当前位置:文档之家› 基于双目立体视觉的距离测量

基于双目立体视觉的距离测量

基于双目立体视觉的距离测量
基于双目立体视觉的距离测量

激光跟踪测距三维坐标视觉测量系统建模讲解

激光跟踪测距三维坐标视觉测量系统建模讲解标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

激光跟踪测距三维坐标视觉测量系统建模 3 黄风山 1,233, 钱惠芬 1 (1. 河北科技大学机械电子工程学院 , 河北石家庄 050054; 2. 天津大学精密测试技术与仪器国家重点实验室 , 天津 300072 摘要 :提出了一种激光跟踪测距视觉坐标测量系统 , 测量时摄像机测量光笔上各光反射点的方向 , , 由测得 ( , 激光测距仪测得的距离参数的引入 , 依据冗余技术给出了被测 :在 Z 、 Y 和 X 轴方向 0. 、 0. 和 0. 011mm 。 关键词 :; ; n 点透视问题 (P n P ; 冗余技术 Mod el for a Laser Distance T racking 3D C oordinates V ision M easu ring System HUAN G Feng 2shan 1,233, QIAN Hui 2fen 1 (1. Mechanical and Electronic Engineering C ollege , Hebei University of S cience and T echnology , Shijiazhuang 050054,China ; 2. State K ey Laboratory of Precision Measuring T echnology and Instrument , Tianjin University , Tianjin 300072,China Abstract :Alaser distance tracking 3D coordinates vision measuring system is proposed. It mainly consists of a CCD camera , a laser rangefinder ,a computer and a light pen. When measuring ,the CCD camera registers the direction of every light 2re 2 flecting point m ounted on the light pen. According to these measured directions ,the laser rangefinder can track and capture each light 2reflecting point ,and record the distance between one of the four light 2reflecting points and the laser rangefinder. Using the measured directions and distance ,the system can calculate the 3D coordinates of the point touched by the pen 2 on the perspective 2n 2point problem (P n P principle ,the system ′ s mathematic model is of the distance parameter ,this m odel can be solved linearly ,and its solution is

双目视觉原理

Bumblebee 双目测量基本原理 一.双目视觉原理: 双目立体视觉三维测量是基于视差原理。 图 双目立体成像原理 其中基线距B=两摄像机的投影中心连线的距离;相机焦距为f 。 设两摄像机在同一时刻观看空间物体的同一特征点(,,)c c c P x y z ,分别在“左眼”和“右眼”上获取了点P 的图像,它们的图像坐标分别为(,)left left left p X Y =,(,)right right right p X Y =。 现两摄像机的图像在同一个平面上,则特征点P 的图像坐标Y 坐标相同,即 left right Y Y Y ==,则由三角几何关系得到: () c left c c rig h t c c c x X f z x B X f z y Y f z ?=???-=???=? ? (1-1) 则视差为:left right D isparity X X =-。由此可计算出特征点P 在相机坐标系下的三维坐标为: left c c c B X x D isp a rity B Y y D isp a rity B f z D isp a rity ? =???= ?? ?= ?? (1-2) 因此,左相机像面上的任意一点只要能在右相机像面上找到对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全的点对点运算,像面上所有点只要存在相应的匹配点,

