当前位置:文档之家› VSEPR模型判别分子构型

VSEPR模型判别分子构型

VSEPR模型判别分子构型
VSEPR模型判别分子构型

1940年,西奇威克(Sidgwick)等在总结实验事实的基础上提出了一种简单的模型,用于预测简单分子或离子的立体结构。六十年代初,吉列斯比和尼霍尔姆(Nyholm)等发展了这一模型。因该模型思想方法质朴浅显,在预见分子结构方面简单易行,而成为大学基础化学的基本教学内容,并于新一轮课程改革中引入高中化学教学。这就是价层电子对互斥模型(Valence Shell Electron Pair Repulsion),常以其英文的缩写形式VSEPR来表示。

1、来自生活中的一个游戏现象

吹气球是大家熟悉的生活游戏,如果将每个气球吹成一样大小,将其中的两个通过吹气口系在一起,你会发现这两个气球自然成一直线,再向其中加入一个气球并通过吹气口系在一起,你会发现这三个气球均匀地分开成正三角形分布。依次再向其中加入一个气球并通过吹气口系在一起,你会有什么预期?你会发现结果与你的预期如此地吻合:四个大小相同的气球成正四面体分布,五个大小相同的气球成三角双锥分布,六个大小相同的气球成正八面体分布。见图:

我们很容易从这一游戏现象受到启迪:当物体所占空间因素相同时,它们彼此趋向均匀分布。这一规律在自然界乃至人类社会生活中并不鲜见,我们不难找到类似的和接近的例子。

2、VSEPR模型要点

VSEPR模型认为,分子的几何构型总是采取电子对排斥作用最小的那种结构。因为这样可使体系的能量最低,中心原子价层的电子对总是按照最合适的空间方式进行分布。见下表。

VSEPR模型简朴通俗,应用简单易行,显现了它的独特魅力并引人入胜。

3、VSEPR模型判别分子构型的基本程序

中心原子的价层如果没有孤电子对,那么每一个电子对就代表一个共价键,此时电子对的空间分布就是分子的几何构型。例如,BeCl2分子中Be原子的两个价电子分别与两个Cl原子形成的两个共价键,没有孤电子对,故它是直线型结构。又如CH4分子中的C原子价层有四个电子对,这四个价电子对代表了四条C-H健,C原子价层无孤电子对,故CH4属四面体结构。

如果中心原子的价层存在孤电子对时,则应先考虑不同电子对之间的斥力后,再确定分子的构型。不同电子对间斥力的大小的顺序是:孤电子对-孤电子对>孤电子对-键电子对>键电子对-键电子对。

价层电子对互斥模型是根据中心原子周围价层电子对的数目,确定价层电子对在中心原子周围的理想排布,然后再根据价层电子对间斥力的大小,以体系的排斥能最小为原则来确定分子的几何构型。

4、价层电子对和孤电子对的确定

用通式AX n L m来表示所有只含一个中心原子的分子或离子的组成,式中A表示中心原子,X表示配位原子(也叫端基原子),下标n表示配位原子的个数,L表示中心原子上的孤电子对,下标m是电子对数。已知分子或离子的组成和原子的排列顺序时,m值可用下式确定:

例如:

注:有时计算出来的m值不是整数,如NO2,m=,这时应当作m=1来对待,因为单电子也要占据一个孤对电子轨道。

通式AX n L m里的(n+m)的数目称为价层电子对数,令n+m=z,则可将通式改写成另一种通式AY z。因此,z的数目决定了一个分子或离子中的价层电子对在空间的分布,由此可以画出VSEPR理想模型。

值得一提的是,这里的价层电子对的“对”未必就是二个电子,事实上一个价层电子对表示一个成键区或表示一个空间占位,这就是如果出现有奇电子(有一个成单电子)或重键,可把这个单电子或重键当作电子对来看待的原因。

