当前位置:文档之家› 控制系统建模、优化与仿真

控制系统建模、优化与仿真

控制系统建模、优化与仿真
控制系统建模、优化与仿真

三自由度交流混合磁轴承原理、数学模型、

参数优化与仿真

姓名:李媛媛学号:S1107062 专业:双控

1 磁轴承研究背景

磁轴承按其约束功能可分为轴向单自由度、径向二自由度和轴向-径向三自由度磁轴承。三自由度磁轴承集轴向、径向磁轴承于一体,简化了结构,缩小了体积。按悬浮力产生原理,磁轴承又可分为主动式、被动式及混合式。混合式磁轴承是由永磁体提供静态偏置磁通,而电磁铁只提供控制磁通,因而功放体积较小,结构紧凑,耗能小,气隙也能做得大些。按励磁电流类型将磁轴承分为直流式与交流式。直流式磁轴承功率放大器价格高,体积大,一个径向磁轴承通常需要四路功率放大电路;而交流式采用交流三相功率逆变器给控制线圈绕组提供励磁电流,一个三相功率逆变器就可完全控制径向两自由度,且三相逆变器应用技术成熟、价格便宜、体积小巧,采用矢量控制策略,易于控制系统软件的编程与移植,从而整体上减小了磁轴承控制系统成本。目前国内外均已研制出直流式三自由度磁轴承[1~4];瑞士也已研制出交流式二自由度磁轴承[5]。本文首次提出一种新型的交直流三自由度混合磁轴承(AC-DC-3DOF-HMB),这种轴承轴向采用直流励磁、径向采用交流励磁,由一块径向充磁永磁体同时给轴向-径向提供偏置磁通,集成了交流励磁、永磁偏置及轴向-径向联合控制等优点,在超高速超精密数控机床、磁悬浮电机、飞轮储能系统及人造卫星等悬浮支承系统中将有着重要的应用价值与前景。

2 结构和工作原理

2.1 交直流三自由度混合磁轴承结构

交直流三自由度混合磁轴承三维结构示意图如图1(a)所示,其各组件如图1(b)所示,由轴向定子、轴向控制线圈、带三个磁极的径向定子、径向控制线圈、转子、径向充磁永磁体等构成。工作时轴向两个线圈对轴向单自由度进行控制;沿圆周120O均匀分布的A,B,C三个线圈绕组通以三相交流电产生可旋转的合成磁通来控制径向二个自由度。径向定子铁芯采用硅钢片叠压而成,永久磁体采用

稀土材料钕铁硼制成。当径向、轴向都稳定悬浮时,转子在永磁体产生的静态偏置磁场吸力下处于悬浮的中间位置,径向和轴向气隙取为0.5mm。

(a)三维结构示意图

(b)组件结构示意图

(c)磁轴承磁路图

图1 交直流三自由度混合磁轴承结构示意图

2.2交直流三自由度混合磁轴承工作原理

图1(c)是交直流三自由度混合磁轴承磁路示意图。图中带箭头(控制磁通箭头方向由控制电流方向按右手定则确定)的实线表示永磁体产生的静态偏置磁通,它从永磁体的N极出发,经过轴向定子、轴向气隙、转子、径向气隙、径向定子、最后回到永磁体的S极;带箭头的虚线表示的是控制磁通,轴向控制磁通在轴向定子、轴向气隙与转子内构成回路;径向控制磁通在径向定子、径向气隙与转子间形成回路。由图可看出,轴向控制磁通与径向控制磁通互不干扰,不存在磁路耦合,各气隙磁通由各处的静态偏置磁通和控制磁通两部分叠加合成。

转子在轴向平衡位置时,永磁体在轴向两端气隙处所产生的磁通是相等的。当转子受到轴向外力而产生轴向位置偏移时,气隙减小的那一端永磁体产生的轴

向磁通Φp z 1增大,磁力亦增大,气隙增大的那一端轴向磁通Φp z 2减小,磁力亦减小,只要轴向控制磁通Φcz 满足下式:

p 1p 2

2

z z cz φφΦ-≥

(1)

则无论转子受到向左或向右的外扰动,带位置负反馈的轴向磁轴承系统,通过轴向控制器控制励磁绕组中的电流,调节左右气隙处磁通的大小,则始终能保持转子在轴向的参考平衡位置。

径向磁轴承部分的工作原理是基于无轴承电机的原理,使转矩绕组极对数p1为0,悬浮力绕组极对数p2为1,满足径向悬浮力产生的条件p2= p1 +1[6],采用三相功率逆变器对悬浮力绕组提供励磁电流,因而这种结构的无轴承电机实际就变成了只产生径向悬浮力的磁轴承。根据电机理论,三相绕组通上三相交流电后,可产生一个旋转磁场,形成一个单极合成磁通。当磁轴承受到径向扰动时,转子偏离参考位置,传感器检测出转子的偏移位置并反馈至控制器,控制器计算出转子的偏移量x 与y 后再将其转变成控制电流信号,通过CRPWM (电流跟踪)功率逆变器将其变换成三相控制电流[5],使得径向三相绕组中控制电流产生的合成单极磁通指向与位置偏移相反的方向,产生相应的悬浮力,从而使转子回到径向平衡位置。

