当前位置:文档之家› 机械系统非线性动力学特性的实验研究 Elsevier

机械系统非线性动力学特性的实验研究 Elsevier

机械系统非线性动力学特性的实验研究 Elsevier
机械系统非线性动力学特性的实验研究 Elsevier

1、检索课题名称:机械系统非线性动力学特性的实验研究

2、课题分析:

中文关键词:1 机械系统 2动力学 3非线性

英文关键词:(1) Mechanical system

(2) Dynamic

(3) The nonlinear

3、选择检索工具:Elsevier 数据库

4、构建检索策略:Mechanical system AND The nonlinear AND Dynamic

5、简述检索过程:

选定在 Elsevier 中期刊、图书、文摘数据库等全部文献资源中检索 2003 年以后的关于机械系统非线性动力学特性的相关文献。利用确定的检索策略(Mechanical system AND The nonlinear AND Dynamic),文献全文(含文献题目、摘要、关键词)中检索,检到 66304 篇相关文献;在文献题目、摘要和关键词中检索,检索到 913 篇相关文献。

6、整理检索结果:

从以上文献中选择出3 条切题文献

1.Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints usin

g a new hybrid contact force model

International Journal of Mechanical Sciences, Volume 54, Issue 1, January 2012, Pages 190-205 Zheng Feng Bai, Yang Zhao

Abstract

In this study, the dynamic behaviour of planar mechanical systems including revolute joints with c learance is investigated using a computational methodology. The contact model in revolute joint cl earance is established using a new nonlinear continuous contact force model, which is a hybrid co ntact force model, and the friction effect is considered using modified Coulomb friction model. An d then, the dynamic characteristics of planar mechanical system with revolute joint clearance are a nalysed based on the new contact model. Numerical results for two simple planar mechanisms wit h revolute clearance joints are presented and discussed. The correctness and validity of the new co ntact force model of revolute joint clearance is verified through the demonstrative application exa mples. Clearance size and friction effect are analysed separately. The numerical simulation results show that the proposed contact force model is a new method to predict the dynamic behaviour of p lanar mechanical system with clearance in revolute joints.

Highlights

? The dynamic behaviour of planar mechanical systems with revolute joints with clearance is inve stigated using a computational methodology. ? We proposed a new contact force model of revolut e joint with clearance. ? We presented a modified Coulomb friction model for tangential contact. ? The clearance size and friction effects are analysed separately.

Keywords

Clearance joint; Contact model; Friction force; Mechanism; Dynamic behaviour

2.Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with har monic base excitation Original Research Article

Chaos, Solitons & Fractals, V olume 39, Issue 3, 15 February 2009, Pages 1356-1370 Manuel F. Pérez Polo, Manuel Pérez Molina, Javier Gil Chica

Departamento de Física, Ingenierí a de Sistemas y Teorí

a de la Se?al, Universidad de Alicante, Escuela Politécnica Superior, Campus de San Vicente, 03071 Alicante, Spain

Facultad de Ciencias Matemáticas, Universidad Nacional de Educación a Distancia. UNED, C/Boyero 12-1A, Alicante 03007, Spain

Abstract

This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a n onlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffings oscillators, which may reach chaotic behavio ur when harmonic forces are applied. The chaotic motion is destroyed by applying the following c ontrol strategies: (i) static output feedback control law with constant forces and (ii) geometric nonl inear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positi oning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as i t appears in the design of present MEMS devices. Numerical simulations are used to verify the ma thematical discussions

3.Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems Or iginal Research Article International Journal of Mechanical Sciences, In Press, Corrected Proof, A vailable online 13 February 2013

Y. Luo, Y. Liu, H.P. Yin

Railway and Urban Rail Transit Research Institute, Jiading Campus, Tongji University, 4800

? Cao′an Road, Shanghai 201804, People′s Republic of China

Université Paris-Est, UR Navier, Ecole Nationale des Ponts et Chaussées, Champs sur Marne, Marne la Vallée Cedex, France

Abstract

A nonlinear dynamic model of a rubber absorber in railway fastening systems is proposed, based o n the superposition principle to simulate its nonlinear vibrational behavior. A dynamic experiment was carried out to obtain all model parameters. The accuracy of the model was supported by good agreement between measured and simulated results, and it should therefore be an effective mechan ical tool for simulating and characterizing the nonlinear behavior of rubber absorbers in rail fasteni ng systems at particular vibrational modes. Excitation frequency dependency and amplitude dependency of the nonlinear dynamic stiffness were also selected for further study. The results ind icate that characteristics of the nonlinear dynamic stiffness are closely associated with both displac ement amplitude and frequency, although frequency dependency is not as great as amplitude dependency.