就可以参与上述运算,从而获取其对应的三维坐标。 二.立体视觉测量过程 1.图像获取 (1) 单台相机移动获取 (2) 双台相机获取:可有不同位置关系(一直线上、一平面上、立体分布) 2.相机标定:确定空间坐标系中物体点同它在图像平面上像点之间的对应关系。 (1)内部参数:相机内部几何、光学参数 (2)外部参数:相机坐标系与世界坐标系的转换 3.图像预处理和特征提取 预处理:主要包括图像对比度的增强、随机噪声的去除、滤波和图像的增强、伪彩色处理等; 特征提取:常用的匹配特征主要有点状特征、线状特征和区域特征等 4.立体匹配:根据对所选特征的计算,建立特征之间的对应关系,将同一个空间物理点在不同图像中的映像点对应起来。 立体匹配有三个基本的步骤组成:1)从立体图像对中的一幅图像如左图上选择与实际物理结构相应的图像特征;2)在另一幅图像如右图中确定出同一物理结构的对应图像特征;3)确定这两个特征之间的相对位置,得到视差。其中的步骤2是实现匹配的关键。 5.深度确定 通过立体匹配得到视差图像之后,便可以确定深度图像,并恢复场景3-D信息。 三.Triclops库中的数据流程 Triclops库中的数据流程如下图所示。系统首先从相机模型中获得raw格式的图像,最终将其处理成深度图像。在系统中有两个主要的处理模块。第一个处理模块是一个应用了低通滤波、图像校正和边缘检测的预处理模块。第二个处理模块用来做立体匹配、结果确认和亚像素插值。最后的处理结果就是一幅深度图像。 1.预处理(Pre-processing)

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐

基于hancon双目立体视觉焊缝检测

基于halcon的双目立体视觉焊缝检测

基于halcon的双目立体视觉焊缝检测 1 前言 现代焊接生产中,对焊接技术和质量的要求愈来愈高。自动化和智能化在焊接生产上的应用日趋广泛。 近年来图像处理技术和机器视觉技术得到空前的发展,如果把机器视觉技术用在焊缝成形质量评判中,可以提高评判效率,为焊接质量评判的智能化打下基础。机器视觉是运用计算机来模拟人的视觉,从不同事物的图像中获取信息,进行相应处理并加以分析、理解,最终应用于实际的检测与测量等。机器视觉检测和测量方法不但可以有效提高生产效率与自动化程度,且易于实现信息的集成,从而满足数字化自动化生产的要求。 机器视觉中的立体视觉技术把二维景物的分析推广到了三维景物,该项技术可方便实现从图像获取到三维景物表面重建的完整体系,对于整个机器视觉的发展具有重要意义。双目立体视觉是立体视觉中的一个重要的分支,它直接模拟人视觉处理景物的方式,可以在各种条件下灵活地测量景的立体信息。

2 双目视觉检测 2.1 基本理论 如图1 所示,设点P为空间焊缝某一特征点,该点在两相机平面O1和O2的投影点依次为P1和P2。 图1 双目视觉原理 根据空间解析几何理论,很显然,式( 3) 中的4个方程均具有平面解析式的形式,前2 方程代表2平面相交,得到的是直线O1P1P 的方程,同理直线O2P2P 的方程由后2 个方程得出。两直线方程相交,即可求出P 点的空间三维坐标。 可见,若采用单相机模型,则理论上仅能解出一条直线的空间方程,无法得出空间点的准确三维坐标,而双目视觉理论则能够克服这个缺陷,从而使焊缝的精确测量有了可能。 2.2图像处理 为实现准确测量的目的,必须对采集到的图像进行数字化处理。首先,经过相机采集到的焊缝图像不可避免地存在一些污染痕迹,这