3 数学模型

3.1 等效磁路计算

为了简化磁路计算,对交直流三自由度混合磁轴承磁路作如下假设:只考虑永磁体内外两环面漏磁,将整个磁路系统看作由一个漏磁磁阻与有效磁路系统的并联系统;只考虑工作气隙的磁阻,忽略铁芯磁阻、转子磁阻及涡流损耗等。这样可得到如图3所示的磁轴承永磁体磁路等效图。

图2 永磁体磁通分布等效磁路图

图2中, F m 是永磁体对外提供的磁动势,φm 是永磁体发出的总磁通,φ1是

总的漏磁通,漏磁导是G 1,右边轴向气隙和左边轴向气隙的磁导分别是G z 1和G z 2,径向三个气隙磁导分别是G A ,G B ,G C 。S a 、S r 分别为轴向、径向磁极面积;δa 、δr 分别为轴向、径向气隙;现假设转子轴向正方向偏移z ,径向正方向各偏移x 、y ,则各气隙处的磁导为:

0a 0a 12a a 0r r z z A

B C S S G G z z S G x G G μμδδμδ?==?-+??=?-??

?=??

?=

??

(2)

式中μ0是真空磁导率。

根据磁路基尔霍夫定律:∑F =0 和 ∑φi =0,求解出各支路中永磁体产生的磁通如下:

A B C p m 12A B C

12p m 12A B C zi zi z z z z j

j z z (G G G )F G (G G )(G G G )(G G )F G (G G )(G G G )++?

φ=?++++??

+?φ=?++++?

(3) 式中 i =1,2; j =A, B, C

施加控制磁通后,如图1(c)所示,各气隙处的合成磁通即为控制磁通叠加或相减上永磁偏置磁通:

1c p 11p 1

2c p 22p 2c p p z z z z z z z z z z z z z z j j j r j j j

N i G N i G N i G φφφφφφφφφφφφ?=-=-?

=+=+??

=+=+? (4) 式中 N z i z ——轴向各磁极控制线圈的安匝数

N r i j ——径向各磁极控制线圈的安匝数 j =A B C ,,

3.2 交直流三自由度混合磁轴承轴向悬浮力公式

假若转子轴向向右偏移z ,要使转子回到轴向平衡位置,则要轴向气隙处的合成磁通产生的合力向左,根据磁场力与磁通的关系:

2221

210a

2z z z z z F F -F S φφμ-==

(5) 式中 F z 2——转子左边受到的电磁吸力; F z 1——转子右边受到的电磁吸力;

式(2),(3),(4) 代入到式(5),在平衡位置处附近(x,y<<δR , z<<δZ )对F z 进行线性化处理并略去二阶以上无穷小量得:

z iz z z z y x i z

z z y x i z

z i k z k i i F z z

F F z z +=??+

??≈

========0

00

(6)

式中 2

0m 2

a r a a a

r 0m a r a a r 22323z z iz F k S S S F N k S S μδδδμδδδ?=-????

+ ???????

=????+ ?????

k z 称为轴向力/位移系数, k iz 为轴向力/电流系数,在磁轴承结构和工作点确定后,k z 、k iz 均为常数。

3.3 交直流三自由度混合磁轴承径向悬浮力公式

假设转子在径向正方向各偏移x ,y ,则各气隙处合成磁通φA ,φB ,φC

生的悬浮力如下[7~8]:

r

022S F j

j μφ= (7)

式中A B C j ,,=

式(2),(3),(4) 代入到式(7),在平衡位置处可按下式对F j (A B C j ,,=)进行计算得:

j ir j z y x i j

j z y x i j

j i k F i i F F F j j ?+=??+

=========pm 0

00

(8)

式中 2

0m pm 2a r r

a r 0m a r r a r 18()233()23r ir F F S S S F N k S S μδδμδδ

δ?=??+?

??=

?+?

?

F pm 为平衡位置时永磁体磁通在径向各气隙处产生的磁力,其大小是相等的。k ir 为径向力/电流系数,在磁轴承结构和工作点确定后,F pm 、k ir 均为常数。

将F A , F B , F C 分解到X ,Y 轴上,得:

A B C A B C 1111

2222x ir ir ir F F F F k i k i k i =--=--

(9)

B C B C y ir ir F i i == (10)

又对于三相交流电系统,有:

A B C 0i i i ++= (11)

由式(9),(10),(11),可得出径向力与径向三相控制电流的关系式:

A B C 112

120

x ir y i F k i F i ??