Highlights

? We focus on the nonlinear properties, which used to be ignored by linearization.

? We combine the numerical analysis with a dynamic experiment.

? We study mainly on the dynamic stiffness, one of the important dynamic parameters. ? Regular amplitude and frequency dependency of dynamic stiffness are indicated.

Keywords

Rubber absorbers in rail fastening systems; Dynamic stiffness; Parameter identification; Frequenc y dependency; Amplitude dependency

7.全文摘录选择一篇

1.Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints usin

g a new hybrid contact force model

一.篇名:

Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using

a new hybrid contact force model

二、著者:

Zheng Feng Bai, Yang Zhao

三、著者机构:

Department of Astronautic Engineering, Harbin Institute of Technology, Harbin 150001, Heilongji ang, PR China

四、文摘:

Abstract

In this study, the dynamic behaviour of planar mechanical systems including revolute joints with c learance is investigated using a computational methodology. The contact model in revolute joint cl earance is established using a new nonlinear continuous contact force model, which is a hybrid co ntact force model, and the friction effect is considered using modified Coulomb friction model. An d then, the dynamic characteristics of planar mechanical system with revolute joint clearance are a nalysed based on the new contact model. Numerical results for two simple planar mechanisms wit h revolute clearance joints are presented and discussed. The correctness and validity of the new co ntact force model of revolute joint clearance is verified through the demonstrative application exa mples. Clearance size and friction effect are analysed separately. The numerical simulation results show that the proposed contact force model is a new method to predict the dynamic behaviour of p lanar mechanical system with clearance in revolute joints.

五、关键词:Keywords

Clearance joint; Contact model; Friction force; Mechanism; Dynamic behaviour

六、正文:

1. Introduction(首段)

Clearances in mechanism are unavoidable due to assemblage, manufacturing errors and wear. Mo reover, clearance occurs in each active joint with the movement of mechanism. The movement of t he real mechanisms is deflected from the ideal mechanism and the motion accuracy is decreased d ue to joint clearances. The existence of clearance in joints also causes impact dynamic load, affect s the transfer of the system load and may lead to destruction and failure of mechanism. These clear ances modify the dynamic response of the system, justify the deviations between the numerical pr edictions and experimental measurements and eventually lead to important deviations between the projected behaviour of mechanisms and their real outcome [1], [2], [3], [4], [5], [6], [7], [8], [9], [ 10] and [11].

Over the last few decades, effects of clearance on dynamic behaviour of planar and spatial mechan isms using theoretical and experimental approaches have been studied by many researchers. Stoen escu and Marghitu [12] investigated the dynamic response of a planar, rigid-link mechanism with a sliding joint clearance and the response of the system with clearance was chaotic at relatively hig h crank speeds and low values of the coefficient of restitution. Khemili and Romdhane [13] investi gated the dynamic behaviour of a planar flexible slider-crank mechanism having joint with clearan ce. And simulation and experimental tests were carried out for this goal. Zhao and Bai [14] studied

the dynamics of a space robot manipulator with one joint clearance.

7. Conclusions(末段)

This work studies the dynamic behaviour of mechanical systems with revolute clearance joint base d on a new nonlinear continuous contact force model. The study performs of the dynamic behavio ur analysis of mechanical systems including revolute joints with clearance using a computational methodology. The contact model in revolute joint clearance is established using a new nonlinear c ontinuous contact force model, which is a hybrid model of Lankarani–Nikravesh model and the improved elastic foundation model. And the tangential contact is represe nted using a modified Coulomb friction model.

In addition, the clearance size and friction effects are analysed separately. The results show that w hen the clearance size is increased the dynamic characteristics of mechanism are changed obviousl y and higher size of clearance, more obvious shake and higher peaks of angular acceleration of me chanism. And it indicates the higher size of clearance, the higher contact force and lower contact fr equency. The results also show that when the dynamic friction coefficient increases, the dynamics response of mechanism is less shaky. It indicates that the lower value of the dynamic friction coeff icient, the more obvious shake and higher peaks of acceleration of mechanism. It can be conclude d that the increase of dynamic friction coefficient leads to a better response of the mechanical system.

