当前位置:文档之家› 指数函数y=3^x的几种幂级数展开

指数函数y=3^x的几种幂级数展开

函数y=3x的几种幂级数展开※.函数幂级数展开公式

设函数f(x)在x

0的某个邻域O(x

,r)中能展开幂级数,则

它的幂级数展开就是f(x)在x

的泰勒级数:

※.函数y=e x的幂级数展开

=0,得:利用函数的幂级数展开公式,其中x

y=e x

=∑(-∞,+∞)f(n)(0)x n/n!

=∑(-∞,+∞)x n/n!。

※.函数y=3x在x=0处的幂级数展开y=3x=e xln3.利用y=e x的展开公式,则:y=3x

=∑(-∞,+∞)(x*ln3)n/n!,

=∑(-∞,+∞)ln n3*x n/n!。

※.函数y=3x在x-1处的幂级数展开

y=3x=3*3x-1=3*e(x-1)ln3.利用y=e x的展开公式,则:y=3x

=3*∑(-∞,+∞)[(x-1)*ln3]n/n!,

=3*∑(-∞,+∞)ln n3*(x-1)n/n!。

※.函数y=3x在2x-1处的幂级数展开

y=3x=√3*(√3)2x-1=√3*e(2x-1)ln√3.利用y=e x的展开公式,则:y=3x

=√3*∑(-∞,+∞)[(2x-1)*ln√3]n/n!,

=√3*∑(-∞,+∞)ln n√3*(2x-1)n/n!。

※.函数y=3sinx在x=0处的幂级数展开利用y=e x的展开公式,则:

y=3sinx=e ln3*sinx

=∑(-∞,+∞)(ln3*sinx)n/n!,

=∑(-∞,+∞)ln n3*sin n x/n!。

【精品完整版】解析函数展开成幂级数的方法分析

解析函数展开成幂级数的方法分析 姓名:媛媛 学号:201100171431 专业:物理教育 指导教师:莉莉

解析函数展开成幂级数的方法分析 姓名 某某大学物理与电气信息工程学院 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。本论文着重介绍了将解析函数展开成幂级数的几种方法以及分析。 关键词:解析函数,幂级数,展开,奇点等。 一前言 解析函数的应用及现状:解析函数边值问题和广义解析函数边值问题在奇异积分方程方面有广泛的应用,它们在弹性力学、流体力学方面也有重要的应用。这些方面的理论及其应用,主要是由苏联学者建立和发展起来的。自20世纪60年代以来,中国的数学工作者在这些方面也做了不少工作。 关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD*,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓。解析开拓的概念可以推广到这样的情形:f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,在D1∩D2上f(z)=g(z)则也称f与g互为解析开拓,把可以互为解析开拓的(f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。解析函数的基本性质:解析函数的导函数仍然是解析函数;单连通域内解析

函数展开为泰勒级数

函数展开为泰勒级数 设函数00()()n n n f x a x x ∞==?∑,0x x R ?<,已知右端求左端, 这是幂级数求和,已知左端求右端,这是求函数的幂级数展开式,除按定义之外,它们的方法是相同的。 一、 泰勒级数与迈克劳林级数: 设函数 ()f x 在点的某一临域内具有任意阶导数,则级 数: 0x ()000 20000()30000()()!()()()()()1!2! ()()()()3!!n n n n n f x x x n f x f x f x x x x x f x f x x x x x n ∞ =?′′′=+?+?′′′+?+???+?+???∑0 称为函数()f x 在点的泰勒(Taylor )级数。 0x 特别的,如果,上式变成迈克劳林(Maclaurin)级数: 00x =2()3()0 (0)(0)(0)()()1!2! (0)(0)()()3(! 0)()!!n n n n n f f f f x x f f x x n n x ∞=′′′=++′′′++???++???∑ 此时,这个级数的敛散性不明确。

