当前位置:文档之家› (完整版)含参数的一元一次不等式组习题

(完整版)含参数的一元一次不等式组习题

(完整版)含参数的一元一次不等式组习题
(完整版)含参数的一元一次不等式组习题

类型一 根据不等式组的解集确定字母的取值范围

例1 不等式组21

159????+?+?+x m x x x 的解集是,则m 的取值范围

练习:已知不等式组的取值范围是则的解集为a x a a x a x ,5351????

?+???? 练习:若不等式组???≤≥-m

x x 062无解,则求m 的取值范围

练习:若不等式组?

???≤?m x x 21有解,则求m 的取值范围 练习:关于x 的不等式组??????+?--x x a x x 4

22)2(3有解,则求a 的取值范围

类型二 根据不等式租的整数解情况确定字母的取值范围

例2关于x 的不等式组?????+?++-?a x x x x 4

231)3(32有四个整数解,则a 的取值范围是 练习:1、已知不等式组????+?-b

x a x 122的整数解只有5,6,求b a 和的取值范围。

2、试确定a 的取值范围,使不等式组???

????++?++?++a x a x x x )1(343450312恰有两个整数解。

类型三 根据未知数解集或者未知数间的关系确定字母的取值范围

例3 已知方程组?

??-=++=+m y x m y x 12312满足0?+y x ,求m 的取值范围 练习:已知的取值范围求且x a x b x a ,64,01623,0132?≤=--=+-。 练习:当k 为何负整数时,方程组?

??-=++=+134123k y x k y x 的解适合6?-?y x y x 且? 练习:已知???+=+=+1

2242k y x k y x 且的取值范围为则k y x ,01-?-?

练习:已知关于x 、y 的方程组???=+=-323y x m y x 是否存在m ,使上述方程组的解为正数?若存在,求出m 的取值范围。

(完整版)一元一次不等式组测试题1含答案

第九章、不等式(组)单元测试题 一、 选择题(.每题3分,共30分) 1、如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2、 a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3、 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 4、 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5、 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种 出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 6、 若不等式组?? ?>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 8、若不等式组0,122x a x x +??->-? ≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a < 9、关于x 的不等式组无解,那么a 的取值范围是( ) A 、a ≤4.5 B 、a >4.5 C 、a <4.5 D 、a ≥4.5 10、如图是测量一颗玻璃球体积的过程: (1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在( ) (A )20cm 3以上,30cm 3以下 (B )30cm 3以上,40cm 3以下

40道一元一次不等式组计算及答案

作品编号:DG13485201600078972981 创作者:玫霸* (1)2X-4≤X+2 与X≥3 解集为3≤X≤6 (2)2X-1>1 与4-2X≤0 解集为无解 (3)3X+2>5 与5-2≥1 解集为1<X≤2 (4)X﹣1<2 与2X+3>2+X 解集为-1<X<3 (5)X+3>1 与X﹢2(X-1)≤1 解集为-2<X≤1 (6)2X+1≤3 与X>-3 解集为1≤X>-3 (7)2X+5>1 与3X+7X≤10 解集为1≥X>2 (8)2X-1>X+1 与X+8<4X-1 解集为X>3 (9)1-2(X-1)≤5与2/(3X-2)<X+1/2解集为-1≤X<3 (10)2X≤4+X 与X+2<4X-1解集为1<X≤4 (11)2-X>0 与2/(5X+1)+1≥3/(2X-1)解集为-1≤X <2 (12)1-X<0 与2/(X-2)<1 解集为1<X<4 (13)2-X<3 与2-X≥0 解集为2≥X>1 (14)2X+10>-5 与6X-7≥10 解集为X>17/6 (15)6X+6>8 与3X+10<5 解集为-(3/5)>X>-3 (16)6X+6X24 与10X+(1/2)X<-42 解集为无解