--??????

=???????????

????

(12)

实际控制时,由3/2变换,即可得出X 方向与Y 方向的等效控制电流:

a a

b a

c 1

12

120

x y i i i i i ??

--?????

=?????????

????

(13)

式中 i a x —— 3/2变换后X 方向等效控制电流

i a y —— 3/2变换后Y 方向等效控制电流 则由等效电流表示的悬浮力模型为:

a a a r a 1010301012

x x xy i y y F i x k F i y ????

??????=+???????????????????? (14) 3.4 交直流三自由度混合磁轴承控制策略

由式(6),式(12)分别确定轴向悬浮力与轴向位移、轴向控制电流的关系,径向悬浮力与径向控制电流的关系,构建如图1所示的控制系统框图,采用数字和模拟电路相结合进行控制。

图1交直流三自由度混合磁轴承控制框图

轴向位移传感器检测出转子轴向偏移位置后,反馈位移信号至DSP控制器、经数字控制器进行PID计算后输出控制电流信号至直流功率放大器,对轴向控制线圈励磁电流进行控制,从而控制轴向气隙处的磁通大小,确保转子处于轴向平衡位置。

径向位移传感器检测出转子径向偏移位置后,反馈位移信号至DSP控制器、经PID调节后转换成力的控制信号,再由式(12)转换成参考控制电流信号,与电流互感器检测出的径向三相绕组中的实时电流进行电流跟踪比较后,通过控制三相逆变器开关器件来改变径向三相绕组中励磁电流的大小,从而改变控制磁通,产生悬浮力使转子回到径向平衡位置。

4样机参数设计与有限元分析

4.1 气隙长度的选取及饱和磁感应强度的确定

考虑到气隙大小与永磁体外部磁动势及控制线圈安匝数的关系,工程上一般取气隙为0.15~1.50mm,本样机系统取δr=δa =δ0 =0.5mm。

一般硅铁材料的饱和磁感应强度B s=1.5T,设计时常取B s=0.6~0.8T。

4.2磁极面积的计算及控制线圈安匝数的确定

在平衡位置附近(x,y<<δr, z<<δa)要使轴向承载力达到最大F z max,式(5)中气隙磁通相叠加的一边磁感应强度要达到最大值B max,减少的一边达到最小值

0,此时轴向承载能力最大。B max 通常取软磁材料的饱和磁感应强度B S [1]。依上述条件,代入式(2),(3)到(4)即有:

m

0a a 0a

1a

a a r

1

2023z z z F N i S S S S S μμφδδ=-=+ (13)

m

0a a 0a

2s a a

a a r

121123z z z F N i S S S B S S S μμφδδ=+=?+ (14)

当转子处于空载平衡位置时,假设不考虑转子本身重力,偏置磁通即可使转子保持在平衡位置,无需控制电流,转子各气隙处的磁感应强度均等于偏置磁感应强度B 0,由永磁磁路的基本方程:

∑φz i =∑φj

B 0˙2S a = B 0˙3S r

2S a =3S r (15)

转子处于平衡位置附近时,由图2及式(8)知转子受永磁体所产生的径向合力为0,此时最大径向承载力即为径向控制磁通所产生的力:

0m r r max r a r

r

a

r

3(

)23ir r F N F k i i S S μδδδ=?=

?+ (16) 联结式(6),(13),(14),(15),(16)解得:

max 0

a

2

s max 0r 2s s 00

s 0r max

r r 0max s 0

m 0243232z z z z

z F S B F S B B N i B F N i F B F μμδμδμδμ?=???=

??

??=???=??

??=??

(17) 4.3 实验样机的设计及有限元分析

本新型磁轴承是用于无轴承永磁同步电机实验样机中转轴另一端三自由度悬浮支承,设计要求和

主要设计参数如表1所示。

表1 参数设计要求和磁轴承关键参数

项目要求

最大轴向悬浮力F zmax/ N ≥120

最大径向悬浮力F rmax/ N ≥80

气隙长度δ0/mm0.5

饱和磁感应强度B S/T0.8

永磁体材料Nd-Fe-B

电流密度J max/ A/mm2 4

轴向磁极面积S a/ mm2465

径向磁极面积S r/ mm2310

轴向最大磁动势(N z i z)max/ At 160

径向最大磁动势(N r i r)max/ At 320

总长尺寸L/ mm 39

最大外径D / mm φ133

采用通用CAE有限元分析软件ANSYS7.0对前述理论设计结果进行了仿真分析。依设计参数建立三维实体模型,其网格划分图如图2(a)所示。采用磁标势法求解,分析了以下几种静态磁场[8,9]。

图2(b)是永磁体所产生的磁通在磁轴承中的分布,可看出永磁磁场在轴承的径向和轴向均是对称分布,轴向气隙与径向各气隙处磁感应强度均相等,与图2所示的偏置磁通回路理论分析是相同的;

