当前位置:文档之家› 音乐播放器放大电路

音乐播放器放大电路

音乐播放器放大电路
音乐播放器放大电路

给你这个电路吧。电路加个555外部振荡,但软件简单。且喇叭通过电容隔离直流电,很安全,不会烧坏。只要Px.y置1喇叭就叫了,Px.y清0喇叭就停了,修改100K电阻可改变音调。

loop:

setb p1.7;喇叭叫

lcall delay;叫的时间

clr p1.7;喇叭停止发声

lcall delay;停的时间

l ljmp loop

delay:

mov r7,#20h;修改这个20h,可以修改响和停的时间,扩大1倍时间就增加1倍

mov r6,#0

mov r5,#0

djnz r5,$

djnz r6,$-4

djnz r7,$-8

ret

这种蜂鸣器放大电路很简单,加一只三极管就行了,如图1,这样接的原因是开机复位期部P3.6为高电平,三极管是不导通的。这种情况下用扬声器,扬声器发声的音调即频率可以编程控制,可以演奏音乐。

另外现在市场上有一种体积很小5V的蜂鸣器,加上5V电压就能自鸣,但音调固定,体积小,可以直接焊在电路板上。如图2所示。因音调较高,适合于用蜂鸣器报警。开机复位期间蜂鸣器是不响的,在P3.6加低电平就响了。

在简易自动报警器中,常常采用蜂鸣器发声或发光二极管发光产生示警信号。由于小型蜂鸣器驱动电流不大,简化了电路设计。

驱动蜂鸣器的三极管开关电路见图7。HA为声响指示器,采用低电压(3V)蜂鸣器,其工作电流仅需十几个毫安。VT选用9013,hfe≈200,偏置电阻器R为15kΩ,VT的基极电流IB约0.1mA,集电极电流IC约为10mA,此时VT已经饱和导通,其集电极—发射极之间电压VCE仅为0.05V 。

将图7电路中的控制开关S换成干簧管开关,就改造成磁控声响电路。将图7电路中的R减小到10kΩ,控制开关S换成光敏电阻器或光敏二极管,就成为光控声响电路。这些电路有什么作用呢?是否可以做为保险柜防盗报警,在打开柜门时,由于磁铁离开干簧管或者保险柜外光线照射而报警。必要时可以将磁控元件、光敏元件接到下偏置,以满足反相的控制效果。

这个实验本来应该是我们学习AVR单片机的第一个实例程序,但是由于一时疏忽,忘记了,现在补上。

一、电路实现

如下是驱动蜂鸣器发声的电路原理图

1、蜂鸣器是一种电子电路中常用的发声器件,蜂鸣器分为有源蜂鸣器和无源蜂鸣器两种。从外观上看这两种蜂鸣器区别不大,但是在细节上还是稍有差别的,首先一般的有源蜂鸣器在其正面贴有一片胶纸,而无源蜂

鸣器则没有。再观察有引脚的那一面,有源蜂鸣器的两个引脚一高一低,而无源蜂鸣器的两个引脚的高度一样。另外有源蜂鸣器除了引脚露出外,其余部分都是封闭的,而无源蜂鸣器的引脚面可以看到有绿色的电路板。

使用电源来判别蜂鸣器的有源和无源:找个5V左右的稳压电源,将电源正极连接到蜂鸣器标有“+”符号的引脚上,用电源的负极以一定频率不断地碰触蜂鸣器的负极引脚,发出“咔咔”声的是无源蜂鸣器,发出“嘀嘀”声的是有源蜂鸣器。

使用数字表判别蜂鸣器的有源和无源:用数字表的1K以下的欧姆档测量蜂鸣器两脚间的电阻,如果电阻只有几十欧,并且颠倒数字表的表笔测量出来的电阻一样,那么可以判断为无源蜂鸣器,如果两脚间电阻大于1K,那么可以判断是有源蜂鸣器。

有源蜂鸣器直接接上额定电源就可连续发声;而无源蜂鸣器则和电磁扬声器一样,需要接在音频输出电路中才能发声。

有源蜂鸣器和无源蜂鸣器的区别就是有源蜂鸣器直接加上额定电压就能一直发声(当然要同时满足电流要求),而无源蜂鸣器需要加上脉冲电压才能持续发声。在电子设计中,常用有源蜂鸣器进行各种各样的报警提示。而用无源蜂鸣器来产生各式各样的音频信号(比如用来演奏简单的乐曲)。