二、 函数展开称幂级数的条件: 定理1: 设函数()f x 在点0x 的某一临域内具有各阶导数,则函数0()U x ()f x 在该邻域内能展开称泰勒级数的充分必要条件是函数()f x 的泰勒公式的余项()n x R 当n 时的极限为0.即: →∞ ()0lim n n R x →∞=三、 直接法把函数展开成幂级数的步骤: 第一.步: 求出 ()f x 的各阶导数()f x ′,()f x ′′,……()()n f x …… 如果在X=0处导数不存在,就停止进行。 第二.步: 求出函数及其各阶导数在X=0处的值,即: (0)f ′,,………… (0)f ′′()(0)n f 第三.步: 写出幂级数: 2()3(0)(0)(0)()()1!2!(0)(0)()()3!! n n f f f x x f f x x n ′′′++′′′++???++??? 并求出 收敛半径R 。 第四.步: 考察当X 在区间(-R,+R )内时,余项()n x R 的极限: (1)1()()lim (1)!lim n n n n n f R x x n ξ++→∞→∞=+ ξ 在0与X 之间。 如果极限为0,则函数()f x 在区间(-R,+R )内的幂级数展

06-函数展开成泰勒级数的方法--间接展开法PPT

函数展开成幂级数的间接展开法

一、基本初等函数的间接展开法根据唯一性,利用常见展开式,通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等 方法,求展开式。 ?基本公式:).,( ,)!12()1(sin ). ,( , !).1,1( 1101 200 +∞-∞∈+-=+∞-∞∈=-∈=-∑∑∑∞=+∞=∞ =x n x x x n x e x x x n n n n n x n n ,

二、典型例题例1. )( 的幂级数展开成将x a x f x =由于令注意到解 . ln , ln a x u e a a x x ==).,( ,! 1!2112+∞-∞∈+++++=u u n u u e n u ),(!ln !2ln ln 122+∞-∞∈+++++=x x n a x a a x a n n x 代入上式得 将 ln a x u =

++-+-+-=+)! 12()1(!51!31sin 1253n x x x x x n n , ),( 时解:当+∞-∞∈x 例2、. cos )( 的幂级数展开成将x x x f =对上式逐项求导得 +-+-+-=)! 2()1(!41!211cos 242n x x x x n n

.11)( )1(:x x f +='解例3、. 的幂级数展开成将下列函数x ∑?? ∞ =-=+=+000)1(1)1ln( n x n n x dt t t dt x 则). 1,1( ,1 )1(10-∈+-=+∞=∑x x n n n n ).1,1( ,)1()(1111 0 -∈-=--=+∑∞=x x x x n n n 又.arctan )()2( ; )1ln()( (1)x x f x x f =+=板书

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力, 3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数: (*).,(0r x O (1) x ∈(-∞, +∞)。 (2) =+0 !)12(n n )!12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。 (3) f (x ) = cos x = ∑∞ =-02! )2()1(n n n x n )! 2()1(!4!21242n x x x n n -+-+-= + …, x ∈(-∞, + ∞)。

幂级数展开的多种方法

幂级数展开的多种方法 摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结 关键词:幂级数;泰勒展式;洛朗展式;展开 在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理: 定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞ =-= n n n a z c z f ,其中系数 () () () () ! 21 1n a f d a f i c n n n = -= ?Γ+ζζζ π.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯 一. 定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数 ()z f 必可展成双边幂级数()() ∑ ∞ -∞ =-= n n n a z c z f ,其中系数() () ζζζ πd a f i c n n ?Γ+-= 121 ( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一. 这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提. 接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法. 即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在4 0π =z 点处的泰勒展开式. 解:用公式 () () ! 0n z f c n n = 求n c :;14tan 0==π c ()2 ,24 sec | tan 12 4 ==='= c z z π π ;