(17)24X-20X>4 与8X+4X≤24解集为2≥X>1 (18)9X-5X<8 与15X+5X>80 解集为无解 (19)X+X≤1 与2X+(1/2)X>100 解集为无解 (20)2011X-2012X≤1 与2013X-2012X≥1 解集为1≤X (21)4X-X>6 与10X+5X<15 解集为无解 (22)-5X-6X≤-22 与5X-9X≥24 解集为无解(23)(1/5)X+(1/5)X>2/5 与X+10X>22 解集为X>2 (24)55X+55X<220 与66X+10X<38 解集为X<1/2 (25)70X+1≤71 与53X-13X≤40 解集为X≤1 (26)X+1<7 与X-1>10 解集为无解 (27)5X+5>5 与2X+3X>9 解集为X>9/5 (28)85X-5X <8 与50X+30X<5 解集为X<1/16 (29)2X≤14 与6X <6 解集为X<1 (30)15X+15≥30 与6X-8X≥4 解集为-2≥X≥1 (31)2X≥160 与4X≥316 解集为X≥80 (32)35X-27X >136 与20X+20X<800解集为20>X>17 (33)55X≤165 与56X>112 解集为2<X≤3 (34)20X+18X≥76 与2X≥2 解集为X≥2 (35)59X+X>600 与55X+35X<1350 解集为10<X<

不等式与不等式组经典讲义

聚能教育学科教师辅导教案 学员编号:年级:七年级课时数:3 学员姓名: 辅导科目:数学学科教师:授课主题一元一次不等式与不等式组 教学目标 1、掌握不等式的性质; 2、理解一元一次不等式(组)的概念及一元一次不等式(组)的解; 会依据不等式的性质解一元一次不等式(组)。 授课日期及时段 教学内容 类型一:不等式的性质 例1、若a,b,c为任意实数,且a>b,则下列不等式恒成立的是() (A)ac>bc(B)|a+c|>|b+c| (C)a2>b2(D)a+c〉b+c 例2、设x2+y2 = 1,则x +y() (A)有最小值1 (B)有最小值2 (C)有最小值-1(D) 有最小值-2 1、①若aa+1,那么a的取值范围是____________ ⑦对不等式-3x〉1变形得_________ ⑧由x<1得到(a+1)x>a+1,那么a的取值范围是___________。 ⑨有方程组2x+y=1+3m,x+2y=1-m,满足x+y<0,则m的取值范围是___________。 一元一次不等式与不等式组 典型例题

⑩判断正误:因为5<6,所以5x<6x ( ) 类型二:解不等式 例3、下列说法中,错误.. 的是( ) A 。 不等式2-x 的解集是3->x D。 不等式10-+x ,并把解集在数轴上标出来。 1、求解不等式,并将不等式的解用数轴表示 ⑴3x>x +2 ⑵5〉2(1—x ) ⑶—1/3x ≤2/3-x ⑷2x-5≥x /2+1 类型三:含参数的一元一次不等式组 例5、若不等式组无解,求a 的取值范围。 ? 解析: 思路点拨:由两个不等式组成的不等式组无解只有一种情况,即“大大小小”,也就是说如果x比一个较大的数大,而比一个较小的数小,则这样的数x不存在. ? 依题意: 2a-5 ≥ 3a —2, 解得a ≤ —3 ? 1、若不等式组无解,则的取值范围是什么?? 解析:要使不等式组无解,故必须,从而得 .??2、若关于的不等式组 的解集为,则的取值范围是什么?? 解析:由+1 可解出, 而由可解出, 而不等式组的解集为 , 故, 即. 类型四、一元一次方不等式的实际运用 例 6、一次环保知识竞赛共有25道题,大队一道题得4分,答错或不答一道题扣一分,这次竞赛中小明被评为 优秀(85或85分以上),小明至少答对了几道题?