机器人双目立体视觉测距技术研究与实现_张蓬

计算机测量与控制.2013.21(7)  Computer Measurement &Control    ·1775  · 收稿日期:2012-11-25; 修回日期:2013-01-23。 基金项目:油气管道受阻瞬态流时空演化规律及智能控制方法研究 (50905186)。 作者简介:张 蓬(1963-),女,北京人,副教授,主要从事机械电子 工程,机器人控制技术方向的研究。 文章编号:1671-4598(2013)07-1775-04 中图分类号:TP391.4文献标识码:A 机器人双目立体视觉测距技术研究与实现 张 蓬,王金磊,赵 弘 (中国石油大学(北京)机械与储运工程学院,北京 102249) 摘要:机器人视觉是一种重要的机器人传感技术,主要应用于机器人定位和检测之中;文章阐述了构建机器人双目立体视觉测距系统的方法,并运用Labview对所设计的系统加以实现;完成了图像的采集、预处理和边缘检测;通过在Labview中的C语言接口调用C算法程序,进行了物体特征识别和目标物体测距的算法实现;实验表明焦距、滤波算法和外围光源都会对测量结果会产生较大影响;在相同检测距离不同焦距时得到的检测精度会有一些偏差;并且加入低通滤波,可增加图像识别的精度,进而使特征点匹配和检测的精度都有所提高,对提高系统的检测精度具有实际意义。 关键词:移动机器人;图像识别;测距;双目立体视觉 Research and Implementation of Robotic Binocular Visual Distance Measuring Technology Zhang Peng,Wang Jinlei,Zhao Hong (China University of Petroleum,Beijing 102249,China) Abstract:Robot vision is an important part of the robot sensing technology,mainly used in robot localization and detection.This paperdescribes a method to build a robot binocular stereo visual distance measurement,and uses Labview tool to design and implement a system.The system has functions of the image acquisition,pre-processing and image edge detection.By using C language interface in Labview,Calgorithm can be used for object features identify and target objects ranging.Experiments show that the focal length,the filter algorithm andperipheral light source have a greater impact on the measurement results.Detection accuracy in the same detection distance and different focallengths has a few of deviation.And adding a low-pass filter can increase the accuracy of identification of the image.Then feature pointsmatching and detection accuracy have improved.It has practical significance to improve the detection accuracy of the system.Key words:mobile robots;distance measuring;binocular stereo vision 0 引言 机器人视觉又称为计算机视觉,是一门研究通过图像数据 观察世界的学科。机器人借助各种传感装置(如摄像头,声 纳,里程计,光电编码器等)获取周围场景的图像信息,以感 知和恢复周围的三维环境中的物体的几何形态、颜色、相对位 置、安放姿态和运动等信息,并通过对客观世界的描述,感知 和解释,经过机器人智能运算完成需要完成的任务[1]。机器人 的双目立体视觉技术是基于模仿人眼与人类视觉的立体感知过 程,从两个视点观察同一景物,以获取不同视角下的感知图 像,通过三角测量原理计算图像像素间的位置偏差,以获取景 物的三维信息。双目视觉技术在机器人的定位导航、避障、地 图构建和测距等方面得到了应用。 1 双目立体视觉的系统组成 双目立体视觉是对同一目标的两幅图像提取、识别、匹配 和解释,重建三维环境信息的过程。双目视觉系统通常由图像 采集、摄像机定标、图像预处理、立体匹配和深度图生成等五 大部分组成。 图像采集即通过光学镜头或红外,超声、X射线等对周围场 景和物体进行探测成像,得到关于场景和物体的二维或三维数字 图像[2]。空间点的三维几何位置与其在图像中对应点之间的相互 关系是由摄像机成像的几何模型决定的,而这些几何模型参数就 是摄像机参数,求解这些参数的过程为摄像机定标[3]。图像预处 理是对原始图像进行处理,例如图像滤波、图像增强、边缘检测 等,以便从图像中抽取诸如焦点,边缘,线条,边界以及色彩等 关于成像的基本特征[4]。立体匹配是寻找同一空间景物在不同视 点下投影图像中像素间的一一对应关系,从立体匹配实现的技术 上考虑,立体匹配可以分为基于区域的匹配和基于特征的匹配。 深度图生成即是深度信息的可视化过程。 2 双目立体视觉测距算法 双目立体视觉三维测量是通过计算空间点在两幅图像中的 视差来获取景物的三维坐标值。设空间一点P在世界坐标系 下的坐为(X,Y,Z,1),假设两个相同的平行放置的摄像机 镜头光心距离为B,摄像焦距为f,成像模型如图1所示,摄 像机坐标系的原点O与左摄像机光心O1重合,x1—y与x2— y为两成像平面,因水平轴同线,所以Y轴相同[5]。 以立体空间的一个投影面为例,若左右摄像头成像点坐标 分别为(x1,y),(x2,y),那么该点成像平面如图2所示[6]。 通过图2可知在深度d为: d= Bf x2-x1 (1) 据此原理,则可推导出3个投影面坐标:

双目视觉成像原理讲解学习

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。

图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目 立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b 。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。由三角几何关系得到: c c 1z x f u = c c 2z )b -x (f u = v 1 c c 21z y f v v ==

基于OpenCV的双目立体视觉测距

基于OpenCV的双目立体视觉测距 基于OpenCV的双目立体视觉测距 论文导读:: 双目立体视觉模型。摄像机标定。立体匹配采用OpenCV库中的块匹配立体算法。目前的测距方法主要有主动测距和被动测距两种方法。论文 关键词: 双目立体视觉,摄像机标定,立体匹配,测距 (一)引言基于计算机视觉理论的视觉测距技术是今后发展的一个重要方向,它在机器人壁障系统、汽车导航防撞系统等领域有着广泛的应用前景。目前的测距方法主要有主动测距和被动测距两种方法。论文采用的是被动测距法。被动测距法是在自然光照条件下,根据被测物体本身发出的信号来测量距离,主要包括立体视觉测距法、单目测距法、测角被动测距法等。立体视觉测距法是仿照人类利用双目感知距离信息的一种测距方法,直接模拟人的双眼处理景物,简便可靠,但该方法的难点是选择合理的匹配特征和匹配准则。双目立体视觉系统采用两台摄像机同时从两个不同视点获取同一景物的多幅图像,即立体图像对,通过测量景物在立体图像对中的视差,再利用双目视觉成像原理就可以计算出目标到摄像机的距离。立体匹配采用OpenCV库中的块匹配立体算法,在得到摄像机参数和匹配点后再利用最小二乘法即可算出三维信息。 (二)双目立体视觉模型首先介绍双目视觉所涉及到三个坐标系: 世界坐标系、摄像机坐标系和图像坐标系。世界坐标系中的点坐标记为,摄像机坐标系用表示。图像坐标为摄像机所拍摄到的图像的二维坐标,一般有两种表示方法:

是以像素为单位的图像坐标,是以毫米为单位的图像坐标。建立以毫米为单位的图像坐标是因为坐标只表示了像素在数字图像中的行数和列数,并没有表示出该像素在数字图像中的物理位置论文范文。图1为平行双目视觉模型,即参数相同的两个摄像机平行放置,两光 轴互相平行且都平行于z 轴,x 轴共线摄像机标定,两摄像机光心的距离为 B(即基线距)。图中O 1、O2为左右两摄像机的焦点,I1 、I2为左右摄像机的像平面,P1 、P2 分 别是空间点P在左右像平面上的成像点,f是摄像机的焦距。若视差d 定义为?P1- P2?,则点P到立体视觉系统的距离为: 图1 平行双目视觉模型 (三)摄像机标定摄像机标定是为了建立三维世界坐标与二维图像坐标之间的 一种对应关系。系统采用两个摄像机进行图像采集,设定好两个摄像机之间的距离(即基线距),用摄像机同时采集放在摄像机前的标定物。摄像机标定采用的是张正友的标定方法,棋盘格大小为30mm30mm,角点数为117。标定板的规格如图2所示。图2 平面标定板规格张正友的标定方法需要摄像机从不同角度拍摄标定板 的多幅图像。由于两个摄像机是向前平行放置的,且基线距固定,所以只需摆放标定板的位置变化即可。摄像机为针孔成像模型,则空间点与图像点之间的映射关系为: 为方便计算,使标定板所在平面的Z坐标均为0,即Z=0的平面,则上式可变为: 其中,A为摄像机的内参矩阵,为摄像机外参矩阵,s为尺度因子。令,,则上 式可写为: 其中,为透视投影矩阵,它是标定板上的点和其像点之间的映射。在已知空 间点和其对应像点后,可根据最小二乘方程,采用Levenberg-Marquardt算法求解

