生信号z的正交分量,

%并将z信号与它的正交分量加在一起

上述m文件以“loweq.m”保存

%主程序

t0=0.2; %信号的持续时间,用来定义时间向量

ts=0.001; %抽样间隔

fs=1/ts; %抽样频率

fc=300; %载波频率,fc可以任意改变

t=[-t0/2:ts:t0/2]; %时间向量

kf=100; %偏差常数

df=0.25; %所需的频率分辨率,用在求傅里叶变换时,

它表示FFT的最小频率间隔

m=sin(100*t); %调制信号,m(t)可以任意更改

int_m(1)=0; %求信号m(t)的积分

for i=1:length(t)-1

int_m(i+1)=int_m(i)+m(i)*ts;

end

[M,m,df1]=fftseq(m,ts,df); %对调制信号m(t)求傅里叶变换

M=M/fs; %缩放,便于在频谱图上整体观察

f=[0:df1:df1*(length(m)-1)]-fs/2; %时间向量对应的频率向量

u=cos(2*pi*fc*t+2*pi*kf*int_m); %调制后的信号

[U,u,df1]=fftseq(u,ts,df); %对调制后的信号u求傅里叶变换

U=U/fs; %缩放

%通过调用子程序env_phas和loweq来实现解调功能

[v,phase]=env_phas(u,ts,fc); %解调,求出u的相位

phi=unwrap(phase); %校正相位角,使相位在整体上连续,便于后面

对该相位角求导

dem=(1/(2*pi*kf))*(diff(phi)*fs); %对校正后的相位求导

%再经一些线性变换来恢复原调制信号

%乘以fs是为了恢复原信号,因为前面使用了缩放subplot(3,2,1) %子图形式显示结果

plot(t,m(1:length(t))) %现在的m信号是重新构建的信号,

%因为在对m求傅里叶变换时m=[m,zeros(1,n-n2)] axis([-0.1 0.1 -1 1]) %定义两轴的刻度

xlabel('时间t')

title('原调制信号的时域图')

subplot(3,2,2)

plot(t,u(1:length(t)))

axis([-0.1 0.1 -1 1])

xlabel('时间t')

title('已调信号的时域图')

subplot(3,2,3)

plot(f,abs(fftshift(M))) %fftshift:将FFT中的DC分量移到频谱中心axis([-600 600 0 0.04])

xlabel('频率f')

title('原调制信号的频谱图')

subplot(3,2,4)

plot(f,abs(fftshift(U)))

axis([-600 600 0 0.04])

xlabel('频率f')

title('已调信号的频谱图')

subplot(3,2,5)

plot(t,m(1:length(t)))

axis([-0.1 0.1 -1 1])

xlabel('时间t')

title('原调制信号的时域图')

subplot(3,2,6)

plot(t,dem(1:length(t)))

axis([-0.1 0.1 -1 1])

xlabel('时间t')

title('解调后信号的时域波形')

4.2结果显示

将源代码输入MATLAB命令窗口,运行就可以得到结果,如图5所示:

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

电路研究性实验报告

湖南XX学院 电路设计研究型报告 题目:电路综合实验 专业:测控技术与仪器 班级:测控xxxx班 学生组员:郭x(组长)、黄x、余x 指导老师:厉x 日期:2014年6月13日

电路课程研究性实验 实验报告 成员表现评估: 黄X:优秀 余X:优秀 郭X:优秀 (一)实验内容 一、R、L、C元件参数的测量 1.用电压、电流表判别黑匣子元件性质。 2. 用交流电压、电流表及功率表分别测量R、L、C元件交流参数,讨论实验误差引起的原因。 二、正弦电源下电路稳态特性的研究 1.用示波器分别观察R、L、C元件在正弦电源下响应的电压、电流波形。 2.用示波器分别观察R、L、C元件伏安关系曲线。 3. 用示波器分别观察RLC元件串联的在正弦电压情况下感性、容性和电阻性响应的电压、电流波形。 实验员:黄X 余X 郭X 报告及其记录:郭X

(二).实验目的: 1学习用示波器观察和分析RC,RL,RLC的电路的响应 2 通过电路方波响应波形的观察,判别元件性质 3 学会用电压、电流表判别黑匣子元件性质。 4 学习用三表法测量交流电路的参数及其误差分析 5 了解RLC元件在正弦电压情况下的电压电流波形 6.学习正确选用交流仪器和设备 7.掌握功率表、调压器的使用 8 综合运用所学知识,自主完成实验,提高科学素养,增加实 验动手能力,提高积极思考问题解决问题的能力。 9.通过这次实验,增强了自信心,磨练战胜困难的毅力,提高 解决问题的能力,通过这次实验,增进了对集体的参与意识 与责任心,给今后的工作中带来大的帮助和借鉴。