5、应用VSEPR模型中的“8n+2m”规则确定孤电子对

用VSEPR判断分子构型,困难就在于中心原子周围有没有孤电子对。一种更简便的方法——(8n+2m)较好地解决了这一困惑。

设中心原子为A,配位原子为X,孤电子对为L,再设配位原子数为n,孤电子对数为m,则分子式可为AX n L m。若组成分子的元素都是主族元素,整个分子的价电子总数为V,则V与n、m有如下关系:V=8n+2m m=(V-8n)/2

例如,三氧化硫分子,价电子总数为:V=6+6×3=24,m=(V-8×3)/2=(24-8×3)/2=0

可知S原子价层无孤电子对,故三氧化硫是平面三角形结构。

又如,五氯化磷分子的价电子总数:V=5+7×5=40,m=(V-8×5)/2=(40-8×5)/2=0

P原子价层无孤电子对,故五氯化磷为三角双锥结构。

再如硝酸根的价电子总数为(离子的电荷计入总价电子数):V=5+6×3+1=24,m=(V-8×3)12=(24-8×3)12=0 N原子价层无孤电子对,故硝酸根的结构是平面三角形。

亚硝酸根的价电子总数为:V=5+6×2+1=18,m=(V-8×2)/2=(18-8×2)12=1

可知氮原子价层有一个孤电子对,故亚硝酸根为V型结构。

通过上述诸例可以看出V=8n+2m是以“八隅体”结构为基础的。所以,本规则主要是适合主族元素的化合物,若配位原子是氢原子时,应改为V=2n+2m,因为氢原子仅需两个电子就可达稳定结构。

6、根据价层电子对斥力最小原则确定分子或离子的实际几何构型

对于含有5个及5个以上价层电子对、其中并含有孤电子对的分子或离子,如何根据价层电子对斥力最小原则判断其实际构型,是VSEPR应用的又一难点。

例如,SF4属于AX4L1=AY5,其VSEPR理想模型为三角双锥体,排除孤对电子的分子立体结构(由于孤对电子的位置不同)有两种可能的模型:

哪一种结构更合理呢?

价层电子对之间的斥力分别有90°、120°、180°三种方向角,最小方向角的斥力是决定分子几何构型的主要因素。下表为90°方向角斥力分析:

故预测其分子几何构型是II。

再如,ClF3属AX3L2=AY5,价层电子对理想模型为三角双锥型,其分子几何构型可能有以下三种:

下表为90°方向角斥力分析:

故预测其分子几何构型是III,即“T”形。

由以上两例可知,按斥力大小的顺序:孤电子对-孤电子对>孤电子对>键电子对>键电子对-键电子对,只要最小方向角斥力最小,即得偏离理想模型发生“畸变”的实际分子或离子几何构型。

据此,可得以下AX n L m排布图:

7、价层电子对斥力作用对键角影响的定性解释

键角是描述分子几何结构的重要参数,键角大小是价层电子对斥力作用的综合体现。

由于键合电子对受到左右两端带正电原子核的吸引,而孤对电子对只受到一端原子核吸引,相比之下,孤对电子对较“胖”,占据较大的空间,而键合电子对较“瘦”,占据较小的空间。这样就解释了斥力大小的顺序:孤电子对-孤电子对>孤电子对-键电子对>键电子对-键电子对。如:CH4、NH3、H2O中的键角∠HAH 分别为°、°、°。

类似地,重键较单键占据较大的空间,故有斥力大小的顺序:t-t>t-d>d-d>d-s>s-s(t-叁键,d-双键,s-单键)

又如,SO2Cl2分子属AX4L0=AY4,因S=O键是双键,S-Cl键是单键,据顺序有:∠OSO>109°28''''∠ClSCl<∠OSCl<109°28''''。