双目立体视觉的水下应用

双目立体视觉的水下应用 从图像预处理、相机标定、立体匹配三个方面论述了双目视觉在水下场景的应用,比较了与空气环境中应用的不同,对水下双目视觉发展趋势做了分析。 标签:水下双目视觉;相机标定;立体匹配 Abstract:This paper discusses the application of binocular vision in underwater scene from three aspects of image preprocessing,camera calibration and stereo matching,compares the application of binocular vision with that in air environment,and analyzes the development trend of underwater binocular vision. Keywords:underwater binocular vision;camera calibration;stereo matching 引言 双目立体视觉技术利用视差理论恢复像素的深度信息和三维坐标,通过获取左右两个视角下同时采集的两幅图像恢复三维场景信息,还原真实的三维世界,为导航提供目标的位置信息描述,是被动式视觉测量技术的一种。作为计算机视觉的一个重要分支,双目立体视觉技术模型简洁,运算高效,有着广阔的应用前景。而随着海洋科学技术的发展和人类对海洋资源探索的逐渐深入,双目视觉技术逐渐被应用到海洋探测,在对水下目标的监控、海底地形测绘、海流测量、水下军事设施的探测和侦查等方面都有着广泛的应用。 双目立体视觉系统模拟人眼,通过三角测量原理来获取图像的视差,进而得到目标三维信息,一般由以下几个功能模块组成:图像采集,相机标定,立体匹配,三维重建。常规的双目视觉大多是在单一介质的空气中,而由于水下环境的特殊性,往往存在光的散射,吸收效应等不利因素的干扰,相关技术方法也应随环境作适应性调整。本文从图像处理,相机标定,立体匹配这三个方面在水下场景的应用做了论述,阐明了与单一空气介质环境中的不同,并对水下双目立体视觉技术的发展做了展望。 1 成像模型 双目立体视觉用到的模型一般是线性的针孔模型,该模型是双目立体视觉中成像的基本模型,将相机理想化,并把空间点投影视为中心,投影未考虑镜头畸变和环境等其他因素,所以也叫线性摄像机模型。而水下成像模型则是考虑到折射的影响,对此做相应补偿和修正。 在双目立体视觉系统中,为了研究空间点和像点的投影关系,通常会用到4个坐标系:世界坐标系OW-XWYWXW、相机坐标系O-xyz、图像物理坐标系O-XY和图像像素坐标系Of-uv。

双目立体视觉技术的实现及其进展

双目立体视觉技术的实现及其进展 摘要:阐述了双目立体视觉技术在国内外应用的最新动态及其优越性。指出双目体视技术的实现分为图像获取、摄像机标定、特片提取、立体匹配和三维重建几个步骤,详细分析了各个步骤的技术特点、存在的问题和解决方案,并对双目体视技术的发展做了展望。 关键词:双目立体视觉计算机视觉立体匹配摄像机标定特征提取 双目立体视觉是计算机视觉的一个重要分支,即由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,通过计算空间点在两幅国像中的视差,获得该点的三维坐标值。80年代美国麻省理工学院人工智能实验室的Marr提出了一种视觉计算理论并应用在双睛匹配上,使两张有视差的平面图产生在深度的立体图形,奠定了双目立体视觉发展理论基础。相比其他类的体视方法,如透镜板三维成像、投影式三维显示、全息照相术等,双目本视直接模拟人类双眼处理景物的方式,可靠简便,在许多领域均极具应用价值,如微操作系统的位姿检测与控制、机器人导航与航测、三维测量学及虚拟现实等。 1 双目体视的技术特点 双目标视技术的实现可分为以下步骤:图像获取、摄像机标定、特征提取、图像匹配和三维重建,下面依次介绍各个步骤的实现方法和技术特点。 1.1 图像获取 双目体视的图像获取是由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,获取立体图像对。其针孔模型如图1。假定摄像机C1与C2的角距和内部参数都相等,两摄像机的光轴互相平行,二维成像平面X1O1Y1和X2O2Y2重合,P1与P2分别是空间点P在C1与C2上的成像点。但一般情况下,针孔模型两个摄像机的内部参数不可能完成相同,摄像机安装时无法看到光轴和成像平面,故实际中难以应用。 上海交大在理论上对会摄式双目体视系统的测量精度与系统结构参数之间的关系作了详尽分析,并通过试验指出,对某一特定点进行三角测量。该点测量误差与两CCD光轴夹角是一复杂的函数关系;若两摄像头光轴夹角一定,则被测坐标与摄像头坐标系之间距离越大,测量得到点距离的误差就越大。在满足测量范围的前提下,应选择两CCD之间夹角在50℃~80℃之间。 1.2 摄像机的标定 对双目体视而言,CCD摄像机、数码相机是利用计算机技术对物理世界进行重建前的基本测量工具,对它们的标定是实现立体视觉基本而又关键的一步。通常先采用单摄像机的标定方法,分别得到两个摄像机的内、外参数;再通过同一世界坐标中的一组定标点来建立两个摄像机之间的位置关系。目前常用的单摄像机标定方法主要有: (1)摄影测量学的传统设备标定法。利用至少17个参数描述摄像机与三维物体空间的结束关系,计算量非常大。 (2)直接线性变换性。涉及的参数少、便于计算。 (3)透视变换短阵法。从透视变换的角度来建立摄像机的成像模型,无需初始值,可进行实时计算。 (4)相机标定的两步法。首先采用透视短阵变换的方法求解线性系统的摄像机参数,再以求得的参数为初始值,考虑畸变因素,利用最优化方法求得非线性解,标定精度较高。 (5)双平面标定法。 在双摄像机标定中,需要精确的外部参数。由于结构配置很难准确,两个摄像机的距离