(三):实验原理 一、R、L、C元件参数的测量 1. 调压器提供实验电压,电压表监测元件电压,电流表监测元件电流,在被测元件两端并接一只适当容量的试验电容器,若电流表读数增大则被测元件为容性;反之为感性。 实验操作如【1——1】图接线 实验结果 据图将电压表和电流表的示数记录到表-1中 由表格数据可知电路并入一个电容器后电流表的示数变小,故被测元件为感性。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

扩音机电路的综合测试 实验报告

第二节 预应力锚索施工 实验报告 课程名称:电路与电子技术实验Ⅱ 指导老师:张德华 成绩:__________________ 实验名称:扩音机电路的综合测试 实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉集成功放的基本特点; 2.了解放大电路的频率特性及音调控制原理; 3.学习扩音机电路的测试方法,测试各项指标及电路的音调控制特性; 4.学习手工焊接和电路布局、布线、组装方法; 5.提高电子电路的综合调试能力。 二、实验内容和原理 实验内容: 1.测量各级电路的静态工作点; 2.测试前置级、音调控制级、功率放大级的电压增益和整机增益; 3.测量各项指标: ⑴最大不失真输出电压V omax ; ⑵输入灵敏度V imax ; ⑶最大输出功率P o ; 4.整机电路的频率响应; 5.整机高低音控制特性; 6.噪声电压V N ; 7.听音实验。 实验原理: 1.整机电路原理图: 专业:自动化(电气) 姓名:冷嘉昱 学号:3140100926 日期:2016.5.11&5.18 地点:东三211桌号F-2 装 订 线

2.前置级电路: 由A 1组成的前置放大电路是一个同相输入比例放大器,电路的闭环特性如下: 理想闭环电压增益: 输入电阻R if = R 1,输出电阻R of = 0 扩音机电路的增益是很高的,而扩音机的噪声主要取决于前置放大器的性能。为了减小前置级放大器的噪声,第一级要选用低噪声的运放。另外,如输入线的屏蔽情况,地线的安装等等都对噪声有很大影响。 3.音调控制级电路: 常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节范围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,但失真小;第三种是混合式音调控制电路,其电路复杂,多用于高级收录机。为使电路简单而失真又小,本音调控制电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。 装 订 线

通信原理实验报告

北京联合大学 课程名称:通信原理实验报告 学院:信息学院专业:通信工程 班级:41A 学号:2008080304334 姓名:胡雪瑞成绩: 2010年12 月27 日

实验一图符库的使用 一、实验目的 1、了解SystemView图符库的分类 2、掌握SystemView各个功能库常用图符的功能及其使用方法 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、实验步骤 实验方框图 i.从基本图符库中选择信号源图符,选择正弦波信号,参数设定中设置幅度为1, 频率为10Hz,相位为0。 ii.选择函数库,并选择Algebraic 标签下的图符。在参数设定中设置a=2,表示进行x2运算。 iii.放置两个接收器图符,分别接收信号源图符的输出和函数算术运算的输出,并 选择Graphic 标签下的图符,表示在系统运行结束后才显示接收到的波形。 四、实验结果

实验二 常规调幅(AM) 一.概述 在连续波的模拟调制中,最简单的形式是使单频余弦载波的幅度在平均值处随调制信号线性变化,或者输出已调信号的幅度与输入调制信号f (t)呈线性对应关系,这种调制称为标准调幅或一般调幅,记为AM 。本实验采用这种方式。 二.实验原理及其框图 1. 调制部分 标准调幅的调制器可用一个乘法器来实现。 AM 信号时域表达式为:t t m A t s c AM ωcos )]([)(0+= 其中:A 0为载波幅度,ωc 为载波频率,m (t )为调制信号。 其频域表示式为: )]()([2 1)]()([)(0c c c c AM M M A S ωωωωωωδωωδπω++++ +++= 其原理框图 2. 解调部分: 解调有相干和非相干两种。非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。这里采用相干解调。 原理框图 三.实验步骤 1.根据AM 调制与解调原理,用Systemview 软件建立一个仿真电路 2. 元件参数配置 Token 0: 被调信息信号—正弦波发生器 (频率=1000 Hz ) Token 1,8: 乘法器 Token 2: 增益放大器 (增益满足不发生过调制的条件) Token 4: 加法器 Token 3,10: 载波—正弦波发生器 (频率=50 Hz ) Token 9: 模拟低通滤波器 (截止频率=75 Hz ) Token 5,6,7,11: 观察点—分析窗 m (0c (t ) s m c