图2(c)是轴向控制线圈励磁后产生的轴向控制磁通与永磁体产生的偏置磁通合成后的磁感应强度分布,可看出图中轴向磁通一端是减小的,另一端是叠加而增大的,轴向控制磁通的方向由轴向控制电流方向而定,与图2理论上分析的轴向控制磁通回路结果也是一样的;

图2(d)模拟了某一瞬态径向三相绕组所产生的磁通情况,可看出径向控制磁通只在径向定子与转子间形成回路,三气隙处瞬时磁通大小不一样,从而可形成一合成磁通,通过控制三相励磁电流,可使磁通加强或磁通减小,产生相应径向合成磁力来克服扰动力或负载使转子回到平衡位置,因而可采用交流三相逆变器对径向两自由度进行励磁,从而降低磁轴承系统成本。

图2(e)模拟了该磁轴承某一工作状态,轴向-径向线圈同时励磁,反映了轴向气隙处与径向气隙处的磁通变化情况,轴向-径向气隙处可分别产生各自的磁悬浮合力以克服负载或扰动使转子回到平衡参考位置,进一步证明了轴向-径向控制磁通互不干扰,几乎没有耦合。

仿真分析表明样机符合设计要求,从磁轴承结构、磁路分布、承载力等方面也进一步证明了理论设计是可行的。通过进一步优化设计,该新型磁轴承在各类

悬浮支撑领域将是有着实际应用价值的。

(a)前处理模型网格划分图

(b) 永磁体的磁路

(C)轴向控制线圈励磁后的合成磁路情况

(d) 径向控制线圈的磁路

(e) 轴径向同时通电时的合成磁路情况

图2 磁轴承样机磁路与磁通分布有限元仿真与分析图

5 仿真研究与性能分析

仿真以实验样机为对象,通过传统的PID 控制器来控制三自由度混合磁轴承。试验中磁轴承的相关参数如下:m =1.3kg ,J z =1.6329×10-4 kg?m 2 ,

J x=J y=4.035×10-3kg?m2,l a=0.0805m,l b=0.0526m,k ai r=99N/A,k bi r=44N/A,k iz=299 N/A,k axy=1.01×105N/m,k bxy=4.42×105N/m,k z=2.99×105N/m。试验中功率放大器放大倍数K a为1,电涡流传感器的灵敏度为20mv/μm,其放大倍数K s=20 000。

用Matlab进行仿真,构建三自由度磁轴承系统仿真模型,如图3。按照上述参数进行仿真,得到输出仿真位移曲线。图4是磁轴承系统参考模型受到的阶跃响应的位移特性曲线。

由响应曲线(a)、(b)、(c)可以看出传统的PID控制器对三自由度磁轴承系统的控制达到了较好的预期效果,径向超调量只有2.3e-8,调节时间约为0.06s就可以回到平衡状态。而轴向几乎没有超调量,调节时间只要0.0018s,系统快速性较好,稳定性较好。

图3 系统仿真模型

0.020.040.06

0.080.10.120.14

-8

t/s

x /m

(a )径向x 方向阶跃响应

00.020.040.06

0.080.10.120.14

-8

t/s

y /m

(b )径向y 方向阶跃响应

-8

t/s

z /m

(c )轴向阶跃响应

图4 系统受到的阶跃响应位移特性曲线

6 结论

本文通过对三自由度混合磁悬浮轴承结构和工作原理的分析,利用等效磁路法建立了系统的数学模型,提出了对本系统的控制策略,然后考虑到实际需求,对样机本体的部分参数进行了设计,并利用ansoft 软件进行了有限元分析。最后根据数学模型利用matlab 软件对系统进行了仿真,在仿真实验中,控制器选的是传统的PID 控制器。实验结果表明控制器的参数选择的较为合适,达到了较为理想的控制效果。

四驱车三维建模及动画仿真

广东工业大学华立学院 本科毕业设计(论文) 玩具四驱车三维建模及动画仿真 系部机电工程学部 专业机械设计制造及其自动化 班级 09机械4班 学号 12010904033 学生姓名邹明珍 指导教师周艳琼 2013年06月

摘要 本次设计是基于solidworks 2010版本来进行四驱车的三维建模和工作状态的动画仿真的,其主要目的是为了开拓广大的玩具市场和满足爱车一族的珍藏喜好,。 本毕业设计主要内容是按真四驱车缩小对四驱车进行仿真设计造型,因考虑成本且实现运动和仿真,本设计简化了其结构而设计的四轮驱动模型车。本设计的材料选用塑料,以便减轻车子的负载和降低成本。把原本的动力源发动机改为电机驱动,通过简单的齿轮传动,改变运动方向和速度,使得轮轴的旋转,从而带动车轮的旋转,让车子运动起来,以达对真四驱车的运动仿真。最后一个部份则是对本次设计中所遇到的问题和解决方案进行的总结。 关键词:solidworks,三维建模,仿真,四驱车