一元一次不等式和一元一次不等式组基础练习

一元一次不等式和一元一次不等式组基础练习 一. 填空题 1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的1 3与t 的差的一半是负数为_________。 2. 有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。 b 0 a (1)a +3______b +3;(2)b -a_______0 (3)- a 3______- b 3;(4)a +b________0 3. 若0???的解集是-<<11x ,则()()a b +-11的值为___________ 10. 如果不等式20x m -≥的负整数解是-1,-2,则m 的取值范围是_________ 二. 选择题(每小题3分,共24分) 11. 若a>b ,则下列不等式中一定成立的是( ) A. b a <1 B. a b >1 C. ->-a b D. a b ->0 12. 与不等式325 1-≤-x 的解集相同的是( ) A. 325-≥x B. 325-≤x C. 235x -≥ D. x ≤4 13. 不等式x x --<-32 1313的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个 14. 不等式组1241323-<-≤-?????x x x 的整数解的和是( ) A. 1 B. 0 C. -1 D. -2 15. 下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)-≤-ac bc 22中,

新苏教版七年级数学下册《一元一次不等式组》常考题型归纳及答案解析(精品试卷).docx

苏教版2017-2018学年七年级下册 《一元一次不等式》(附答案) 一、选择题 1.下列不等式中,是一元一次不等式的有()个. ①x>-3;②xy ≥1;③32+x x .A.1 B.2 C.3 D .4 2.不等式3(x -2)≤x+4的非负整数解有( )个.. A.4B.5 C.6D.无数 3.不等式4x -4 1141 +-12 D.-2x<-6 5.不等式ax+b>0(a<0)的解集是() A.x>-a b B.x<-a b C.x>a b D.x2-m 的解集是x<-1,则有() A.m>2 B.m<2 C.m=2 D.m ≠2 7.若关于x 的方程3x+2m=2的解是正数,则m 的取值范围是() A.m>1 B.m<1 C.m ≥1 D.m ≤1 8.已知(y -3)2+|2y -4x -a|=0,若x 为负数,则a 的取值范围是() A.a>3 B.a>4 C.a>5 D.a>6 二、填空题

9.当x________时,代数式 61523--+x x 的值是非负数. 10.当代数式2x -3x 的值大于10时,x 的取值范围是________. 11.若代数式 2)52(3+k 的值不大于代数式5k -1的值,则k 的取值范围是________. 12.若不等式3x -m ≤0的正整数解是1,2,3,则m 的取值范围是________. 13.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 . 14、 若关于x 的不等式2x+a ≥0的负整数解是-2 ,-1 ,则a 的取值范围是_________。 三、解答题 15.解不等式,并把解集在数轴上表示: (1)2-5x ≥8-2x (2) 223125+<-+x x (3)3[x -2(x -7)]≤4x . (4).17 )10(2383+-≤-- y y y

七年级二元一次方程组复习讲义

二元一次方程归类讲解及练习 知识点: 1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。 2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。 3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。 4、二元一次方程组的解:二元一次方程组中各个方程的公共解。(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值) 无论是二元一次方程还是二元一次方程组的解都应该写成???= =y x 的形式。 5、二元一次方程组的解法:基本思路是消元。 (1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。主要步骤: 变形——用一个未知数的代数式表示另一个未知数。 代入——消去一个元。 求解——分别求出两个未知数的值。 写解——写出方程组的解。 (2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。 变形——同一个未知数的系数相同或互为相反数。 加减——消去一个元。 求解——分别求出两个未知数的值。 写解——写出方程组的解。 (3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。 列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:

① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。 ② 找:找出能够表示题意两个相等关系。 ③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。 ④ 解:解这个方程组,求出两个未知数的值。 ⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。 6、二元一次方程组???=+=+222 111c y b x a c y b x a 的解的情况有以下三种: ① 当2 12121c c b b a a ==时,方程组有无数多解。(∵两个方程等效) ② 当2 12121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2121b b a a ≠(即01221≠-b a b a )时,方程组有唯一的解 7、方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。 8、求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。 练习题: 1、已知代数式b a b a y x y x +---23132 1与是同类项,那么a= ,b= 。 2、已知n m n m y x y x +-212-31 与是同类项,那么()2013m n -=_______。 3、解下列方程组:

解一元一次不等式组练习题

一元一次不等式组练习题 一.解下列一元一次不等式组 1.?????? >-<-322,352x x x x 2.?????->---->-.6)2(3)3(2,132x x x x 3.?????+>-≤+).2(28,142x x x 4.()324 2+1 1 3x x x x --???≥-??< 5.()()281043141126x x x x +≤--???-+-??< 6. ???????<+->+--.1)]3(2[21,312233x x x x x 7.?????????? >-->-->-24,2 55, 13x x x x x x 8. 32472x -≤-< 9..234512x x x -≤-≤-

二.解答题: 10.求不等式组 () 324 12 1 4 x x x x --≤ ? ? ?- - ? ? < 的整数解. 11.求不等式组 () 1 212 3 73+4 34 25 x x x x ? --≤ ?? ?? ?? ? - ?-- ?? > 的负整数 解 12.求不等式组 5 13 2 2110+15 5 364 x x x x x + ? - ?? ? - ?-≥- ?? < 的非负整数解. 三..列不等式组解应用题 13.一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.

一元一次不等式和一元一次不等式组测试题及答案

初二下期单元测试题 一兀一次不等式和一兀一次不等式组 一 ?填空题:(每小题2分,共20分) 1 .若 X < y ,则 X —2 ____ y — 2 ;(填“< >或="号) 2.若一— < ,则3a b ;(填“< >或="号) 3.不等式2x ≥ X + 2的解集是 ; 3 9 4.当y 时,代数式 士旦 的值至少为1 ; 5.不等式6-12Xvo 的解集是 _____________ —; 4 6.不等式7—x>1的正整数解为: ________________ ;7 ?若一次函数y = 2x —6 ,当X _____ 时,y>0 ; 3 8. _________________________________________________________ X 的一与 12 的差不小于 6, 用不等式表示为 ________________________________________________________ ; 5 Zx —3c0 9. 不等式组丿 的整数解是 _______________ ; Qx+2 >0 '3x + 2y = p +1 10. 若关于X 的方程组』 ________________________ 的解满足x >y ,贝U P 的取值范围是 ; 4x +3y = p _1 二.选择题:(每小题3分,共30分) 11. 若a >b ,则下列不等式中正确的是 (A ) a - b :: - 0 (B ) - 5— ::: -5b (C ) 12. 关于X 的不等式2x — a ≤- 1的解集如图所示,则 A. 0 B. — 3 C. — 2 a 8 :: b - 8 (D ) a 的取值是( D. -2 -1 0 (第12题) 13. 已知两个不等式的解集在数轴上如图表示,那么这个解集为 .? ------ ( ) (A ) X ≥ -1 ( B ) X 1 (C ) -3:::X — -1 (D ) X- -3 「x +8 < 4x -1 14. 如果不等式组 8 , 的解集是 > m A. m ≥ 3 B. m ≤3 15. 下列不等式求解的结果,正确的是 X ≤ -3 (A )不等式组」 的解集是X 兰-3 K ≤ -5 X >5 (C )不等式组丿 无解 -3 -2 -1 U 1 X 3 ,那么m 的取值范围是( ) C.m=3 D. m<3 ( ) \ > -5 (B )不等式组丿 的解集是x ≥-5 XA —4 ■- r X 兰 10 (D )不等式组丿 的解集是—3兰x≡M0 IX £ -7 H > -3

一元一次不等式组100道计算题

一元一次不等式组计算题 1. ???-≤+>+1 45321x x x x 2. 31422x x x ->??<+? 3. 512324x x x x ->+??+-??+<-? 5. 230 320x x -? 6. 23182x x x >-??-≤-? 7. 253(2)123x x x x +≤+??-?