双目立体视觉

双目立体视觉 双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。现说明介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率。 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi 语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论说明 1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差: 图1 双目立体成像原理图图3 一般双目立体视觉系统原理图

双目立体视觉技术简介

双目立体视觉技术简介 1. 什么是视觉 视觉是一个古老的研究课题,同时又是人类观察世界、认知世界的重要功能和手段。人类从外界获得的信息约有75%来自视觉系统,用机器模拟人类的视觉功能是人们多年的梦想。视觉神经生理学,视觉心里学,特别是计算机技术、数字图像处理、计算机图形学、人工智能等学科的发展,为利用计算机实现模拟人类的视觉成为可能。在现代工业自动化生产过程中,计算机视觉正成为一种提高生产效率和检验产品质量的关键技术之一,如机器零件的自动检测、智能机器人控制、生产线的自动监控等;在国防和航天等领域,计算机视觉也具有较重要的意义,如运动目标的自动跟踪与识别、自主车导航及空间机器人的视觉控制等。人类视觉过程可以看作是一个从感觉到知觉的复杂过程,从狭义上来说视觉的最终目的是要对场景作出对观察者有意义的解释和描述;从广义上说,是根据周围的环境和观察者的意愿,在解释和描述的基础上做出行为规划或行为决策。计算机视觉研究的目的使计算机具有通过二维图像信息来认知三维环境信息的能力,这种能力不仅使机器能感知三维环境中物体的几何信息(如形状、位置、姿态运动等),而且能进一步对它们进行描述、存储、识别与理解,计算机视觉己经发展起一套独立的计算理论与算法。 2. 什么是计算机双目立体视觉 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图像,如图一。 图一、视差(Disparity)图像 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。 双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 双目立体视觉的开创性工作始于上世纪的60年代中期。美国MIT的Roberts通过从数字图像中提取立方体、楔形体和棱柱体等简单规则多面体的三维结构,并对物体的形状和空间关系