2、蜂鸣器的驱动电路

上面的图中给出了本实例中使用的蜂鸣器电路,电路中使用单片机的PE5口控制三极管8550的通断来使蜂鸣器发声。为什么要使用三极管?三极管在这里的作用有二:开关作用,控制蜂鸣器电源电路的通断;提供

蜂鸣器发声所需的较高电流,单片机的I/O口驱动能力有限,而我们知道三极管有电流放大的作用,在这里就是利用三极管放大电流来使蜂鸣器获得足够的驱动电流。

下图是一种比较安全的蜂鸣器驱动电路

图中在蜂鸣器两端并联了一个二极管,这个二极管称为续流二极管,蜂鸣器本质上是一个感性元件,其电流不能瞬变,因此必须有一个续流二极管提供续流。否则,在蜂鸣器两端会产生几十伏的尖峰电压,可能损坏驱动三极管,并干扰整个电路系统的其它部分。

滤波电容C1的作用是滤波,滤除蜂鸣器电流对其它部分的影响,也可改善电源的交流阻抗,如果可能,最好是再并联一个220uF的电解电容。

二、程序实现

完整程序如下所示,本程序实现单片机系统上电后蜂鸣器发出约500ms 的声音。

#include //io端口寄存器配置文件,必须包含

#include //GCC中的延时函数头文件

//函数声明

void Delayus(unsigned int lus); //us延时函数

void Delayms(unsigned int lms); //ms延时函数

int main(void) //GCC中main文件必须为返回整形值的函数,没有参数

{

unsigned char i;

PORTE |= (1 << PE5); //

DDRE |= (1 << PE5); //

Delayms(500);

PORTE &= ~(1 << PE5); //

Delayms(500);

PORTE |= (1 << PE5); //

while(1)

{

}

}

//us级别的延时函数

void Delayus(unsigned int lus)

{

while(lus--)

{

_delay_loop_2(4); //_delay_loop_2(1)是延时4个时钟周期,参数为4则延时16

//个时钟周期,本实验用16M晶体,则16个时钟周期为16/16=1us }

}

//ms级别的延时函数

void Delayms(unsigned int lms)

{

while(lms--)

{

Delayus(1000); //延时1ms

}

}

三、程序讲解

在本实例中我们自己定义了两个延时函数:微秒级的延时函数、毫秒级的延时函数

其中在微秒级的延时函数中我们使用了这样一条语句_delay_loop_2 (3); 这条语句是GCC编译环境下delay.h头文件中定义的一个延时函数,_delay_loop_2(1)实现4个时钟周期的延时,为什么我们要自己编写延时函数,而不使用delay.h中定义好的延时函数?这是因为delay.h中定义的延时函数是按照内部1MHz时钟频率编写的,而我们实际使用的始终是外部16MHz,所以如果仍旧使用这些延时函数,会造成延时的不精确。

在程序中我们还是用了如下的语句:PORTE |= (1 << PE5); P ORTE &= ~(1 << PE5); 它们是什么样的语句?实现什么样的功能?

这些语句实现给端口寄存器的某些固定位赋值,其中使用了移位,相或,取反等操作。

在单片机的C语言程序中我们经常会碰到给一些寄存器的特定位赋值的操作,这是单片机C语言和标准C语言的一个明显差异。在下一讲中我们将详细讨论单片机中位操作的实现。

用单片机驱动蜂鸣器唱歌

蜂鸣器是一种一体化结构的电子讯响器,主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型,他广泛应用于计算机、打印机、复印机、报警器、电话机等电子产品中作发声器件。

单片机上面使用的蜂鸣器一般都是无源电磁式的蜂鸣器(如下图所示)。它由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。

蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产生磁场来驱动振动膜发声的,因此需要一定的电流才能驱动它,单片机IO引脚输出的电流较小,单片机输出的TTL电平基本上驱动不了蜂鸣器,因此需要增加一个电流放大的电路。单片机与蜂鸣器连接如图二所示。

图中,蜂鸣器的正极接到VCC(+5V)电源上面,蜂鸣器的负极接到三极管的发射极E,三极管的基级B经过限流电阻R1后由单片机的P3.7引脚控制,当P3.7输出高电平时,三极管T1截止,没有电流流过线圈,蜂鸣器不发声;当P3.7输出低电平时,三极管导通,这样蜂鸣器的电流形成回路,发出声音。因此,我们可以通过程序控制P3.7脚的电平来使蜂鸣器发出声音和关闭。