In this study, only one joint is considered as imperfect and exists clearance. But, it is realized that t he increased number of revolute joint with clearance makes the dynamic behaviour of mechanical systems worse. More applications and tests of the hybrid contact force model need further study, p articularly for the three-dimensional case. The dynamic behaviour analysis of mechanical systems considering clearance joints is the basis of precision analysis, design of mechanical systems. Acknowledgements

七、参考文献:References

[1]P. Flores, J. Ambrosio, J.C.P. Claro, H.M. Lankarani, C.S. Koshy

A study on dynamics of mechanical systems including joints with clearance and lubrication Mech Mach Theory, 41 (2006), pp. 247–261

[2]S. Erkaya, I. Uzmay

A neural-genetic (NN-GA) approach for optimizing mechanisms having joints with clearance Multibody Syst Dyn, 20 (1) (2008), pp. 69–83

[3]P. Flores

Modeling and simulation of wear in revolute clearance joints in multibody systems Mech Mach T heory, 44 (6) (2009), pp. 1211–1222

[4]P. Flores

A parametric study on the dynamic response of planar multibody systems with multiple clearance j oints,Nonlinear Dyn, 61 (2010), pp. 633–653

[5]O.J.C. Garcia

Analysis of clearance in multibody system Multibody Syst Dyn, 13 (2005), pp. 401–420

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

中国矿业大学机械系统动力学实验指导书(实验报告)

《机械系统动力学》 实验指导书 编制机械系统动力学课程组 中国矿业大学机电工程学院机械设计系 2019年3月

图1 幅值判别法和相位判别法仪器连接图 实验:结构的固有频率与模态的测试 一、结构的固有频率测试 1.实验目的 1、学习机械系统固有频率的测试方法; 2、学习共振法测试振动固有频率的原理与方法;(幅值判别法和相位判别法) 3、学习锤击法测试振动系统固有频率的原理与方法;(传函判别法) 4、学习自由衰减振动波形自谱分析法测试振动系统固有频率的原理和方法。(自谱分析法) 2.实验仪器及安装示意图 实验仪器:INV1601B 型振动教学实验仪、INV1601T 型振动教学实验台、加速度传感器、接触式激振器、MSC-1力锤(橡胶头)。软件:INV1601型DASP 软件。 图2 传函判别法和自谱分析法仪器连接图

3.实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是用锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。 1、简谐力激振 由简谐力作用下的强迫振动系统,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21x x +这二部分组成: ) sin cos (211t C t C e x D D t ωωε+=-式中21D D -=ωω1C 、2C 常数由初始条件决定 t A t A x e e ωωcos sin 212+=其中222222214)()(e e e q A ωεωωωω+--= 2222224)(2e e e q A ωεωωεω+-=,m F q 0=1x 代表阻尼自由振动基,2x 代表阻尼强迫振动项。自由振动项周期 D D T ωπ2=强迫振动项周期e e T ωπ2=由于阻尼的存在,自由振动基随时间不断地衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,只剩下强迫振动部分,即 t q t q x e e e e e e e e ωωεωωεωωωεωωωωsin 4)(2cos 4)()(222222222222+-++--=通过变换可写成 ) sin(?ω-=t A x e 式中4 22222222214)1(/ωωεωωωe e q A A A +-=+= t e 图3阻尼强迫振动

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

机器人复习题及参考答案

课程考试复习题及参考答案 机器人学导论 一、名词解释题: 1.自由度: 2.机器人工作载荷: 3.柔性手: 4.制动器失效抱闸: 5.机器人运动学: 6.机器人动力学: 7.虚功原理: 驱动: 9.电机无自转: 10.直流伺服电机的调节特性: 11.直流伺服电机的调速精度: 控制: 13.压电元件: 14.图像锐化: 15.隶属函数: 网络: 17.脱机编程: : 二、简答题: 1.机器人学主要包含哪些研究内容 2.机器人常用的机身和臂部的配置型式有哪些 3.拉格朗日运动方程式的一般表示形式与各变量含义 4.机器人控制系统的基本单元有哪些 5.直流电机的额定值有哪些 6.常见的机器人外部传感器有哪些 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成 9.为什么要做图像的预处理机器视觉常用的预处理步骤有哪些 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类 12.仿人机器人的关键技术有哪些 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。 4.试论述机器人静力学、动力学、运动学的关系。 5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的 6.试论述工业机器人的应用准则。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y 轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。求u, v, w, t各点的齐次坐标。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