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、4 号板 1 块 4、双踪示波器 1 台 5、万用表 1 块 三、实验原理 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的

信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来看,检波就是将调幅信号频谱由高频搬移到低频。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流iD 很大,使电容器上的电压VC 很快就接近高频电压的峰值。 这个电压建立后通过信号源电路,又反向地加到二极管 D 的两端。这时二极管导通与否,由电容器C 上的电压VC和输入信号电

振幅调制电路实验报告(DOC)

西南科技大学 课程设计报告 课程名称:高频电路课程设计 设计名称:振幅调制电路 姓名:李光伟 学号: 20105315 班级:电子1001 指导教师:魏冬梅 起止日期:2012.12.24-2013.1.6 西南科技大学信息工程学院制

课程设计任务书 学生班级:电子1001 学生姓名:李光伟学号:20105315 设计名称:振幅调制电路 起止日期:2012.12.24-2013.1.6指导教师:魏冬梅 设计要求:波信号为1MHz,低频调制信号为1kHz,两个信号均为正弦波信号。这两个输入信号可以采用实验室的信号源产生,也可以自行设计产生,采用乘法器1496设计调幅电路。 产生DSB信号,输出信号幅度>200mV。

课程设计学生日志时间设计内容

课程设计考勤表 周星期一星期二星期三星期四星期五 课程设计评语表指导教师评语: 成绩:指导教师: 年月日

振幅调制电路 一、 设计目的和意义 目的:实现抑制载波的双边带调幅。产生DSB 信号,输出信号幅度>200mV 。 意义:实现抑制载波的双边带调幅。 二、 设计原理 由集成模拟乘法器MC1496构成的振幅调制电路,可以实现普通调幅、抑制载波的双边带调幅以及单边带调幅。本次实验采用MC1496模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件。主要功能是实现两个互不相关信号相乘.即输出信号与两输入信号相乘输出,总电路图如图1所示。 [1] 振幅调制就是使载波信号的振幅随调制信号的变化规律而变化的技术。通常载波信号为高频信号,调制信号为低频信号。设载波信号的表达式为: ()t U u c cm c ωcos =, 调制信号的表达式为t V t u cm Ω=Ωcos )(则调制信号的表达式 为:t t m V u c cm ωcos )cos 1(0Ω+= =t mV t t mV t V c cm c cm c cm )cos(21)cos(21cos Ω-+Ω++ ωωω错误!未找到 引用源。

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现 姓名:班级:学号: 一、摘要: 运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。 关键字: 模拟电路,高低电平,运算放大器,振荡,比较 二、设计任务要求: 利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光

三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟

滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为: 式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。 由上述各式可知,该电路输出方波的幅度由稳压管的稳压值和正向导通电压决定,三角波的输 出幅度决定于稳压管的稳压值和正向导通电压以及反馈比R1/R f,而振荡频率与稳压管的稳压值和正向导通电压无关,因此,通过调换具有不同稳压值和正向 导通电压的稳压管可以成比例地改变方波和三角波的幅度而不改变振荡频率。 电位器的滑动比R P2/R P1和积分器的积分时间常数R2C的改变只影响振荡频率而 不影响振荡幅度,而反馈比R1/R f的改变会使振荡频率和振荡幅度同时发生变化。因此,一般用改变积分时间常数的方法进行频段的转换,用调节电位器滑动头 的位置来进行频段内的频率调节。

实验报告simulink

班级:姓名:学号:

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

电路综合设计实验-设计实验2-实验报告

设计实验2:多功能函数信号发生器 一、摘要 任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。可编程门阵列(FPGA)具有高集成度、高速度、可重构等特性。使用FPGA来开发数字电路,可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。 此次实验我们采用DE0-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。频率范围为10KHz~300KHz,频率稳定度≤10-4,频率最小不进10kHz。提供DAC0832,LM358。 二、正文 1.方案论证 基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DE0-CV开发板来实现函数信号发生器。 DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080,8048,8085,Z80和其他的主流的微处理器进行直接交互。一个沉积硅铬R-2R 电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0.05%的全温度范围过温最大线性误差)。该电路使用互补金属氧化物半导体电