此外,键的极性对键角也有影响。中心原子电负性较大,成键电子对将偏向中心原子,成键电子对之间斥力增大,键角增大,如:NH3、PH3、AsH54c分子中的键角(∠HAH)依次为107°、°、°;配位原子电负性较大,成键电子对将偏离中心原子,成键电子对之间斥力减小,键角减小,如:H2O、OF2分子中的键角(AOA)依次为°、102°。据此,可解释下列键角变化:NO2+、NO2、NO2-键角(∠ONO)依次为180°、°、°。

价层电子对互斥模型是一个定性模型,与杂化轨道理论相比,它只能对分子的空间构型作定性的描述,而不能对分子的成键原理、键的稳定性做出相应的说明。但该模型抓住了价层电子对间斥力的大小比较,因此它的很多预测有着相当的正确性。但由于模型较简单,用来解释某些分子的空间构型时却有困难,例如过渡元素配离子的空间构型,用价层电子对互斥模型就得不到正确的解释。

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

SPSS操作方法:判别分析例题

为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。试建立判别函数,判定广东、西藏分别属于哪个收入类型。判别指标及原始数据见表9-4。 1991年30个省、市、自治区城镇居民月平均收人数据表 单位:元/人 x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体) x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体) x3:人均来源于国有经济单位标准工资 x8:人均从工作单位得到的其他收入 x4:人均集体所有制工资收入 x9:个体劳动者收入 5

贝叶斯判别的SPSS操作方法: 1. 建立数据文件 2.单击Analyze→ Classify→ Discriminant,打开Discriminant Analysis 判别分析对话框如图1所示: 图1 Discriminant Analysis判别分析对话框 3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。 从对话框左侧的变量列表中选分组变量Group进入Grouping Variable 框,并点击Define Range...钮,在打开的Discriminant Analysis: Define Range对话框中,定义判别原始数据的类别数,由于原始数据分为3类,则在Minimum(最小值)处输入1,在Maximum(最大值)处输入3(见图2)。。 选择后点击Continue按钮返回Discriminant Analysis主对话框。 图2 Define Range对话框 4、选择分析方法 Enter independent together 所有变量全部参与判别分析(系统默 认)。本例选择此项。 Use stepwise method 采用逐步判别法自动筛选变量。

苏教版高中化学选修3讲义分子的空间构型

第一单元分子构型与物质的性质 第1课时分子的空间构型目标与素养:1.能准确判断共价分子中中心原子的杂化轨道类型,能用杂化轨道理论和价层电子对理论判断分子的空间构型。(宏观辨识与微观辨析)2.利用“等电子原理”推测分子或离子中中心原子的杂化轨道类型及空间构型。(证据推理与模型认知) 一、杂化轨道理论与分子的空间构型 1.sp3杂化与CH4分子的空间构型 (1)杂化轨道的形成 碳原子2s轨道上的1个电子进入2p空轨道,1个2s轨道和3个2p轨道“混合”,形成能量相等、成分相同的4个sp3杂化轨道。 (2)sp3杂化轨道的空间指向 碳原子的4个sp3杂化轨道指向正四面体的4个顶点,每个轨道上都有一个未成对电子。 (3)共价键的形成 碳原子的4个sp3杂化轨道分别与4个H原子的1s轨道重叠形成4个相同的σ键。 (4)CH4分子的空间构型 CH4分子为空间正四面体结构,分子中C—H键之间的夹角都是109.5°。