机械动力学期末复习题及答案

机械动力学期末复习题及 答案 Prepared on 22 November 2020

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所 作的功。答案:错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。

答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。 答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效 答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误 19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。

机械动力学名词解释

连续介质力学 它是研究质量连续分布的可变形物体的运动规律,主要讨论一切连续介质普遍遵从的力学规律。例如,质量守恒、动量和角动量定理、能量守恒等。弹性体力学和流体力学有时综合讨论称为连续介质力学。 转子动力学 固体力学的分支。主要研究转子-支承系统在旋转状态下的振动、平衡和稳定性问题,尤其是研究接近或超过临界转速运转状态下转子的横向振动问题。转子是涡轮机、电机等旋转式机械中的主要旋转部件。 大朗贝尔原理 在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。利用达朗贝尔原理,可将质点系动力学问题化为静力学问题来解决 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

2013机械动力学试题答案

一、判断题 1. 考虑效率时,等效力大小与效率值大小成反比。 2. 某机械的广义坐标数为5,则该机械的广义力一定少于5个。 3. 某机械系统自由度为4,那么其惯性系数33J 一定不小于零。 4. 定轴轮系在匀速转动时,等效力矩一定等于零。 5. 在考虑弹性时,铰链四杆机构中单元杆的节点变形数一定等于系统的节点变形数。 1.× 2.× 3.√ 4.√ 5.× 二、如图所示机构在水平面上运转,件1为原动件,转角为?。已知杆1长 08.m l =,其绕A 点转动惯量A J 1=0.22kgm ,件2质量212.kg m =,其质心为2 B 点,杆3质量32kg m =,杆1受驱动力矩M ,杆3受力F 作用。试求: 1. 以件1为等效件建立机构动力学方程。 2. 该机构由静止起动时45?=,那么若20N F =,M 至少应大于多少才能启动机构。 3. 若20N F =,15Nm M =,求90?=时,?=? 解:1、?cos l S = ?ωsin 1 3 l v -=∴

?ωsin 1 3 Fl M v F M M v -=-= ()232212 1332 1 2 21sin ?ωω l m l m J v m v m J J A B A v ++=??? ? ??+???? ??+= 由 ???d dJ J M v v v 22 += 得: =-?sin Fl M () [ ]+++? ? 2 3221sin l m l m J A ()22 3 cos sin ? ?? l m 2、 2008450.sin M -??> 113.Nm M > 3、=-?sin Fl M () [ ]+++? ? 2 3221sin l m l m J A ()22 3 cos sin ? ?? l m 9342.rad ?=- 图示轮系中,轮4转角为4?,系杆转角为H ?,各件转动惯量: 210.4kgm J =,222361821.kgm .kgm J J J ===,,24506.kgm J J ==,205.kgm H J =。各轮齿数:120z =,2456030z z z ===,,3660z z ==,各件所受力矩大小:H 30Nm M =,14203Nm 0Nm M M ==,,640Nm M =,方向如图所示。忽略各件质量及重力,现选定H q ?=1,24q ?=,试求H ?。 解: 0=,1=21H H i i ,414201,i i ==, 11125322,i i = =,21223122,i i ==- , 616251 44 ,i i ==