9. ?? ???-≤-+>+31 2214513x x x x )( 10. ?????>+-≥+x x x x 4121213)( )( 11. ?? ? ??+<-<->+4 120520 13x x x x 12. ?????+<++≤--->+3.22.05.02832)1(42x x x x x x 13. ? ??-≤+>+145321x x x x 14. 314,2 2.x x x ->??<+? 15. 230320x x -? 16. 512,324.x x x x ->+??+

17. 21, 24 1.x x x x >-??+<-? 18. 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? 21. ?????-≥-->+35663 4)1(513x x x x 22. ??? ??-≤-+>+3122145)1(3x x x x

金老师教育培训苏教版数学讲义含同步练习七年级下册89一元一次不等式组(第一课时) 知识讲解

一元一次不等式组(基础)知识讲解 【学习目标】 1.理解不等式组的概念; 2.会解一元一次不等式组,并会利用数轴正确表示出解集; 3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 【要点梳理】 要点一、不等式组的概念 定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式 组.如 25 62010 x x -> ? ? -< ? , 70 2116 3159 x x x -> ? ? +> ? ?+< ? 等都是一元一次不等式组. 要点诠释: (1)这里的“几个”不等式是两个、三个或三个以上. (2)这几个一元一次不等式必须含有同一个未知数. 要点二、解一元一次不等式组 1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集. 要点诠释: (1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分. (2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况. 2.一元一次不等式组的解法 解一元一次不等式组的方法步骤: (1)分别求出不等式组中各个不等式的解集. (2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集. 要点三、一元一次不等式组的应用 列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答. 要点诠释: (1)利用一元一次不等式组解应用题的关键是找不等关系. (2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数. 【典型例题】 类型一、不等式组的概念 1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.

人教版七年级数学下册一元一次不等式组(基础) 知识讲解

人教版七年级数学下册 一元一次不等式组(基础)知识讲解 【学习目标】 1.理解不等式组的概念; 2.会解一元一次不等式组,并会利用数轴正确表示出解集; 3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 【要点梳理】 要点一、不等式组的概念 定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式 组.如 25 62010 x x -> ? ? -< ? , 70 2116 3159 x x x -> ? ? +> ? ?+< ? 等都是一元一次不等式组. 要点诠释: (1)这里的“几个”不等式是两个、三个或三个以上. (2)这几个一元一次不等式必须含有同一个未知数. 要点二、解一元一次不等式组 1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集. 要点诠释: (1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分. (2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况. 2.一元一次不等式组的解法 解一元一次不等式组的方法步骤: (1)分别求出不等式组中各个不等式的解集. (2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集. 要点三、一元一次不等式组的应用 列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答. 要点诠释: (1)利用一元一次不等式组解应用题的关键是找不等关系. (2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数. 【典型例题】 类型一、不等式组的概念 1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故

40道一元一次不等式组计算及答案

(1)2X-4≤X+2 与X≥3 解集为3≤X≤6 (2)2X-1>1 与 4-2X≤0 解集为无解 (3)3X+2>5 与 5-2≥1 解集为1<X≤2 (4)X﹣1<2 与 2X+3>2+X 解集为-1<X<3 (5)X+3>1 与 X﹢2(X-1)≤1 解集为-2<X≤1 (6)2X+1≤3 与 X>-3 解集为1≤X>-3 (7)2X+5>1 与3X+7X≤10 解集为1≥X>2 (8)2X-1>X+1 与 X+8<4X-1 解集为X>3 (9)1-2(X-1)≤5与2/(3X-2)<X+1/2解集为-1≤X<3 (10)2X≤4+X 与 X+2<4X-1解集为1<X≤4 (11)2-X>0 与 2/(5X+1)+1≥3/(2X-1)解集为-1≤X<2 (12)1-X<0 与 2/(X-2)<1 解集为1<X<4 (13)2-X<3 与 2-X≥0 解集为2≥X>1 (14)2X+10>-5 与 6X-7≥10 解集为X>17/6 (15)6X+6>8 与 3X+10<5 解集为-(3/5)>X>-3 (16)6X+6X24 与 10X+(1/2)X<-42 解集为无解 (17)24X-20X>4 与8X+4X≤24解集为2≥X>1 (18)9X-5X<8 与 15X+5X>80 解集为无解