(1)杂化轨道数与参与杂化的原子轨道数相同,但形状不同。 (2)杂化轨道为使相互间的排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同。 (3)杂化轨道只用于形成σ键或者用来容纳未参与成键的孤电子对。 (4)未参与杂化的p轨道,可用于形成π键。 2.sp2杂化与BF3分子的空间构型 (1)sp2杂化轨道的形成 硼原子2s轨道上的1个电子进入2p轨道。1个2s轨道和2个2p轨道发生杂化,形成能量相等、成分相同的3个sp2杂化轨道。 (2)sp2杂化轨道的空间指向 硼原子的3个sp2杂化轨道指向平面三角形的三个顶点,3个sp2杂化轨道间的夹角为120°。 (3)共价键的形成 硼原子的3个sp2杂化轨道分别与3个氟原子的1个2p轨道重叠,形成3个相同的σ键。 (4)BF3分子的空间构型 BF3分子的空间构型为平面三角形,键角为120°。 3.sp杂化与BeCl2分子的空间构型 (1)杂化轨道的形成 Be原子2s轨道上的1个电子进入2p轨道,1个2s轨道和1个2p轨道发生杂化,形成能量相等、成分相同的2个sp杂化轨道。 (2)sp杂化轨道的空间指向 两个sp杂化轨道呈直线形,其夹角为180°。

判别分析-四种方法

第六章 判别分析 §6.1 什么是判别分析 判别分析是判别样品所属类型的一种统计方法,其应用之广可与回归分析媲美。 在生产、科研和日常生活中经常需要根据观测到的数据资料,对所研究的对象进行分类。例如在经济学中,根据人均国民收入、人均工农业产值、人均消费水平等多种指标来判定一个国家的经济发展程度所属类型;在市场预测中,根据以往调查所得的种种指标,判别下季度产品是畅销、平常或滞销;在地质勘探中,根据岩石标本的多种特性来判别地层的地质年代,由采样分析出的多种成份来判别此地是有矿或无矿,是铜矿或铁矿等;在油田开发中,根据钻井的电测或化验数据,判别是否遇到油层、水层、干层或油水混合层;在农林害虫预报中,根据以往的虫情、多种气象因子来判别一个月后的虫情是大发生、中发生或正常; 在体育运动中,判别某游泳运动员的“苗子”是适合练蛙泳、仰泳、还是自由泳等;在医疗诊断中,根据某人多种体验指标(如体温、血压、白血球等)来判别此人是有病还是无病。总之,在实际问题中需要判别的问题几乎到处可见。 判别分析与聚类分析不同。判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。对于聚类分析来说,一批给定样品要划分的类型事先并不知道,正需要通过聚类分析来给以确定类型的。 正因为如此,判别分析和聚类分析往往联合起来使用,例如判别分析是要求先知道各类总体情况才能判断新样品的归类,当总体分类不清楚时,可先用聚类分析对原来的一批样品进行分类,然后再用判别分析建立判别式以对新样品进行判别。 判别分析内容很丰富,方法很多。判别分析按判别的组数来区分,有两组判别分析和多组判别分析;按区分不同总体的所用的数学模型来分,有线性判别和非线性判别;按判别时所处理的变量方法不同,有逐步判别和序贯判别等。判别分析可以从不同角度提出的问题,因此有不同的判别准则,如马氏距离最小准则、Fisher 准则、平均损失最小准则、最小平方准则、最大似然准则、最大概率准则等等,按判别准则的不同又提出多种判别方法。本章仅介绍四种常用的判别方法即距离判别法、Fisher 判别法、Bayes 判别法和逐步判别法。 §6.2 距离判别法 基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类。 距离判别法,对各类(或总体)的分布,并无特定的要求。 1 两个总体的距离判别法 设有两个总体(或称两类)G 1、G 2,从第一个总体中抽取n 1个样品,从第二个总体中抽取n 2个样品,每个样品测量p 个指标如下页表。 今任取一个样品,实测指标值为),,(1'=p x x X ,问X 应判归为哪一类? 首先计算X 到G 1、G 2总体的距离,分别记为),(1G X D 和),(2G X D ,按距离最近准则

电子排布式杂化轨道理论判断分子空间构型练习题(附答案)