三维尺寸视觉测量系统

现代计量测试1999年第1期 三维尺寸视觉测量系统 邾继贵 王 王 仲 叶声华 (天津大学精密测试技术及仪器国家重点实验室,天津 300072) 摘要:视觉测量技术是一种先进的非接触测量手段,具有系统组成灵活、工作空间大、精度合适、自动化程度高等特点,非常适合工业现场的在线测量与质量监控。本文分析视觉测量的原理及视觉测量系统的组成,研究了一个实际的视觉测量系统。 关键词:三维尺寸 视觉测量 0 引言 视觉测量是采用摄像机作为传感器件,借助计算机强大的数据处理能力实现对物体(物点)空间位置的测量。较大规模的视觉测量系统一般由多个视觉传感器组成,以完成大空间范围内的测量,要解决的主要问题有视觉传感器的设计、传感器的局部标定和系统全局标定等。如果被测空间较小,一个传感器应可以组成视觉测量系统,此时局部标定和全局标定是统一的。 视觉传感器的具体结构很灵活,由被测对象来决定,但它们的测量原理是一致的。 1 视觉测量原理 111 视觉传感器测量原理 本质上讲,视觉传感器是基于三角测量原理的,图1示出了光条传感器的测量原理。 图1 光条传感器测量原理由投射器投射出一个光平面,它与被测物体表 面相交形成光条,将物体表面与光条相交的某点记 为P w ,该点在摄像机象面上象点为P i 。设摄像机坐 标系为OXYZ ,P i 在象面上的坐标为(x i ,y i ),P w 在 OXYZ 中的坐标为(x w ,y w ,z w ),图1中存在下列关 系x i =f x (x w ,y w ,z w )y i =f y (x w ,y w ,z w )(1)式中f x ,f y 是由摄象机成像模型所决定的函数。如 果选择透视成像模型,则 f x =x w z w f f y =y w z w f 其中,f 为摄像机焦距。 此外,因为P w 在光平面内,所以存在如下约束

基于HALCON的双目立体视觉系统实现

基于HALCON的双目立体视觉系统实现 段德山(大恒图像公司) 摘要双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。本文将主要介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率提供了参考。 关键词双目视觉三维重建立体匹配摄像机标定视差 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论介绍

1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差:

双目立体视觉

计算机双目立体视觉 双目立体视觉技术是仿照人类利用双目线索感知深度信息的方法,实现对三维信息的感知。为解决智能机器人抓取物体、视觉导航、目标跟踪等奠定基础。 双目立体视觉(Binocular Stereo Vision )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点之间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获取的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作为视差(Disparity )图像。 双目立体视觉系统 立体视觉系统由左右两部摄像机组成,如图,世界空间中的一点A(X,Y ,Z)在左右摄像机的成 像面1C 和r C 上的像点分别为)(111,v u a 和) (r r r v u a ,。这两个像点是世界空间中同一个对象点A 的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心1O 和r O 的连线,即投影线11O a 和r r O a ,它们的交点即为世界空间中的对象点A 。这就是立体视觉的基本原理。 双目立体视觉智能视频分析技术 恢复场景的3D 信息是立体视觉研究中最基本的目标,为实现这一目标,一个完整的立体视觉系统通常包含六个模块:图像获取、摄像机标定、特征提取、立体匹配、三维恢复和视频