程序中改变单片机P3.7引脚输出波形的频率,就可以调整控制蜂鸣器音调,产生各种不同音色、音调的声音。另外,改变P3.7输出电平的高低电平占空比,则可以控制蜂鸣器的声音大小,这些我们都可以通过编程实验来验证。

下面就是一个能够发出音乐的单片机程序,示例中所播放的音乐是《两只老虎》。

SPK EQU P3.7 ;位定义

ORG 0000H ;伪指令,指定程序从0000H开始存放

LJMP START ;程序跳转至START处执行

ORG 0030H ;伪指令,指定程序从0030H开始存放

START: MOV SP,#60H ;堆栈初始化

MOV R3,#00H ;给R3赋值

NEXT:

MOV A,R3

MOV DPTR,#TABLE ;查歌曲表

MOVC A,@A+DPTR

JZ START ;为00则循环播放此歌

MOV R7,A ;R7/R2保存连续相邻的表数据

INC R3

MOV A,R3

MOVC A,@A+DPTR

MOV R2,A

ACALL SONG

INC R3

SJMP NEXT

;==============================

;=========歌曲播放子程序==========

;==============================

SONG:

MOV A,R2 ;取出节拍

RL A

JNZ KEEP ;A不等于零则跳

MOV A,#01H ;A等于零则赋值为1

KEEP:

MOV R2,A ;

REPEAT:

ACALL EIGHTH ;调用1/8拍延时程序

DJNZ R2,REPEAT ;

RET

;===============================

;=======产生1/8拍延时子程序=======

;===============================

EIGHTH:

MOV A,R7 ;查表取出延时参数,保存到R4 MOV DPTR,#DELAY_T

MOVC A,@A+DPTR

MOV R4,A

MOV A,R7 ;查表取出1/8拍周期数,保存到R5

MOV DPTR,#S_PARA

MOVC A,@A+DPTR

MOV R5,A

NEXTCYC:

ACALL SOUND

DJNZ R5,NEXTCYC

RET

;==============================

;===========发声子程序===========

;==============================

SOUND:

SETB SPK

ACALL SDELAY

CLR SPK

ACALL SDELAY

RET

;==============================

;===========延时子程序===========

;==============================

SDELAY:

MOV A,R4 ;延时值在R4内

MOV R0,A

XL2:

MOV R1,#03H

DL1:

NOP

DJNZ R1,DL1

DJNZ R0,XL2

RET

;==============================

;===========1/8拍周期表==========

;==============================

S_PARA:

DS 1DH

DB 15H,16H,00

DB 19H,00H,1CH,00H,1FH,21H,00H,25H

DB 00H,29H,2CH,00H,31H,34H,37H,00H

DB 3EH,41H,00H,49H,00H,52H,57H,00H

DB 62H

;==============================

;===========延时参数表===========

;==============================

DELAY_T:

DS 1DH

DB 7EH,77H,00H

DB 6AH,00H,5EH,00H,54H,4FH,00H,46H

DB 00H,3FH,3BH,00H,35H,32H,2FH,00H

DB 2AH,27H,00H,23H,00H,1FH,1DH,0C0H

DB 1AH

;==============================

;============歌曲表=============

;==============================

TABLE:

DW 2504H,2704H,2904H,2504H

DW 2504H,2704H,2904H,2504H

DW 2904H,2A04H,2C08H

DW 2904H,2A04H,2C08H

DW 2C02H,2E02H,2C02H,2A02H,2904H,2504H

DW 2C02H,2E02H,2C02H,2A02H,2904H,2504H

DW 2904H,2004H,2508H

DW 2904H,2004H,2508H

DW 0000H

END

童鞋们可能发现了,数据表TABLE里面的数据才是歌曲数据。也就是说,只要我们改变TABLE表里面的数据,就可以播放不同的歌曲了。比如下面这一首《兰花草》:

;==============================

;============歌曲表=============

;==============================

TABLE:

DW 2202H,2902H,2902H,2902H,2906H,2702H ;我从山中来

DW 2502H,2702H,2502H,2402H,2208H ;带着兰花草

DW 2E02H,2E02H,2E02H,2E02H,2E06H,2C02H ;种在小园中

DW 2902H,2C02H,2D02H,2A02H,2908H ;祈祷花开早

DW 2902H,2E02H,2E02H,2C02H,2906H,2702H ;一日看三回

DW 2502H,2702H,2502H,2402H,2206H,1D02H ;看得花时过

DW 1D02H,2502H,2502H,2402H,2206H,2902H ;兰花却依然

DW 2702H,2502H,2402H,2002H,2208H ;苞也无一个

DW 0000H

END

在TABLE表里面的数据都是字类型的,也就是说可以拆分成2个DB数据。前一个DB数据,我们用来存放音色,也就是“https://www.doczj.com/doc/e55424238.html,.xi”;后一个DB我们用来存放音长,就是每个音的长度。

对于音色,可以查下面的表,数值越大,频率越高,音色也就越高(X.的意思是低音)。而对于音长,数值越大,响的越持久。

125H1.19H

227H2.1BH

329H3.1DH

42AH4.1FH

52CH5.20H

62EH6.22H

730H7.24H

如果写出来的歌曲不是很像,多调试一下就可以了。

2 软件设计

2.1 播放原理

声音的频谱范围通常约为几十到几千赫兹,通过程序控制单片机的I/O口可输出不同频率的矩形波。当该矩形波的频率位于声音频谱范围内时,在单片机的I/O口接上喇叭就能发出声音。然后利用延时程序控制矩形波的高、低电平持续时间,即改变矩形波的频率,即可产生不同的音调,从而发出不同的声音,再让矩形波输出的长短对应

节拍,就可以实现单片机对音乐的演奏。

2.2 音调和节拍编码

单片机奏乐只需弄清楚两个概念,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。

由于各个音调对应的频率是已知的,因此,播放音乐时,应对乐曲中出现的音调进行编码,并找出单片机播放这些音调所对应的定时初值。表1所列是音调编码与定时器的初值表,其中频率是已知的,编码可以自己设置,而定时初值是怎样得来的呢?下面以“低6”为例进行说明。“低6”的频率f为440 Hz,其对应的周期为:T=1/f=1/440=272μs。单片机上对应蜂鸣器的I/O口来回取反的时间应为:t=T/2=2272/2=1136μs。单片机奏乐时,其定时器为工作方式1,若以振荡器的十二分频信号为计数脉冲,如果单片机晶振为12MHz,则1μs计数一次。所以,对于“低6”,其定时器的初值应

该是:216-1136=64400。

对节拍的控制可通过延时程序来实现。表2所列是节拍编码表。若以1拍的时长为400ms为例,1/2拍的时长为200ms,1/4拍的时长为100ms。首先,这样,确定一个基本时长的延时程序,比如以100ms为基本延时时间,那么,1/4拍可以调用一次延时程序,1/2拍需调用二次延时程序,1拍需调用四次延时程序,依次类推。

2.3 编程

音调和节拍都进行过编码后,那么,一首乐曲就可以用若干个8位的简码表示。比如“生日快乐歌”的第一个简码是“82H”,由表1可知,其高四位“8”表示音调“中5”,对应的频率是784Hz,对应的定时器初值是64898;另由表2可知,其低四位“2”表示节拍为“2/4拍”。这样,任意一首乐曲的简码都可以通过乐谱提取软件获得,而得到简码后,就可以编程了。图3所示是单片机播放音乐的程序流程图,本文使用的是定时器0,音调的高低由定时器来控制P3.7并按一定频率取反实现,节拍的长短由延时程序控制。流程图中的“TABLE”是由表1中的定时初值组成的。

语音放大器的设计(全面)

电子电工教学基地 实 验 报 告 实验课程:模拟电路实验及仿真实验名称:语音放大电路的设计设计人员: 完成日期: 2012年6月27日

0、引言在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 一、设计目的及要求 【设计目的】1.通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。 2.通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 【设计要求】 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试 测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。4)功率放大电路的组装与调试 测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输出电压、静态电源电流等技术指标。 5)整体电路的联调与试听 6)应用Multisim软件对电路进行仿真分析