Abstract This design of which main purpose is to develop the toy market and satisfy the collection of motorists preferences, is based on solidworks 2010 version, feeder of the bottled embryo, 3d modeling and stimulation of the status of the animation. The main content of the graduation design is to design simulation modelling according to narrowing the raider buggies. Because of considering cost and realizing the simulation of motions, the design simplifies the structure and designs the four-wheel drive model car. The material selection of this design is plastic , so as to reduce the load and the cost of the car. The motor drive is instead of the source power engine. Through a simple gear transmission, changing the direction and speed of the car, making the rotation of the shaft, so that it can drive the rotation of the wheel, let the car move, and achieve the movement simulation of the true buggies .The last part is summarizing about the problems encountered and the solutions in this design. Keywords: solidworks , 3d modeling , simulation, four-wheel drive

气动张力控制系统的建模与仿真

气动张力控制系统的建模与仿真 摘要:本文简单介绍了张力控制的相关知识及气动张力控制系统的组成及工作原理,并对张力控制系统的收卷控制部分进行了数学建模与仿真。建立了比例压力阀控缸开环系统的简化模型,采用PID控制方法,在Matlab仿真平台进行系统模型仿真,得到了系统仿真曲线。 关键词:张力控制气动比例控制系统建模与仿真 近年来,气动技术以其自身独特的传动方式和优点,如清洁、结构简单、气体来源充足和成本相对较低,已在工业自动化领域广泛应用。将气动技术应用于恒张力控制系统已成为一个重要研究领域,PID控制,现代控制理论,智能控制等都被应用到气动系统的控制中。但是气动控制系统,由于气体的可压缩性,阀口非线性及气缸摩擦力等因素的影响,导致了气动伺服系统的强非线性、固有频率低、刚度小、阻尼小等特点,要得到满意的控制伺服系统比较困难。要对气动伺服控制系统进行分析和研究,一般需要首先建立该控制系统的数学模型。 本文通过介绍张力控制的相关知识及气动比例控制系统原理与组成,针对张力控制系统的收卷控制部分建立简单的比例压力阀控缸开环控制系统的数学模型,并在Matlab环境下进行了仿真。 一、张力控制的基础知识 张力控制,简单地说就是要控制物体在设备上输送时物体上相互拉长或绷紧的力。张力控制系统往往是张力传感器和张力控制器的一种系统集成,是一种实现恒张力或者锥度张力控制的自动控制系统,主要应用于造纸、纺织、薄膜、电线等轻工业中,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。在带材或线材的收卷和放卷过程中,为保证生生产的质量和效率,保持恒定张力是很重要的。 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。 1.典型收卷张力控制示意图

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

行星齿轮的三维建模与运动仿真

北京工业大学耿丹学院 毕业设计(论文) 基于Solidwork的行星齿轮的三维建模与运动仿真 所在学院 专业 班级 姓名 学号 指导老师 年月日

摘要 行星齿轮减速器是一种至少有一个齿轮的几何轴线绕着固定位置转动圆周运动的传动,变速器通常和若干行星轮和传递载荷的作用,为了使功率分流。渐开线行星齿轮传动具有以下优点:传动比大,结构紧凑,体积小、质量小,效率高,噪音低,运转平稳,因此被广泛应用于冶金,工程机械,起重,运输,航空,机床,电气机械及国防工业等部门,作为减速、变速或增速的齿轮传动装置 NGW型行星齿轮传动机构的传动原理:当高速轴由电机驱动,带动太阳轮,然后带动行星轮转动,内齿圈固定,然后带动行星架输出运动的,在行星架上的行星轮既自转和公转,具有相同的结构。二级,三级或多级传输。NGW型行星齿轮传动机构主要由太阳齿轮,行星齿轮,内齿圈,行星架,命名为基本成分后,也被称为zk-h型行星齿轮传动机构。 本设计是基于行星齿轮结构设计的特点,和SolidWorks三维建模和运动仿真。行星齿轮和各种类型的特性的比较,确定方案;其次根据输入功率,相应的输出转速,传动比的传动设计、总体结构设计;三维建模并最终完成了SolidWorks,和模型的装配,并完成了传动部分的运动仿真和运动分析。 关键词:行星齿轮减速器、运动仿真、装配、三维建模