分析(运动检测、运动跟踪、规则判断、报警处理)。 图像获取(Image Acquisition ) 数字图像的获取是立体视觉的信息来源。常用的立体视觉图像一般为双目图像,有的采用夺目图像。图像的获取方式有很多种,主要有具体运用的场合和目的决定。立体图像的获取不仅要满足应用要求,而且考虑视点差异、光照条件、摄像机的性能和场景特点等方面的影像。 摄像机标定(Camera Calibration ) 图像上每一点的亮度反映了空间物体表面某点反射光的强度,而该点在图像上的位置则与空 间物体表面相应点的几何位置有关。这些位置的相互关系由摄像机成像几何模型来决定。该几何模型的参数称为摄像机参数,这些参数必须由实验与计算来确定,实验与计算的过程称为摄像机定标。 立体视觉系统摄像机标定是指对三维场景中对象点在左右摄像机图像平面上的坐标位置)(111,v u a 和) (r r r v u a ,与其世界空间坐标A (X, Y , Z )之间的映射关系的确立,是实现立体视觉三维模型重构中基本且关键的一步。 特征提取(Feature Acquisition ) 特征提取的目的是获取匹配得以进行的图像特征,图像特征的性质与图像匹配的方法选择有着密切的联系。目前,还没有建立起一种普遍适用的获取图像特征的理论,因此导致了立体视觉研究领域中匹配特征的多样化。像素相位匹配是近二十年才发展起来的一类匹配算法。相位作为匹配基元,本身反映着信号的结构信息,对图像的高频噪声有很好的一直作用,适于并行处理,能获得亚像素级精度的致密视差。但存在相位奇点和相位卷绕的问题,需加入自适应滤波器解决。或者是像素的集合,也可以是它们的抽象表达,如图像的结构、图像的目标和关系结构等。常用的匹配特征主要有点状特征、线装特征和区特征等几种情形。 一般而言,尺度较大的图像特征蕴含较多的图片信息,且特征本身的数目较少,匹配效率高;但特征提取和描述过程存在较大的困难,定位精度也较差。而对于尺度较小的图像特征来说,对其进行表达和描述相对简单,定位的精度高;但由于特征本身数码较多,所包含的图像信息少,在匹配时需要采用较为严格的约束条件和匹配策略,一尽可能的减少匹配歧义和提高匹配效率。总的来说,好的匹配特征应该具有要可区分性、不变性、唯一性以及有效解决匹配歧义的能力。 图像匹配(Image Matching ) 在立体视觉中,图像匹配是指将三维空间中一点A (X, Y , Z )在左右摄像机的成像面1C 和r C 上的像点)(111,v u a 和) (r r r v u a ,对应起来。图像匹配是立体视觉中最重要也是最困难的问题,一直是立体视觉研究的焦点。当空间三维场景经过透视投影(Perspective Projection )变换为二维图像时,同一场景在不同视点的摄像机图像平面上成像会发生不同程度的扭曲和变形,而且场景中的光照条件、被测对象的几何形状和表面特性、噪声干扰和畸变、摄像机特性等诸多因素的影响都被集中体现在单一的图像灰度值中。显然,要包含了如此之多不利因素的图像进行精准的匹配是很不容易的。

结构光三维视觉测量

结构光三维视觉测量 1、应用简介结构光视觉方法的研究最早出现于20 世纪70 年代。在诸多的视觉方法中,结构光三维视觉以其大量程、大视场、较高精度、光条图像信息易于提取、实时性强及主动受控等特点,近年来在工业三维测量领域得到了广泛的应用。 2、系统设计原理、方框图、原理图结构光三维视觉是基于光学的三角法测量原理。如图所示,光学投射器(可以是激光器,也可以是投影仪)将一定模式的结构光投射于物体的表面,在表面形成由被测物体表面形状所调制的光条三维图像。该三维图像由处于另一位置的摄像机摄取,从而获得光条二维畸变图像。光条的畸变程度取决于取决于光学投射器与摄像机之间的相对位置和物体表面形廓(高度)。直观上,沿光条显示出的位移(或偏移)与物体的高度成比例,扭结表示了平面的变化,不连续显示了表面的物理间隙。当光学投射器与摄像机之间的相对位置一定时,由畸变的二维光条图像坐标便可重现物体表面的三维形廓。结构光三维视觉测量系统由光学投射器、摄像机、和计算机系统三部分构成。根据光学投射器所投射的光束模式的不同,结构光模式可分为点结构光模式、线结构光模式、多线结构光模式和网格结构光模式。线结构光模式复杂度低、信息量大,应用最为广泛。下图为线结构光打在标定板和被测物体的光条图像。 3、选型原则、精度分析结构光视觉传感器的测量精度受诸多因素的影响,如摄像机本身的光学物理参数、光学投射器特征参数、传感器本身的结构参数及外界干扰源等等。在摄像机、光学投射测量环境一定的情况下,测量系统的结构参数对测量精度影响很大。实验和相关理论推导表明,测量点的定位误差和系统结构相关性如下:1)摄像机光轴和光 平面垂直时,深度方向的测量误差最小。2)摄像机与光学投射器距离越远, 测量误差越小。3)摄像机镜头放大倍率越小,测量误差越小;这也表面被测

相关主题
文本预览
相关文档 最新文档