第4章ADAMS软件算法基本理论-(陈立平)机械系统动力学分析及ADAMS应用

第4章ADAMS软件基本算法 本章主要介绍ADAMS软件的基本算法,包括ADAMS建模中的一些基本概念、运动学分析算法、动力学分析算法、静力学分析及线性化分析算法以及ADAMS软件积分器介绍。通过本章的学习可以对ADAMS软件的基本算法有较深入的了解,为今后合理选择积分器进行仿真分析提供理论基础,为更好地使用ADAMS打下良好的理论基础。 4.1 ADAMS建模基础 ADAMS利用带拉格朗日乘子的第一类拉格朗日方程导出――最大数量坐标的微分-代数方程(DAE)。它选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程。 4.1.1 参考标架 在计算系统中构件的速度和加速度时,需要指定参考标架,作为该构件速度和加速度的参考坐标系。在机械系统的运动分析过程中,有两种类型的参考标架——地面参考标架和构件参考标架。地面参考标架是一个惯性参考系,它固定在一个“绝对静止”的空间中。通过地面参考标架建立机械系统的“绝对静止”参考体系,属于地面标架上的任何一点的速度和加速度均为零。对于大多数问题,可以将地球近似为惯性参考标架,虽然地球是绕着太阳旋转而且地球还有自转。对于每一个刚性体都有一个与之固定的参考标架,称为构件参考标架,刚性体上的各点相对于该构件参考标架是静止的。 4.1.2 坐标系的选择 机械系统的坐标系广泛采用直角坐标系,常用的笛卡尔坐标系就是一个采用右手规则的直角坐标系。运动学和动力学的所有矢量均可以用沿3个单位坐标矢量的分量来表示。坐标系可以固定在一个参考标架上,也可以相对于参考框架而运动。合理地设置坐标系可以简化机械系统的运动分析。在机械系统运动分析过程中,经常使用3种坐标系:(1)地面坐标系(Ground Coordinate System)。地面坐标系又称为静坐标系,是固定在地面标架上的坐标系。ADAMS中,所有构件的位置、方向和速度都用地面坐标系表示。 (2)局部构件参考坐标系(Local Part Reference Frame,LPRF)。这个坐标系固定在构件上并随构件运动。每个构件都有一个局部构件参考坐标系,可以通过确定局部构件参考坐标系在地面坐标系的位置和方向,来确定一个构件的位置和方向。在ADAMS中,局部构件参考坐标系缺省与地面坐标系重合。 (3)标架坐标系(Marker System)。标架坐标系又称为标架,是为了简化建模和分析在构件上设立的辅助坐标系,有两种类型的标架坐标系:固定标架和浮动标架。固定标架

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

《机械动力学》期末复习题及答案

期末复习题 一、判断题(每小题2分,共30题,共60分) 1、机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。(R ) 2、平衡是在运动设计完成之前的一种动力学设计。(F ) 3、平衡分析着眼于全部消除或部分消除引起震动的激振力。(R ) 4、优化平衡就是采用优化的方法获得一个绝对最佳解。(F ) 5、在动力分析中主要涉及的力是驱动力和生产阻力。(R ) 6、通路定理是用来判断能否实现摆动力完全平衡的理论。(F ) 7、惯性力的计算是建立在主动构件作理想运动的假定的基础上的。(R ) 8、当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。(R ) 9、无论如何,等效力与机械驱动构件的真实速度无关。(R ) 10、等效质量和等效转动惯量与机械驱动构件的真实速度无关。(R ) 11、摆动力的平衡一定会导致机械结构的复杂化。(F ) 12、综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡( R) 13、作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。(F ) 14、机器人操作机是一个多自由度的闭环的空间机构。( F) 15、速度越快,系统的固有频率越大。(F ) 16、两点动代换后的系统与原有系统在静力学上是完全等效的。(F ) 17、质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效(R) 18、平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。( R) 19、对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。(F ) 20、弹性动力分析考虑构件的弹性变形。(R ) 21、优化综合平衡是一个多目标的优化问题,是一种部分平衡。(R ) 22、摆动力的完全平衡常常会导致机械结构的简单化。( F) 23、机构摆动力矩完全平衡的条件为机构的质量矩为常数。(F ) 24、机构摆动力完全平衡的条件为机构的质量矩为常数。(R ) 25、机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。( F) 26、拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。(R ) 27、当以电动机为原动机时,驱动力矩是速度的函数。( F) 28、等效质量和等效转动惯量与质量有关。(F ) 29、在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。(R ) 30、为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上, 这一折算是依据功能原理进行的。(R ) 二、单选题(每小题2分,共30题,共60分) 31、动力学反问题是已知机构的(B ),求解输入转矩和各运动副反力及其变化规律。 A、运动状态 B、运动状态和工作阻力 C、工作阻力 D、运动状态或工作阻力 32、动态静力分析应用于(C )。 A、动力学正问题 B、运动学正问题 C、动力学反问题 D、运动学反问题 33、设机构中的活动构件数位6,含低副数目为2,含高副数目为3,则构件的自由度数为( B)。 A、10 B、11 C、12 D、13 34、平衡的实质就是采用构件质量再分配等手段完全地或部分地消除(C )。 A、加速度 B、角加速度 C、惯性载荷 D、重力 35、长期以来人们用加配重使摆动力部分被平衡的方法来减小(D )。 A、速度 B、体积 C、摩擦 D、振动