(19)X+X≤1 与 2X+(1/2)X>100 解集为无解 (20)2011X-2012X≤1 与 2013X-2012X≥1 解集为1≤X (21)4X-X>6 与 10X+5X<15 解集为无解 (22)-5X-6X≤-22 与 5X-9X≥24 解集为无解(23)(1/5)X+(1/5)X>2/5 与 X+10X>22 解集为X>2 (24)55X+55X<220 与 66X+10X<38 解集为X<1/2 (25)70X+1≤71 与 53X-13X≤40 解集为X≤1 (26)X+1<7 与 X-1>10 解集为无解 (27)5X+5>5 与 2X+3X>9 解集为X>9/5 (28)85X-5X<8 与 50X+30X<5 解集为X<1/16 (29)2X≤14 与 6X<6 解集为X<1 (30)15X+15≥30 与 6X-8X≥4 解集为-2≥X≥1 (31)2X≥160 与4X≥316 解集为X≥80 (32)35X-27X>136 与 20X+20X<800解集为20>X>17 (33)55X≤165 与 56X>112 解集为2<X≤3 (34)20X+18X≥76 与2X≥2 解集为X≥2 (35)59X+X>600 与 55X+35X<1350 解集为10<X<15 (36)60X<120 与 5X+5X<10 解集为X<1 (37)100X<20X+1200 与 2X<30X+10 解集为X<5/14 (

一元一次不等式组 讲义

一元一次不等式组 温故而知新: 例题精讲: 1、解下列不等式组,并把解集在数轴上表示出来 2x-1≥0 (2)4<1-3x<13 3x+1>0 3x-2<0 2、已知a= 23 + x ,b= 32 + x ,且a>2>b,那么求x的取值范围。 3、已知方程组 2x+y=5m+6 的解为负数,求m的取值范围。 X-2y=-17 4、若不等式组 x<a 无解,求a的取值范围。 21 3- x >1

5、当x取哪些整数时,不等式 2(x+2)<x+5与不等式3(x-2)+9>2x同时成立? 6、某工厂现有A种原料290千克,B种原料220千克,计划利用这两种原料生产甲、乙两种产品共40件,已知生产甲种产品需要A种原料8千克,B种原料4千克,生产乙种产品需要A种原料5千克,B种原料9千克。问有几种符合题意的生产方案? 7、已知有长度为3cm,7cm,xcm的三条线段,问,当x为多长时,这三条线段可以围成一个三角形? 8、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。

一元一次不等式组(作业) 一、填空 1、不等式组()122431223 x x x x ?--≥???-?>+??的解集为 2、若m-??<+?的解集是 3.若不等式组2113 x a x ??无解,则a 的取值范围是 . 4.已知方程组2420x ky x y +=??-=?有正数解,则k 的取值范围是 . 5.若关于x 的不等式组61540 x x x m +?>+???+?有解,则m 的范围是( ) A .2m ≤ B .2m < C .1m <- D .12m -≤< 8、不等式组2.01x x x >-??>??-><<-<< 9、如果关于x 、y 的方程组322x y x y a +=??-=-? 的解是负数,则a 的取值范围是( ) A.-45 C.a<-4 D.无解 三、解答题 10、解下列不等式组,并在数轴上表示解集。 ⑴()4321213 x x x x -<-???++>?? ⑵()2 1.55261x x x x ≤+???->-??

八年级数学一元一次不等式及一元一次不等式组及答案

一元一次不等式及一元一次不等式组 一. 填空题(每题3分) 1. 若 582 112 m x 是关于x 的一元一次不等式,则m =_________. 2. 不等式0126 x 的解集是____________. 3. 当x _______时,代数式4 23x 的值是正数. 4. 当2 a 时,不等式52 x ax 的解集时________. 5. 已知13222 k x k 是关于x 的一元一次不等式,那么k =_______,不等式的解集是_______. 6. 若不等式组 3 212 b x a x 的解集为11 x ,则 11 b a 的值为_________. 7. 小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有_______个. 8. 小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买________枝钢笔. 二. 选择题(每题3分) 9.下列不等式,是一元一次不等式的是 ( ) A.24)1(2 y y y B.0122 x x C. 6 13121 D.2 x y x 10.4与某数的7倍的和不大于6与该数的5倍的差,若设某数为x ,则x 的最大整数解是( ) A.1 B.2 C.-1 D0 11.若代数式72 a 的值不大于3,则a 的取值范围是( ) A.4 a B.2 a C.4 a D.2 a 12.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折 A.6 B.7 C.8 D.9 13.若不等式组 a x x 3的解集是a x ,则a 的取值范围是( ) A.3 a B 3 a . C.3 a D.3 a 14.不等式 0352 x x 的解集是( ) A.253 x x 且 B.253 x x 或 C.325 x D.253 x 15.若不等式组 b x a x 无解,则不等式组 b x a x 22 的解集是( ) A.a x b 22 B.22 a x b C.b x a 22 D.无解