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

三种放大电路

基于三种电路对电流放大的研究摘要:放大电路时指能量的控制和转换,用能量比较小的输入信号来控制 另一个能源,使输出端的负载得到的能量比较大的信号。放大的对象是变化量,放大的前提是传输不失真。 三种放大电路的基本组态: 三种放大电路为:共发射极放大电路,共基极放大电路,共集电极放大电路。 1、共发射极放大电路 三极管V:实现电流放大。集电极直流电源Ucc:确保三极管工作在放大状态。集电极负载电阻Rc:将三极管集电极电流变化转为电压变化,以实现电压放大。基极偏置电阻Rb:为放大电路提供静态工作点。耦合电容C1和C2:隔直流通交流。 工作原理:Ui直接加在三级管V的基极和发射极之间,引起基极电流ib作相应的变化。通过V的电流放大作用,V的集电极电流ic也将变化。ic的变化引起V的集电极和发射极之间的电压UCE变化。UCE中的交流分量uce经过C2畅通的传送给负载RL,成为输出交流电压u。,实现电压放大作用。 (1)静态分析:

共发射极放大电路的直流通路和静态工作点 (2)求静态工作点上图Q点为静态工作点。 2、共集电极放大电路

A是一个共集组态的单管放大电路,b为等效电路。则由a图电路的基极回路 可求得基极电流为电流的放大倍数由图b等效电路可知。 3、共基极放大电路

直流通路与静态工作稳定电路相同。 电流的放大倍数 没有电流的放大作用。 电压放大倍数 具有电压放大作用,没有倒向作

用。共基极放大电路具有输出电压与输入电压同相,电压放大倍数高、输入电阻小、输出电阻大等特点。由于共基极电路有较好的高频特性,故广泛用于高频或宽带放大电路中。 三种电路的比较: 1.共射电路既能放大电压又能放大电流,具有较大的电压放大倍数和电流放大倍数,输入电阻在三种电路中居中,输出电阻较大,频带较窄。常做低频放大电路的单元电路。 2. 共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大,输出电阻最小的电路,电压放大倍数接近1,具有电压跟随特点。常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用。 3. 共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,频率特性是三种接法中最好的电路。常用于宽频带放大电路。 三极管的放大电路、 三极管的电流放大作用是基极电流对集电极电流的控制作用。要使三极管正常放大信号,发射结应加正向电压,集电结应加反向电压。 三极管的电流分配关系为:三极管电流放大倍数为 当△Ib有微小变化,就能引起△Ic的较大变化,这就是三极管的电流放大作用。 晶体三极管的三种基本放大电路接法分别为:共发射极接法、共基极接法、共集电极接法。

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

语音放大电路设计

内容摘要 本文介绍了一种语音放大电路,它由前置放大器、带通滤波器和功率放大器组成,能对300——3000Hz的语音信号进行放大,降低外来噪声。并用Multisim 进行仿真实验,以期达到所要求的效果。 关键字:前置放大器带通滤波器功率放大器

目录 一、设计目的 (1) 二、设计题目及分析 (1) 三、概要设计 (1) 四、详细设计 (1) 五、测试分析 (6) 六、附录 (7)

一、设计目的 在电子电路中,输入语音信号往往混杂着噪声和其他不同频率成分的干扰,因此我们设计该电路,使其尽可能减小噪声,滤除300——3000Hz以为的频率成分,同时,尽可能地放大有用信号,从而得到清晰的语音信号,并将它通过扬声器输出。 二、设计题目及分析 此语音放大器由三部分组成,原理框图如图2-1。 图2-1 语音放大器原理框图 其中,各级要求如下。 ①前置放大器的输入信号≤5mV,输入阻抗为10KΩ,可用元件741运算放大器。 ②带通滤波器3dB带通范围:300——3000Hz。 ③功率放大器输出功率Po≥0.5W,输出阻抗Ro=4Ω,输出功率连续可调,可用元件 LM386功率放大器。 ④电源电压为±12V。 三、概要设计 (1)假设带通滤波器通带增益为0dB,且功率放大器采用LM386的20倍接法,若要提供足够的功率(扬声器8Ω,输出功率≥0.5W),则可设功率放大器的输入信号有效值为100mV,此时8Ω的扬声器获得功率为0.5W,故在此前置放大器级,假设输入信号为5mV,至少需要对其放大30倍。在此前置放大器放大倍数选为50倍,若采用运算放大器的反向组态,则反馈电阻采用500KΩ的电阻,此时输入阻抗为10KΩ。(2)带通滤波器可由低通滤波器和高通滤波器串联组成。其中,低通滤波器截止频率为3KHz,高通滤波器截止频率为300Hz。为了确保通带增益为0dB,此处高通滤波器和低通滤波器均采用有源滤波器,由于运放数量的限制,此电路中仅使用二阶滤波器,相对于一阶滤波器,它能较快的收敛,滤波器设计可由Filter Solution软件辅助完成。 (3)该功率放大器可直接采用20倍放大的接法,为了能够达到输出功率连续可调,可在信号输入端与地之间接入可调电阻,输出阻抗可在电路正常工作后,能够输出不失真的情况下,通过在输出端串接电阻使输出阻抗Ro=4Ω。 四、详细设计 (1)前置放大器 前置放大器亦为小信号放大器。语音信号属于低频信号,多采用单端方式传输,其中混有噪声和其他频率分量,在此级应尽量一致低频分量和噪声等,放大有用信号。故在信号输入放大器前,接入一隔直电阻,去掉直流成分,由3中分析,放大器采用741的反相组态,放大倍数为50倍,反馈电阻为500KΩ,输入阻抗10KΩ。具体电路如图4-1所示。