Abstract Planetary gear reducer is driving a at least one gear geometric axis rotated around a circular motion of fixed position, the transmission is usually and planetary gear and transfer load, in order to make the power split. Involute planetary gear transmission has the following advantages: large transmission ratio, compact structure, small volume, small mass, high efficiency, low noise, smooth operation, so it is widely used in metallurgy, engineering machinery, lifting, transportation, aviation, machine tools, electrical machinery and defense industry and other departments, as gear reducer, gear or the growth The transmission principle of NGW type planetary gear transmission mechanism: when the high-speed shaft driven by a motor, to drive the sun gear, and the planet wheel is driven to rotate, the inner gear ring is fixed, and then drives the planetary frame outputting motion, on the planet carrier planet wheel both rotation and revolution, has the same structure. The two level, three level or multilevel transmission. The NGW type planetary gear transmission mechanism mainly consists of a sun gear, planet gear, inner gear ring, a planetary frame, named after the basic components, also known as the ZK-H type planetary gear transmission mechanism. This design is the design of planetary gear structure based on SolidWorks, and 3D modeling and motion simulation. Comparison of characteristics of planetary gears, and various types of determination scheme; secondly according to the input power, the output speed of the overall design, transmission design, ratio; 3D modeling and finished SolidWorks, assembly and model, and the motion simulation and motion analysis of the transmission part. Keywords: planetary gear reducer, assembly, motion simulation, 3D modeling

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

三维建模与三维动画的仿真技术研究

摘要:随着科学技术的不断进步,在很多工程建筑和很多的媒体技术中,三维建模和三维动画的仿真技术被人们广泛运用,本文就三维建模和三维动画仿真技术的概念特点等进行分别介绍,集体研究。 关键词:三维建模;三维动画;仿真技术 中图分类号:j218.7 文献标识码:a文章编号:1005-5312(2012)17-0043-01 一、关于三维建模 (一)三维模型 所谓的三维模型就是一个物体用三维的多边形表示出来,然后用计算机或者其他的设备用视频的形式进行显示。现实的物体可以使在现实世界里存在的实际物体,也可以是设计者虚构出的,总之就是不管是有的没得,只要是能想出来的都能用三维模型表示出来。 (二)三维建模的应用范围 三维建模在现在这个科技发展迅猛的时代已经被运用在各个领域,其中在视频游戏中,三维建模是作为计算机和视频游戏中的资源被运用,而在医疗行业中,三维建模被使用于器官的制作模型等,在电影电视行业中,他们被用于特技手段和活动的人物制作,在建筑业中,三维建模用来展示所要表达的建筑物和地貌风景等。 (三)三维建模的方法 1、软件建模 现在市场上有很多比较先进的建模软件,比如3dmax、maya、autocad等等,这些软件的共性是用一些较基本的几何体,如长方体、正方体、立方体和球体等,构建一系列的平移、旋转、拉伸和一些较复杂的几何场景来实现的。能够用团建来进行三维建模的主要是屋里建模、几何建模和行为建模等等,而其中尤几何建模的创建和描述是三维建模之间的重点。 2、仪器设备测量建模 三维建模中重要的工具就是三维扫描仪,又被叫做三维数字化仪。这种仪器能够将现实世界中的彩色努力提的信息快速的转换成计算机能够识别和处理的数字信号,并且能够为三维建模实现数字化提供了有效的方法。 3、图像或者视频建模 在现在的计算机图形学的研究领域,用图像或者是视频来进行三维建模是很多学者比较感兴趣的,这种方法同那些比较传统的建模方法相比,具有很多特别的优势,比如,用图像或者视频创建的模型会比别的方法更加真实和自然,并且,运用这种方法创建模型会变得更方便,速度也会大大提升。质量和速度的提高,是图像或视频建模最大的特色。 二、关于三维动画的仿真技术 (一)动画 借用人的视觉暂留原理,一系列的静态图像播出之后,会在人的视网膜上留下动态的效果,而利用计算机设计的动画效果,就是用计算机中比较高效的图像处理的功能,用一连串的关键帧来对物体的关键时刻进行描述,准确的几率物体关键时刻的位置结构和其他的参数,并且自动的形成中间的图像,然后创建出一幅流畅的画面。 (二)三维动画的的仿真应用 三维动画的仿真技术能够将真实的物体模拟成一个虚拟的动画,但是这个动画会产生一定的价值。三维动画的真实和精确,可操作性,三维动画在教育、军事、建筑和医学、娱乐等领域都有很大的发展性。 在影视制作方面,三维动画能够制作出比较有创意的特效和3d动画,还能够制作出精良的后期效果和特效动画,应用这项技术,吸引了越来越多人的眼球,得到很多客户的青睐,剧中的爆炸,烟雾,下雨和光效还有撞车,变形和很绚丽的片头片尾等等的出现,都得益于