机械系统的动力学分析

第二章机械系统的动力学分析 机械系统动力学分析方法概述 对于含有多种结合部的大型复杂机械系统,多采用动态子结构方法建立其理论动力学模型,并对其进行动力分析、模型仿真、结构修改及动态优化,以达到预期目标函数的要求。 需要说明的是,随着现代高速、大容量电子计算机及软件的发展,可直接用有限元法建立大型复杂机械系统的理论模型,即首先建立其三维图形,再利用有限元软件的前处理功能直接划分出机械系统的有限元闷格图,而毋需采用子结构方法。但动态子结构方法仍有其自身的优越性,尤其在进行结构动力分析和结构动力学修改时是卓有成效的。 2.1动态子结构方法 一、动态子结构方法的思想 当机械结构十分复杂,特别是含有多个动力学参数难以确定的结合部时,宜采用动态子结构方法。即把一个复杂的完整结构人为地分解为若干个比较简单的小结构——子结构,对每个子结构建模并进行动力分析,得到其动力特性及各种数据资料,再根据各子结构间的连接条件,将各子结构的动力特性综合起来,得到整体结构的动力学模型,进而可对整体结构进行动力分析、计算机仿真、结构动力修改及动态优化设计。 二、动态子结构方法的产生与发展 高效、高性能、自动化机械产品的问世,更要求机械设计者既要尽量减小结构尺寸、降低重量,又要保证机械产品具有良好的工作精度和可靠性。因此.必须对机械产品的动态性能作定量分析,以便对机械产品的振动、噪声等进行严格限制。所以,寻求机械结构动态特性精确可行的分析方法,已成为亟待解决的重大课题。 比较成熟的动态子结构综合方法主要有两类:机械阻抗法和模态综合法。 三、动态子结构法的基本步骤 动态子结构方法的基本步骤如下: 1)将整体结构划分为若干个子结构。若子结构联接界面上的自由度完全固定,则为固定界面法;若子结构联接界面上的自由度完全自由,则为自由界面法。 2)采用子结构的各种建模或参数识别方法,建立各子结构的功力学模型。 3)求解各子结构的动力学模型,得其动力特性。当采用模态综合法对子结构进行综合时,则可利用坐标变换,将子结构在物理坐标下的运动方程变换到模态坐标下,得到没有耦合的模态坐标下的运动方程,通过分析计算或试验,提取各子结构的低阶模态参数,即频率、振型、响应、模态刚度和模态质量等。 4)利用子结构联接界面上各对接点的联接条件(协调方程和平衡方程),将所有子结构的模态坐标变换到整体结构的耦联广义坐标,再利用坐标变换,得到解耦的整体结构的数学模型。 5)求解整体结构的数学模型,得其动力特性,其各点的动力响应可表示为各阶模态响应的叠加。在一定条件下模态参数可经坐标逆变换转回到物理坐标下,从而得到物理坐标下的相应参数。 6)若分析的机械结构已有实物,可利用对实物的试验测试结果,修改整机动力学模型,再根据整机结构动力特性的设计目标函数,对整机结构进行优化;若无实物,可根据目标函数,直接对动力学模型进行修改与优化。 建立各子结构动力学模型的理论方法主要有三种:集中参数法、分布参数法和有限元法。其中以有限元法对实际结构的模拟精度最高,应用最广。用有限元法建立于结构的动力学模型,一般可满足工程应用的精度要求。

机械系统动力学试题b2008答案

机械系统动力学试题B平分标准 1 填空(20)(每空2分) 离散线性系统的数学模型可用线性常微分方程描述。LTI系统为线性时不变系统。静态设计主要考虑静态载荷作用,动态设计主要考虑振动与动态载荷作用。系统有离散系统和连续系统。确定性系统在随机激励下,响应是随机的。重力场的势函数为-mgy 。广义坐标为完全决定系统状态的独立参数。牛顿力学的主要不便是处理约束反力不方便。连续系统的自由度数为无穷多。 2 用拉格朗日方程建立单摆运动方程(20)。 解: 3 写出建立等效力学模型的步骤(20)。 解:(1)选取等效构件,通常选主动构件为等效构件(4); (2)计算等效力,根据做功相等的原则进行(4); (3)计算等效质量,根据动能相等的原则,将各个构件向等效构件进行等效(4); (4)对等效构件列运动方程(4); (5)解方程(4)。 4 如图,弦上有一质量m,设张力T不变,推导微分方程(20)。