语音放大电路设计精编版

语音放大电路设计精编 版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

一、语音放大电路的设计 通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 要求: (1)采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路; 假设语音信号的为一正弦波信号,峰峰值为5mV,频率范围为100Hz~1KHz,电路总体原理图如下所示; 具体 设计 方案 可以 参照 以下 电路: 图4 语音放大电路 前置放大电路: 采用同相比例放大器,放大倍数为: A V=1+100KΩ 10KΩ =11

带通滤波电路为: 带通滤波器A1的放大倍数计算: A vf1=1+ 27KΩ 100KΩ =1.27 A vf2=1+ 27KΩ 100KΩ =1.27 则带通滤波器的放大倍数为: A V=A vf1?A vf2 =1.272=1.6129 采用低通和高通二阶有源巴特沃斯滤波器器串联连接,按照设计要求低通滤波器截止频率为1KHz,高通滤波器截止频率大于100Hz: f high= 1 2πRC = 1 2π15K?0.1μ =106Hz f low= 1 2πRC = 1 2π15K?0.01μ =1061Hz 功率放大电路: 是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级为准互补输出级功放电路。 外接元件最少的用法: 静态时输出电容上电压为V CC2 ?,最大不失真输出电压的峰-峰值为电压V CC,最大输出 P=(CC √2 ) 2 R L = V CC2 R L = (1)仔细分析以上电路,弄清电路构成,指出前置放大器的增益为多少dB?通带滤波器的增益为多少dB? 前级放大器的增益为21dB,带通滤波器的增益为 (2)参照以上电路,焊接电路并进行调试。 a、将输入信号的峰峰值固定在5mV,分别在频率为100Hz和1KHz的条件下测 试前置放大的输出和通带滤波器的输出电压值,计算其增益,将计算结果同上面分析的理论值进行比较。 经过实际测量,前级放大器的实际增益约为20dB,带通滤波器的增益约为 0dB。 b、能过改变10K殴的可调电阻,得到不同的输出,在波形不失真的条件下,测 试集成功放LM386在如图接法时的增益; 调节电位器,可得功放的实际增益约为25dB。 c、将与LM386的工作电源引脚即6引脚相连的10uF电容断开,观察对波形的 影响,其作用是什么?

实验5 三种基本组态晶体管放大电路

课程编号 实验项目序号 本科学生实验卡和实验报告 信息科学与工程学院 通信工程专业2015级1班 课程名称:电子线路 实验项目:三种基本组态晶体管放大电路 2017——2018学年第一学期 学号: 201508030107 姓名:毛耀升专业年级班级:通信工程1501班

四合院102 实验室组别:无实验日期: 2017年12 月26日

图5.1 工作点稳定的共发射极放大电路 2、打开仿真开关,用示波器观察电路的输入波形和输出波形。单击示波器上 Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。根据输入端 电流表的读数计算输入电阻; 3、利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数, 再测量输出波形幅值,然后用下列公式计算输出电阻Ro;其中Vo是负载电阻 开路时的输出电压; 4、连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调 整示波器A通道参数,再测量、计算电压放大倍数。并说明旁路电容的作用。 (二)共集电极放大电路 1、建立共集电极放大电路如图5.2所示。NPN型晶体管取理想模式,电流放大系 数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入 端电流表设置为交流模式;