流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL)提高逻辑输入电压电平的兼容性。 另外,双缓冲区的存在允许这些DAC数模转换器在保持一下个数字词的同时输出一个与当时的数字词对应的电压。DAC0830系列数模转换器是八位可兼容微处理器为核心的DAC数模转换器大家族的一员。 LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。 本次实验选用的FPGA是Altera公司Cyclone系列FPGA芯片。Cyclone V系列器件延续了前几代Cyclone系列器件的成功,提供针对低成本应用的用户定制FPGA特性,支持常见的各种外部存储器接口和I/O协议,并且含有丰富的存储器和嵌入式乘法器,这些内嵌的存储器使我们在设计硬件电路时省去了外部存储器,节省了资源,而

振幅调制电路实验报告

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 乘法器振幅调制电路 一、实验目的 了解并研究各个模拟乘法器调幅电路特性和波形变化的特点以及频谱分析。 二、实验原理 调制、解调和混频电路是通信设备中重要的组成成分。用代传输的低频信号控制高频载波参数的电路,称为调制电路。振幅调制有基本的普通调幅(AM)和在此基础上演变出来的抑制载波的双边带调幅(DSB)、单边带调幅(SSB)。 三、实验步骤 (1)普通调幅(AM) V2为载波信号 V1为调制信号

傅里叶频谱分析:

由以上数据可以得知: ①仿真检测的调制信号频率与输出调幅波的包络信号频率基本相同;载波信号的振幅按照调制信号的变化规律变化而形成的调幅波,携带着调制信号的信息,调幅波的包络线与相应的调制信号相同; ②调制过程实际上是一种频率搬移的过程,即经过调幅后,调制信号的频谱被对称地搬移到载频的两侧。同时,在调幅波中,载频不含任何有用信息,需传输的信息只包含与边频分量中,边频的振幅反映了调制信号幅度的大小,边频的频率反映调制信号频率的高低。 (2)双边带调幅(DSB)

傅里叶频谱分析: 可知:①为了节省发射功率,可采用抑制载波信号的双边带调幅电路; ②双边带调幅波波形仍随调制信号变化,但其包络线已不再反映原调制信号的形状,当调制信号进入负半周时,载波信号产生180度相位突变; ③双边带调幅波同样是实现频谱搬移,但频谱图上没有出现载波分量,只有两个边带分量。 (3)单边带调幅(SSB)

傅里叶频谱分析: 由以上数据可以知:①单边带调制方式将已调波的频谱宽度基本压缩了一

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

电子电路综合实验报告

电子电路实验3 综合设计总结报告题目:波形发生器 班级:20110513 学号:2011051316 姓名:仲云龙 成绩: 日期:2014.3.31-2014.4.4

一、摘要 波形发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。波形发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波、三角波、方波等,因而广泛用于通信、雷达、导航等领域。 二、设计任务 2.1 设计选题 选题七波形发生器 2.2 设计任务要求 (1)同时四通道输出,每通道输出矩形波、锯齿波、正弦波Ⅰ、正弦波Ⅱ中的一种波形,每通道输出的负载电阻均为1K欧姆。 (2)四种波形的频率关系为1:1:1:3(三次谐波),矩形波、锯齿波、正弦波Ⅰ输出频率范围为8 kHz—10kHz,正弦波Ⅱ输出频率范围为24 kHz—30kHz;矩形波和锯齿波输出电压幅度峰峰值为1V,正弦波Ⅰ、Ⅱ输出幅度为峰峰值2V。(3)频率误差不大于5%,矩形波,锯齿波,正弦波Ⅰ通带内输出电压幅度峰峰值误差不大于5%,正弦波Ⅱ通带内输出电压幅度峰峰值误差不大于10%,矩形波占空比在0~1范围内可调。 (4)电源只能选用+9V单电源,由稳压电源供给,不得使用额外电源。

三、方案论证 1.利用555多谐振荡器6管脚产生8kHz三角波,3管脚Vpp为1V的8kHz的方波。 2.三角波通过滞回比较器和衰减网络产生8kHzVpp为1V的方波。 3.方波通过反向积分电路产生8kHzVpp为1V的三角波。 4.方波通过二阶低通滤波器产生8kHz低通正弦波。 5.方波通过带通滤波器产生中心频率为27kHz的正弦波。 系统方框图见图1 图1 系统方框图 此方案可以满足本选题技术指标,分五个模块实现产生所需的波形,而且电路模块清晰,容易调试,电路结构简单容易实现。

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

相关主题
文本预览
相关文档 最新文档