解:设张力T 不变,则恢复力为: ?? ? ??-+a L x a x T (10) 由牛顿定律得:0=?? ? ??-++a L x a x T x m (8) 即 011=?? ? ??-++x a L a T x m (2) 5 等效力学模型微分方程中,已知等效转动惯量为常数,等效力矩为ωb a M e +=,0=t 时,0=?,求时间和角速度的关系(20)。 解:等效力学模型微分方程为:e e e M dt d d dJ dt d J =??? ??+2 2221???(5) 因等效转动惯量为常数,故有:e e M dt d J =2 2?(2) 即:ωωb a dt d J e +=(3) 分离变量得:?ωb a d J dt e +=(2) 积分并应用初始条件,得:a b a b J b a d J t e e ω?ωω+=+=?ln 0(8)

机械动力学

对机械动力学实例的感悟 摘要在实际设计中会遇到很多问题,所以需要一些解决办法,然而机械动力学针对这些问题提出了解决方法和方案,使设计者能够针对具体的问题,找出合适的解决方案,从而解决实际问题。设计和制造高效率、高速度、高精度、高自动化及高可靠性的机器和设备是机械工业的重要任务之一,而这类机械产品的关键技术之一经常是动力学问题。因此研究和解决机械系统的动态分析和动态设计,是从事机械工程研究和设计人员面临的迫切任务。另一方面,大量的设计和生产实践,尤其是电子计算机的发展和广泛采用,加速了机械系统动力学的研究,并取得了十分显著的成果。使得动力学在机械系统及生活中的应用越来越广泛,前景也越来越好。本文是关于一些问题的解决方法和对此的感悟,这样能够更好的了解机械动力学,并通过实践,使具体问题得到具体解决,从而提高对知识的掌握能力。 关键词:机械;动力学;系统 1、往复机械的动力学分析及减振的研究

机械产生振动的原因,大致分为两种,一种是机械本身工作时力和力矩的不平衡引起的振动,另一种是由于外力或力矩作用于机架上而引起机械的振动。下面只研究机械本身由于力和力矩的不平衡而引起的振动问题。往复机械包含有大质量的活塞、联杆等组成的曲柄-活塞机构,这些大质量构件在高速周期性运动时产生的不平衡力和气缸内的燃气压力或蒸气压力的周期性变化构成了机器本身和基础的振动。这样产生的振动通过机架传给基础。此振动只要采用适当的方法克服不平衡力这一因素,便可减小振动。然而由曲柄轴的转动力矩使机架产生的反力而引起的振动将是最难解决的问题。 通过一系列的动力学分析,将产生新的减小振动的思路,即想法将往复机械工作时产生的惯性力和力矩的不平衡性,尽量在发动机内部加以平衡解决,使其不传给机架。以往解决平衡的办法是在曲柄轴中心线另一侧加上适当配重即可平衡,对多缸发动机虽然也可按同样办法来处理,但比较麻烦,且发动机结构笨大。由曲柄-活塞动力学分析可知,若作用于往复机械的力之总和等于零(静平衡条件)和上述作用力对任意点的力矩之总和等于零(动平衡条件),则作用于往复机械的力和力矩就完全平衡。从理论分析上是可行的,在实际应用上也是可以实现的,即对于多缸发动机的平衡,只要合理安排曲柄角位置和适当选择曲柄、连杆、活塞构件的质量,则可完全满足关于转动质量的两个平衡条件,因而可达到减小整机振动的目的。 感悟:这个实例是关于往复机械和减震的,在实际的应用中,往复机械应用十分广泛,但是在使用中会出现问题,在机械设备运转的过程中会使机械设备产生强烈的震动,这样不仅会对生产产生影响,同时也会使产品的质量得不到保证,还会造成机械设备的损伤,大大的降低设备的使用寿命。如果这个问题得不到解决,则会对生产和工厂的效益产生巨大的影响。实例中通过应用机械动力学中相关的知识对整个机械系统进行分析,得到产生震动的原因:往复机械工作时产生的惯性力和力矩的不平衡性。所以必须通过计算使系统平衡。根据力学知识得到若作用于往复机械的力之和等于零(静平衡条件)和作用力对任意点的力矩之总和等于零(动平衡条件),则作用与往复机械的力和力矩就完全平衡。这样就解决震动问题。总之就是具体问题具体分析,找出问题所在。 2、分子机械动力学的研究

相关主题
文本预览
相关文档 最新文档