三维建模及运动仿真

三维建模及运动仿真 Pro/Engineer 软件集产品的三维造型设计、加工、分析、仿真及绘图等功能于一体,是一套使用方便、参数化造型精确的软件,其强大的造型功能及仿真分析功能受到众多工程人员的青睐。本节将采用Pro/E 软件,完成少齿数齿轮传动机构中所有零件的参数化建模,并对少齿数齿轮减速器进行虚拟装配,在此基础上,对传动机构进行运动仿真。 3.1 齿轮的参数化建模 3.1.1 零件分析 齿轮建模的操作步骤如下: (1)添加齿轮设计参数 (2)添加齿轮关系式 (3)创建齿轮的齿廓曲线 (4)创建螺旋线方程 (5)实体生成: 1)创建螺旋线线方程 2))拉伸 3))阵列 3.1.2 绘制齿轮 (1)新建文件: 启动PROE Wildfire4.0,单击工具栏新建工具,或单击菜单“文件/新建”。出现如图3.1所示对话框。选择系统默认“零件”,子类型“实体”方式,“名称”栏中输入“canshuhuachilun ”,同时注意关闭“使用缺省模板”。选择公制模板mmns-part-solid ,如图3.2所示,然后单击“确定”。 (2)创建齿轮程序。 选择菜单栏“工具/程序”命令,出现如图3.3所示对话框。单击“编辑设计”, 依次添加齿轮设计参数及初始值,添加完毕单击“确定”。选择工具菜单“工具/程序”命令,出现如图3.4信息窗口,在其中输入程序如下: Y0=(1/4)*PI*MT+XT*MT*TAN(α t) Xc=(HANX+CNX-XN)*MN-ρ

Yc=(1/4)*PI*MT+HANX*MN*TAN(αt)+ρ*COS(αt) (3)添加齿轮四个圆的关系式。 1)选择“插入/模型基准/ 草绘”特征工具,或单击工具栏 草绘命令,出现如图3.5所示对话框。单击“草绘”确认,进入二维草绘模式如图3.6所示。

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

基于proe的液压挖掘机三维建模与运动仿真..

****************学校 毕业设计说明书 设计题目:基于Pro/E的液压挖掘机三维建模与运动仿真 系部:****** 专业:****** 班级:****** 学生姓名:****** 学号:****** 指导教师:****** ****年**月**日

摘要 工作装置是液压挖掘机的重要组成部分,为研究工作装置在挖掘机整个作业循环时间里的运动情况,运用Pro/E软件的运动仿真模块对挖掘机工作装置进行运动仿真。采用传统的运动分析方法存在工作量大、不精确和不直观等缺点。利用Pro/E对液压挖掘机反铲工作装置进行建模和装配,首先分析了挖掘机的运动过程和各工况位置,然后用Pro/ E中的Mechanism模块进行了机构运动学仿真,通过对挖掘机各连接轴的设置,找到挖掘机动臂、斗杆和铲斗的各极限位置,以及确定各部件的运动关系和时间安排。结果表明该方法简单、可靠、为挖掘机整机设计及性能评估提供一定的理论依据。 关键字:液压挖掘机;Pro/E;运动仿真 ABSTRACT The work device is an important part of a hydraulic excavator.To start the motion process of hydraulic excavator work device in the whole operation cycle time, Pro/E sofortware is used to simulat. The traditional design methods to draw the envelope diagram have many shortcomings, such as the heavy workload,imprecision and less intuition. Pro/ E software was used to model and assemble for backhoe working equipment of the hydraulic excavator. Above all , the excavator movement process and work conditions were analyzed. Then mechanism kinematics simulation was carried on by Mechanism module in the Pro/ E software. The limit positionsof movable arm, bucket arm and bucket were found through setting joint shafts of the excavator. Keywords:excavator;Pro/E;dynamic simulation

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

控制系统建模、分析、设计和仿真

北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级:自动化四班 学号: 学生姓名: 指导教师: 2012年 6 月 9 日

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:范杰工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为09xxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 最少拍有波纹控制系统

[8号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取0.02秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 1、求被控对象传递函数G(s)的MATLAB 描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。 (8分) 6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。(3分) 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。(8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳 定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。(8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) ) 7)(5)(2()6)(1(879)(2+++++= s s s s s s s G

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对 数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几 何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空 间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学 模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其 中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于 上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要 因素。⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述 对象运动规律的原始微分 方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得 出无因次的、能够 描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段 线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条 件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y为输出变量,x为输入变量,表示y(t) 的n阶导数,表示x(t)

控制系统仿真与设计课程设计报告

《控制系统仿真与设计》课程设计报告

一、目录 摘要 (3) 一、概述 (3) 二、设计任务与要求 (4) 2.1 设计任务 (4) 2.2 设计要求 (4) 三、理论设计 (5) 3.1 方案论证 (5) 3.2 系统设计 (6) 3.2.1 电流调节器设计 (6) 3.2.2 速度调节器设计 (9) 四、系统建模及仿真实验 (11) 4.1 MATLAB 仿真软件介绍 (11) 4.2 仿真建模 (12) 4.3 仿真实验 (12) 五、总结与体会 (15) 参考文献 (15)