图5.2 工作点稳定的共集电极放大电路 2、打开仿真开关,用示波器观察电路的输入波形和输出波形。单击示波器上Expand按钮放大 屏幕,测量输出波形幅值,计算电压放大倍数。根据输入端电流表的读数计算输入电阻; 3、仿照5.3.1中的步骤3求电路输出电阻。 (三)共基极放大电路 1、建立共基极放大电路,如图5.3所示。NPN型晶体管取理想模式,电流放大系数设置为50。 用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表; 图5.3 工作点稳定的共基极放大电路 2、打开仿真开关,用示波器观察电路的输入波形和输出波形。单击示波器上Expand按钮放大 屏幕,测量输出波形幅值,计算电压放大倍数。根据输入端电流表的读数计算输入电阻; 3、仿照5.3.1步骤3求电路输出电阻。

运算放大器电路分析详解

透解放大器 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

专设—语音控制放大器及原理图

目录 1、课程设计目的 (1) 2、课程设计内容和要求 (1) 2.1、设计内容 (1) 2.2、设计要求 (1) 3、设计方案 (2) 3.1、设计思路 (2) 3.2、工作原理及硬件框图 (3) 3.3、硬件电路原理图 (6) 4、课程设计总结 (7) 5、参考文献 (8)

1、设计目的: ①掌握电子电路的一般设计方法和设计流程; ②学习使用PROTEL软件绘制电路原理图及印刷板图; 2、设计内容和要求(包括原始数据、技术参数、条件、设计要求等):2.1、设计内容 在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 2.2、设计要求 查阅语音识别的相关资料,掌握低频小信号放大电路和功放电路的设计方法,设计一个由集成运算放大器组成的语音放大电路。 电路要求: (1)前置放大器 输入信号:Uid <=10mv, 输入阻抗:Ri>=10k. (2)有源带通滤波器 带通频率范围:300~3000Hz (3)功率放大器 最大不失真输出功率:Pom>=5w 负载阻抗:RL==4. 根据设计要求和已知条件进行下面的分析,并计算和选取单电路的元件数:

音频功率放大器模拟电路设计

1方案设计 (4) 2方案比较 (7) 3单元模块设计 (8) 3.1直流稳压电源 (8) 3.2前置放大 (10) 3.3 滤波器设计 (11) 3.3.1主要元器件 (11) 3.3.2 低频滤波器电路 (13) 3.3.3 带频滤波器电路 (13) 3.3.3 带频滤波器电路 (14) 3.4功率放大器电路 (14) 3.4.1主要元器件介绍 (14) 3.4.2 电路工作原理介绍 (16) 4 软件设计 (16) 4.1P ROTEL 99SE软件 (17) 4.2W ORD 2003软件 (17) 5系统调试 (17) 系统总图 (17) 6 系统功能 (18) 7.总结与体会 (19) 文献 (20) 附录:电路原理图 (21) 相关设计图 (21) 相关设计软件 (21)

- 2 - 音频功率放大器 摘要:本音频功率放大器由四部分组成:电源,前置放大级,滤波器,功率放 大电路。电源电路输入交流电,输出18V 的直流电,为集成功率放大器供电;再经过变换输出+12V 与-12V 的直流电,为滤波器及前置放大级的运算放大器的供电。前置放大级将音频信号放大至功率放大器所能接受的范围。滤波器电路,分为高通滤波器、中通滤波器、低通滤波器,将输入的音频信号分为不同频率音频信号,并设有开关可以按个人喜好调节输出音频信号。功率放大电路,将输入的信号功率放大。 关键字:音频功率放大器、电源、滤波器、功放电路 Abstract: The audio power amplifier consists of four parts: power supply, level preamp, filter, power amplifier circuit. AC input power supply circuit, output DC 18V, power supply for the integrated power amplifier; another transform output +12 V and-12V DC, in order to filter and preamp-level op-amp power supply. Preamp-level audio signal amplification will be acceptable to the scope of power amplifier. Filter circuit, is divided into high-pass filter, in-pass filter, low pass filter, the input audio signal into different frequency audio signal and a switching regulator in accordance with personal preference, audio output. Power amplifier circuit, the input signal power amplifier. Key words: Audio power amplifier, power supply, filter, power amplifier circuit

语音放大电路设计报告

附件1: 学号:0121112370724 课程设计 题目语音放大电路的设计 学院 专业通信工程 班级通信GJ1101 姓名董沛 指导教师许建霞 2013 年 1 月 6 日

