当前位置:文档之家› Homothetic+Quasi_linear preference

Homothetic+Quasi_linear preference

Homothetic+Quasi_linear preference
Homothetic+Quasi_linear preference

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”,n(Si)∶ n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相 连接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型)离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有 个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs +、个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位 数为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位 数为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位 数为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

高中化学选修三几种典型晶体晶胞结构模型总结

高中化学选修三几种典型晶体晶胞结构模型总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不在 同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正四 面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”, n(Si)∶n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又 各占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相连 接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型) 离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+) 有个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型) (1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs+、 个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位数 为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位数 为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位数 为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti最后填入能级为3d故为d 区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F>N>O>C

例4、某元素的全部电离能(电子伏特)如下: I1I2 I3I4 I5 I6 I7 I8 23.6 35.1 54.977.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________(2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O>N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN--C22-互为等电子体 CO2 CS2N2O SCN-- CNO-- N3-互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。 9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

晶体结构解析

晶体结构解析 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群 等信息; hkl文件:包含的是衍射点的强度 数据; pcf文件:记录了晶体物理特征, 分子式,空间群,衍射数据收集的条 件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法 (TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原 子,那就要用PATT法;如果晶体中 没有原子量差异特别大的原子,就用 TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内 容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的 指认,付利叶加氢或理论加氢,画图 等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16), goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol 出现一系列的Q峰信息。每次打开 xp后都要先输入此命令。 输入pick 进入Q峰之间连接的结构体系中。 根据化学经验(键长,键角以及连接 方式)和自己晶体的预测的结构,对 Q 峰进行取舍。 取舍完毕后,进行原子的命名。当闪 点在某个原子上时,从键盘上输入要 命名的原子的符号,然后回车;闪点 就会跳到下一个要命名的Q峰上。当 闪点在某个Q峰上时,如果直接回 车,会删掉此原子,用backspace可 以复原;如果直接敲空格键,闪点会 跳到下一个Q峰上。 敲“/”键,保存命名结果,退出;敲 “esc”键,不保存结果,退出。 输入pers 可以看棍球图,如果有错误的原子命 名,可以继续用pick命令进行修改。 输入proj 可以看到结构图,并可以旋转观看 输入grow 可以长出对称的单元。如果没有对称 的单元,则此命令无效。 输入fuse 删除grow出来的原子和其他操作长 出的原子,这些原子不能带入精修的 过程中。 输入sort /n 对原子进行排序,按照原子名称的 序号;如果输入sort $C $N则按照原 子种类进行排序。 输入file name.ins 保存所作的命名信息。会有提示询 问是否从name.res中拷贝信息,直接 回车。 注意:name指用xs解析时命名的作 业名,不能更改。 输入quit 退出程序,敲esc退出程序 5.5.2 用xl进行精修 点击xl 出现精修过程,看是否符合5.5中 的标准(可以关闭xl后,通过增加 ins中的ls的次数或者copy name.res to name.ins 命令进行反复精修,切记 每次xl精修后生成的是res文件,因 此要将res拷贝成ins再次进行精修 才有效)。 如果其他的条件不符合,则要修改 ins文件:加入 anis(对所有指令后的非氢原子进 行各向异性精修,anis n对指令后的 前n个原子进行各向异性精修,anis C对指令后的指定原子进行各向异 性精修) omit(忽略指定的衍射点,一般都 要用到omit 0 52)

晶体结构解析步骤

晶体结构解析步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PA TT为Pattersion法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况)

晶体结构分析中的无序 绝对结构和

晶体结构分析中的无序、绝对结构和孪晶 一、晶体结构分析中的无序 1、有序:分子结构在晶体中的排列符合所属空间群的对称性和晶体结构的周期性(完美晶体)。 A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A B B A A 2、无序:分子结构或结构的一部分在晶体中的排列不符合所属空间群的对称性或晶体结构的周期性(缺陷晶体,严重时即为非晶)。 3、结构解析中的无序(局部无序):分子结构的大部分有序,而小部分呈现统计 性无序。 4、无序的种类 (1)占有率无序 A 、 同一套等效位置统计性地被不同的原子占据,总占有率为1。矿物晶体中离子的掺杂现象就属于这种情况。 A B C D A B C D A B C D A'B C D A B C D A'B C D A'B C D A'B C D B C D A' B 、晶体中的一套等效位置被统计性地部分占据,总占有率小于1。结构中非配位水分子经常出现这种情况。

A B C D A B C D A B C D B C D A B C D B C D B C D B C D B C D C 、由于晶体中任何一个位置及其周围一定范围(位阻范围)内只能同时容纳一个原子,因此若两个或两个以上的原子位于这样的范围内,则其总占有率应小于或等于其中任何一个原子的理论最高占有率,即这些原子不能同时出现在同一位置的位阻范围内。处理结构中非配位水分子时,要特别注意这一点。 不同位置的理论最高占有率: 一般位置:1 特殊位置(位于对称元素上的位置),其理论最高占有率小于1。 a 、2次轴上的位置:0.5 b 、3次轴上的位置:0.33333 c 、4次轴上的位置:0.25 d 、6次轴上的位置:0.166667 e 、对称面上的位置:0.5 ……………………. ……………………. ** 特别要注意:一旦指认原子后,WinGX 程序会自动给出该特殊位置的最高理论占有率。 例1、两个处于普通位置(理论最高占有率为1)的氧原子间的距离为例: 埃) 两个氧原子任何情况下不能同时存在的区域: 0.0—1.4?:两个原子距离比形成共价键时还短,因此不能同时存在。

相关主题
文本预览
相关文档 最新文档