摘要 在直流双闭环调速系统教学中, 电流环和转速环参数的简化计算是教学关键环节, 文章针对某双闭环直流调速系统, 进行了参数的详细计算和电流环和转速环的设计, 并采用MA TL AB /SI MULI NK对实际系统进行了仿真, 给出了起动过程中的电枢电流和转速变化的波形, 并对结果进行了分析。结果表明在实验中引入MA TLAB /SI MULI NK仿真是对实际实验的良好补充, 能够加深学生对实验的认识。 关键词:MATLAB;直流调速;双闭环;转速调节器;电流调节器;干扰 一、概述 直流电动机具有调速性能好,起动转矩大,易于在大范围内平滑调速等优点,其调速控制系统历来在工业控制中占有及其重要的地位。随着电力技术的发展,特别是在大功率电力电子器件问世以后,直流电动机拖动将有逐步被交流电动机拖动所取代的趋势,但在中、小功率的场合,常采用永磁直流电动机,只需对电枢回路进行控制,相对比较简单。特别是在高精度位置伺服控制系统、在调速性能要求高或要求大转矩的场所,直流电动机仍然被广泛采用[2],直流调速控制系统中最典型一种调速系统就是速度、电流双闭调速系统。直流调速系统的设计要完成开环调速、单闭环调速、双闭环调速等过程,需要观察比较多的性能,再加上计算参数较多,往往难以如意。如在设计过程中使用Matlab中的SimuLink实用工具来辅助设计,由于它可以构建被控系统的动态模型,直观迅速观察各点波形,因此调速系统性能的完善可以通过反复修改其动态模型来完成,而不必对实物模型进行反复拆装调试[4]。Matlab中的动态建模、仿真工具SimuLink具有模块组态方便,性能分析直观等优点,可缩短产品的设计开发过程,也可以给教学提供了虚拟的实验平台。

基于蜗轮蜗杆的三维建模与运动仿真

……………………. ………………. ……………… 山东农业大学 毕 业 论 文 基于Pro/E 的蜗轮蜗杆参数化建模及运动仿真分析 院 部 机械与电子工程学院 专业班级 机械电子工程专业 届 次 2013届 学生姓名 冯海明 学 号 20091192 指导教师 张开兴 老师 二O 一三 年 六 月 十 日 装 订 线 ……………….……. …………. …………. …

目录 摘要 (3) 1绪论 (5) 1.1课题研究意义 (5) 1.2课题研究CAD发展概述 (5) 1.2.1CAD技术发展历程 (5) 1.2.2CAD的发展趋势 (6) 1.3本课题研究的内容 (7) 2蜗轮蜗杆参数化设计基础 (7) 2.1蜗杆传动机构简介及类型 (7) 2.2圆柱蜗杆传动的主要参数和几何尺寸 (8) 2.3参数化特征造型技术简介 (9) 3 基于PRO/E的蜗轮参数化建模 (10) 3.1P RO/E的参数化建模简介 (10) 3.2蜗杆的参数化建模 (12) 3.2.1零件分析 (12) 3.2.2创建蜗杆 (13) 3.3蜗轮的参数化建模 (19) 3.3.1零件分析 (19) 3.3.2蜗轮的参数化建模 (20) 4蜗轮传动机构的运动仿真 (30) 4.1P RO/E运动仿真简介 (30) 4.2P RO/E平台机构运动仿真的步骤 (30) 4.3蜗轮蜗杆机构运动仿真的具体步骤 (31) 4.3.1蜗轮蜗杆机构的虚拟装配 (31) 4.3.2蜗轮蜗杆机构的运动仿真 (32) 5总结 (33) 参考文献 (34) 致谢 (34)

Contents Abstract (4) 1Introduction (5) 1.1The significance of this research (5) 1.2Development of research on CAD project (5) 1.2.1 CAD technology development (5) 1.2.2 The development trend of CAD (6) 1.3The contents of this research project (7) 2 Basic worm gear parametric design (7) 2.1Introduction and type of worm gear (7) 2.2The main parameters and geometric dimensions of a cylindrical worm drive (8) 2.3The parametric feature modeling technology (9) 3 Modeling of worm gear parameters based on PRO/E (10) 3.1 Parametric modeling of Pro/E (10) 3.2Parametric modeling of worm (12) 3.2.1 Part analysis (12) 3.2.2 Create a worm (13) 3.3Parametric modeling of worm gear (19) 3.3.1 Part analysis (19) 3.3.2 Parametric modeling of worm gear (20) 4 Motion simulation of worm gear transmission mechanism (30) 4.1 Introduction the Pro/E motion simulation (30) 4.2 Exercise Pro/E platform simulation steps (30) 4.3The specific steps of mechanism movement simulation of worm gear worm (31) 4.3.1 The virtual assembly of the worm gear (31) 4.3.2 Motion simulation of worm gear (32) 5 Summary (33) Reference documentation (34) Convey thanks (34)

相关主题
文本预览
相关文档 最新文档