泰勒级数展开

泰勒级数展开若干方法 何琼(绍兴文理学院 数学系,浙江 绍兴 312000) 摘要: 泰勒级数的各项是由结构简单、性质明了的幂函数组成.把一个函数展开成泰勒级数或幂级数, 有着广泛的应用.本文对泰勒级数的若干展开方法进行探究、综述,有助于我们对这部分知识的深入理解. 关键词: 泰勒级数;幂级数;余项 §1 引言 泰勒级数是数学分析中级数部分的重要内容,其主要内容包括两个方面:(1)幂 级数的收敛理论;(2)如何把一个函数展开成泰勒级数.本文是对后者进行较全面的归纳和总结.我们知道把一个函数展开成泰勒级数的方法大致上可分为两类,即直接展开法和间接展开法.直接展开法可按下列步骤进行: 第一步:求出函数的各阶导数;),(),("),(') (L L x f x f x f n 第二步:求函数?(χ)及其各阶导数在),(0x f ;),(),("),('0) (00L L x f x f x f n 第三步:写出泰勒级数 L L +?++?+ ?+n n x x n x f x x x f x x x f x f )(! )()(!2)("))((')(00)(2 00000 第四步:考察余项)(x R n 在0x 的某一领域)(0x U 内极限是否为零. 按照Taylor 定理,直接展开法是一种基本的方法,但有时是比较繁杂的方法,实际应用 中通常利用间接展开法. 1 代换法 这种方法的特点是:进行适当变量替换使得被展函数符合某个已知泰勒展开式.这是一种在实际应用中被广泛使用的间接展开法. 例1 求x e 处1=x 的泰勒级数 解 已知t e 在0=t 处的泰勒级数为 L L +++++=! !212n t t t e n t , ),(+∞?∞∈x 而 11 1?+??==x x x e e e e 设1?=x t 代入(1)得 ∑∞ =?=0 !)1(n n x n x e e , ),(+∞?∞∈x 2 等比级数求和法 利用公式 L L +++++=?n x x x x 2111 由于本公式应用广泛,所以专列一条.

常用函数的幂级数展开式

目录 上页 下页 返回 结束 内容小结 1. 函数的幂级数展开法 (1) 直接展开法—利用泰勒公式; (2) 间接展开法—利用幂级数的性质及已知展开 2. 常用函数的幂级数展开式 x e ?1=) ,(∞+-∞∈x )1(ln x +?x =] 1,1(+-∈x x +2!21x +, ! 1 ΛΛ+++n x n 221x -331x +Λ+-441x 11 )1(++-+n n x n Λ+式的函数. 目录 上页 下页 返回 结束 Λ++-++! )12()1(1 2n x n n x sin ?x =!33x -!55x +Λ+-!77x x cos ?1=!22x - !44x +Λ+-!66x Λ+-+! )2()1(2n x n n m x )1(+?1=x m +2 ! 2)1(x m m -+Λ +ΛΛ++--+n x n n m m m ! )1()1(当m = –1 时x +11 ,)1(132ΛΛ+-++-+-=n n x x x x ) ,(∞+-∞∈x ) ,(∞+-∞∈x ) 1,1(-∈x )1,1(-∈x

目录上页下页返回结束 四、物体的转动惯量 设物体占有空间区域Ω, 有连续分布的密度函数.),, (z y x ρ该物体位于(x , y , z ) 处的微元v z y x y x d ),,()(2 2ρ+因此物体对z 轴的转动惯量: ???+=Ω ρz y x z y x y x I z d d d ),,()(2 2=z I d O x y z Ω对z 轴的转动惯量为 因质点系的转动惯量等于各质点的转动惯量之和, 故连续体的转动惯量可用积分计算. 目录上页下页返回结束 类似可得:???=Ω ρz y x z y x I x d d d ),,( ???=Ω ρz y x z y x I y d d d ),,( ???=Ω ρz y x z y x I O d d d ),,( )(22z y +)(22z x +)(222z y x ++对x 轴的转动惯量 对y 轴的转动惯量 对原点的转动惯量

相关主题
文本预览
相关文档 最新文档