语音放大电路的设计 1 绪论 1.1 课题背景及目的 在日常生活和工作中,经常会遇到这样一些问题:如在检修各种机器设备时,常常需要能依据故障设备的异常声响来寻找故障,这种异常声响的频谱覆盖面往往很广,需要高亮度的声音以传达消息,例如校园广播,大型会议等,而仅仅凭人们自己的喉咙是无法实现的,因而要用到信号放大器。声音信号频率低,在放大的过程中极易受到外界的干扰,又如:在打电话时,有时往往因声音太大或干扰太大而难以听清对方讲的话,于是需要一种既能放大语音信号又能降低外来噪声的仪器……诸如以上原因,具有类似功能的实用电路实际上就是一个能识别不同频率范围的小信号放大系统。所以本课题要求采用集成运算放大器完成语音放大电路。有利于培养我的技开发能力和创新精神,并有一定的实用意义。 2实验目的 通过实验培养市场素质,工艺素质,自主学习能力,分析问题解决问题的能力及团队精神;通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 3设计原理 3.1 已知条件 → → → → 语音放大器是一个典型的多级放大器,其框图如上图所示,前置级主要完 成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要求要宽,噪声要小。有源滤波器主要实现对输入信号高低音的调整。功率放大级主要决定了输出

功率的大小,非线性失真系数等指标,要求效率高,失真尽可能小,输出功率高。 因为max o P =5w,所以此时的输出电压L o R P V o max ==4.5V ,要使输入为10mV 的信号放大为4.5V 的输出,所需要的总放大倍数为 = =i v V V A 0 450 3.2性能指标 1)前置放大器 (1)输入信号Uid ≦10m V; (2)输入阻抗Ri=100K Ω; (3)共模抑制比KCMR ≧60dB 。 2)有源带通滤波器 带通频率范围300Hz~3KHz 。 3)功率放大器 ① 最大不失真输出功率Pomax ≥5W; ② 负载阻抗RL =4Ω; ③ 电源电压+5V,+12V, 4)输出功率连续可调 ① 直流输出电压≤50mV(输出开路时); ② 静态电源电流≤100mA(输出短路时)。 3.3 要求 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的元件参数。 2)置放大电路的组装与调试 测量置放大电路的差模电压增益AUd 、共模电压增益AUc 、共模抑制比KCMR 、带宽BW?1、输入电压Ri?等各项技术指标,并与设计要求值行比较。 3)源带通滤波电路的组装与调试 测

基本共射极放大电路电路分析

基本共射极放大电路电路分析 基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2.电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公

共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。 3.共射电路放大原理 4.放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带 (1)放大倍数

(2)输入电阻Ri (3)输出电阻Ro

(4)通频带 问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100Hz~10kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 放大电路的图解分析法 1.直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路

模拟电路基础知识大全

一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。 7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF= (1/F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ), (1+AF )称为反馈深度。 11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。

12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。 17、模拟乘法器输出与输入的关系式是U0=(KUxUy ) 1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。 2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。 6、晶体三极管具有放大作用时,发射结(正偏),集电结(反偏)。 7、三极管放大电路共有三种组态()、()、()放大电路。

利用Matlab分析运算放大器电路

能力拓展训练任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 利用Matlab分析运算放大器电路 初始条件: 1 Matlab软件6.3以上版本 2运算放大器等效电路 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 题目内容: 2. 课程设计说明书应包括: a)设计任务及要求 b)方案比较及认证 c)程序设计基本思想,程序流程图,部分源程序及注解 d)调试记录及结果分析 e)参考资料 f)附录:全部源程序清单 g)总结 时间安排: 2013年选题、查阅资料和方案设计 2013年编程 2013年调试程序,改进与提高 2013年撰写设计报告(有调试过程及结果的截屏) 2013年答辩和交课程设计报告 指导教师签名: 2013 年月日 系主任(或责任教师)签名:年月日

目录 1前言........................................................................................................................... 12系统分析................................................................................................................... 2 2.1任务及要求.................................................................................................... 2 2.2分析与计算.................................................................................................... 2 2.2.1电路频率响应分析............................................................................. 2 2.2.2自激分析............................................................................................. 33编程和仿真............................................................................................................... 44仿真结果与分析....................................................................................................... 55小结........................................................................................................................... 76心得体会................................................................................................................... 8参考文献...................................................................................................................... 9附录.......................................................................................................................... 10

相关主题
文本预览
相关文档 最新文档