二元一次方程组和不等式组测试题

二元一次方程组和不等式组测试题 1.已知关于x 的不等式组?? ???<->>a x x x 12 无解,则a 的取值范围是( ) A 、1-≤a B 、2≤a C 、21<<-a D 、1-a 2.已知方程组???=+=+15 231032y x y x ,不解方程组则=+y x 3.已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,则=a 4.已知关于x 的不等式组???--≥-1 230 x a x 的整数解有5个,则a 的取值范围是_____ 5.某商场计划在一月份销售彩电1000台,据统计本月前10天平均每天销售32台.现商场决定开展促某商.。…….销活动,并追加月计划量的20%,则这个商场本月后20天至少平均每天销售多少台? 6.风景点门票是每人10元,20人以上(含20人)的团体八折优惠.现有18位游客买20人的团体票; (1)问这样比普通票总共便宜多少钱? (2)此外,不足20人时,需多少人以上买20人的团体票才比普通票便宜? 7.车站有有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节A ,B 两种型号的车厢将这批货物运至北京,已知每节A 型货箱的运费为0.5万元,每节B 型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A 型货箱,甲种货物25吨和乙种货物35吨可装满一节B 型货箱,按此要求安排B A ,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?

8.某园林的门票每张10元,一次使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A ,B ,C 三类:A 类年票每张120元,持票者进入园林时,无需再购买门票;B 类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元. (1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式; (2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算. 10.解不等式6 52123--≤-x x 并把解集在数轴上表示出来 11.?????-<-≤--x x x x 14 214)23( 12. 求不等式组?????>--≤--41)3(28)3(2x x x x 的整数解 13.若不等式7)1(68)2(5+-<+-x x 的最小整数解是方程32=-ax x 的解,求a a 144-的值 14. 有大小两种货车,3辆大车与5辆小车一次可运货24.5吨,两辆大车与3辆小车一次可运15.5吨,求5辆大车和6辆小车一次可运货多少吨?

一元一次不等式组100道计算题37674

1. ???-≤+>+1 45321x x x x 31422x x x ->??<+? 512324x x x x ->+??+-??+<-? 5. 230320x x -? 23182x x x >-??-≤-? 253(2)12 3x x x x +≤+??-?+31 22 14513x x x x )( ?????>+-≥+x x x x 4121213)()( ?????+<-<->+412052013x x x x . ?? ? ??+<++≤--->+3 .22.05.02832)1(42x x x x x x ???-≤+>+145321x x x x 314,2 2.x x x ->??<+?

230320x x -? 512,324.x x x x ->+??+-??+<-? 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? ?????-≥-->+356634)1(513x x x x ?????-≤-+>+3122145)1(3x x x x ???????-<-+<-.3212 112)2(31x x x x . 253(2)123x x x x +≤+??-?-? ? ???≤+-<+51148x x x 270≤523x -≤1 -1<213-x ≤4

一元一次不等式组知识点及题型总结

一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x ≥5 ② 2x-y <0 ③ ④ -3<0 ⑤ x=3 ⑥ ⑦ x ≠5 ⑧02x 3-x 2>+ ⑨ 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的5倍不大于3可表示为 . ③.x 与17的和比它的2倍小可表示为 . ④.x 和y 的差是正数可表示为 . ⑤.x 的 与12的差最少是6可表示为__________________. 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若a >b ,ac >bc ,则c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若a >b ,ac <bc ,则c 0. 4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。 352≥+x 532 2y x y x ++0 y x ≥+

练习:1、指出下列各题中不等式的变形依据 ①.由3a>2得a> 理由: . ②. 由a+7>0得a>-7 理由: . ③.由-5a<1得a> 理由: . ④.由4a>3a+1得a>1 理由: . 2、若x >y ,则下列式子错误的是( ) A.x-3>y-3 B. > C. x+3>y+3 D.-3x >-3y 3、判断正误 ①. 若a >b ,b <c 则a >c. ( ) ②.若a >b ,则ac >bc. ( ) ③.若 ,则a >b. ( ) ④. 若a >b ,则 . ( ) ⑤.若a >b ,则 ( ) ⑥. 若a >b ,若c 是个自然数,则ac >bc. ( ) 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是( ) A.x=2是不等式x+3<2的解 B.x =3是不等式3x <7的解。 C.不等式3x <7的解是x <2 D.x=3是不等式3x ≥9的解 2.下列说法错误的是( ) A.不等式x <2的正整数解只有一个 B.-2是不等式2x-1<0的一个解 2 2bc ac >)()>(1c b 1c a 2 2++32 51 -3x 3y 2 2bc ac >

初中初中八年级的数学上册的一元一次不等式及一元一次不等式组测试卷试题包括答案.doc

第一章一元一次不等式和一元一次不等式组整章水平测试 一、填空题(每小题 3 分,共 30 分) 1.若代数式的值不小于-3 ,则 t 的取值范围是 _________. 2.不等式的正数解是1,2, 3,那么 k 的取值范围是 ________. 3.若,则x 的取值范围是________. 4.若,用“<”或“>”号填空:2a______, _____. 5.若,则x 的取值范围是 _______. 6.如果不等式组有解,那么m的取值范围是 _______. 7.若不等式组的解集为,那么的值等于_______. 8.函数,,使的最小整数是________. 9.如果关于x 的不等式和的解集相同,则 a 的值为 ________. 10.一次测验共出 5 道题,做对一题得一分,已知26 人的平均分不少于分,最低的得 3 分,至少有 3 人得 4 分,则得 5 分的有 _______人. 二、选择题(每小题 3 分,共 30 分) 1.当时,多项式的值小于0,那么 k 的值为 [ ]. A.B.C.D. 2.同时满足不等式和的整数x 是 [ ]. A. 1,2, 3 B . 0, 1,2, 3 C. 1,2, 3, 4 D . 0, 1,2, 3, 4 3.若三个连续正奇数的和不大于27,则这样的奇数组有[ ]. A. 3 组B.4组C.5组D.6组 4.如果,那么[ ]. A.B.C.D. 5.某数的 2 倍加上 5 不大于这个数的 3 倍减去 4,那么该数的范围是[ ].A.B.C.D. 6.不等式组的正整数解的个数是[ ]. A. 1B.2C.3D.4

7.关于 x 的不等式组有四个整数解,则 a 的取值范围是[ ]. A.B. C.D. 8.已知关于x 的不等式组的解集为,则的值为[ ]. A. -2 B.C.-4D. 9.不等式组的解集是,那么m的取值范围是[ ]. A.B.C.D. 10.现用甲、乙两种运输车将46 吨抗旱物资运往灾区,甲种运输车载重 5 吨,乙种运输车载重 4 吨,安排车辆不超过10 辆,则甲种运输车至少应安排[ ] .A. 4 辆 B . 5 辆 C . 6 辆 D .7 辆 三、解答题(本大题,共40 分) 1.(本题 8 分)解下列不等式(组): ( 1); (2) 2.(本题 8 分)已知关于x, y 的方程组的解为非负数,求整数m的值. 3.(本题 6 分)若关于x 的方程的解大于关于x 的方程的解,求 a 的取值范围.

相关主题
文本预览
相关文档 最新文档