电子排布式杂化轨道理论判断分子空间构型练习题 一、单选题 1.下列不属于共价键成键因素的是( ) A.共用电子对在两原子核之间高概率出现 B.共用的电子必须配对 C.成键后体系能量降低,趋于稳定 D.两原子体积大小要适中 2.关于CS 2、SO 2、NH 3三种物质的说法中正确的是( ) A.CS 2在水中的溶解度很小,是由于其属于极性分子 B.SO 2和NH 3均易溶于水,原因之一是它们都是极性分子 C.CS 2为非极性分子,所以在三种物质中熔、沸点最低 D.NH 3在水中溶解度很大只是由于NH 3分子有极性 3.下列说法正确的是( ) A.若把H 2S 分子写成H 3S 分子,违背了共价键的饱和性 B.H 3O +的存在说明共价键不具有饱和性 C.所有共价键都有方向性 D.两个原子轨道发生重叠后,电子仅存在于两核之间 4.374℃、22.1MPa 以上的超临界水具有很强的溶解有机物的能力,并含有较多的H +和OH -,由此可知超临界水( ) A.显中性,pH 等于7 B.表现出非极性溶剂的特性 C.显酸性,pH 小于7 D.表现出极性溶剂的特性 5.某物质的实验式为43PtCl 2NH ?,其水溶液不导电,加入3AgNO 溶液也不产生沉淀,以强碱处理并没有3NH 放出,则关于此化合物的说法中正确的是( ) A. 配合物中中心原子的电荷数和配位数均为6 B. 该配合物可能是平面正方形结构 C. -Cl 和3NH 分子均与4+Pt 配位 D. 配合物中-Cl 与4+Pt 配位,而3NH 分子不配位 6.下列说法中正确的是( ) A.NO 2、SO 2、BF 3、NCl 3分子中没有一个分子中原子的最外层电子都满足了8电子稳定结构 B.P 4和CH 4都是正四面体形分子且键角都为109°28′ C.4NH +的电子式为 ,离子呈平面正方形结构 D.NH 3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强

判断分子的构型上课讲义

学习资料 二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示: 仅供学习与参考

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 电子对数目成键电子对 数目孤电子对数 目 分子的空间 构型 实例 2 2 0 直线型二氧化碳 3 3 0 三角形三氟化硼 2 1 V型二溴化锌4 4 0 四面体甲烷 3 1 三角锥氨气 2 2 V型水 5 5 0 三角双锥五氯化磷 4 1 变形四面体四氟化硫 3 2 T型三氟化溴 2 3 直线型二氟化氙6 6 0 八面体六氟化硫 5 1 四角锥五氟化碘 4 2 正方形四氟化氙以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配

位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断

判别分析的基本原理讲课稿

判别分析的基本原理

判别分析的基本原理和模型 一、判别分析概述 (一)什么是判别分析 判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品属于哪一类的多元统计分析方法。 判别分析方法处理问题时,通常要给出用来衡量新样品与各已知组别的接近程度的指标,即判别函数,同时也指定一种判别准则,借以判定新样品的归属。所谓判别准则是用于衡量新样品与各已知组别接近程度的理论依据和方法准则。常用的有,距离准则、Fisher 准则、贝叶斯准则等。判别准则可以是统计性的,如决定新样品所属类别时用到数理统计的显著性检验,也可以是确定性的,如决定样品归属时,只考虑判别函数值的大小。判别函数是指基于一定的判别准则计算出的用于衡量新样品与各已知组别接近程度的函数式或描述指标。 (二)判别分析的种类 按照判别组数划分有两组判别分析和多组判别分析;按照区分不同总体的所用数学模型来分有线性判别分析和非线性判别分析;按照处理变量的方法不同有逐步判别、序贯判别等;按照判别准则来分有距离准则、费舍准则与贝叶斯判别准则。 二、判别分析方法 (一)距离判别法 1.基本思想:首先根据已知分类的数据,分别计算各类的重心,即分组(类)均值,距离判别准则是对于任给一新样品的观测值,若它与第i 类的重心距离最近,就认为它来自第i 类。因此,距离判别法又称为最邻近方法(nearest neighbor method )。距离判别法对各类总体的分布没有特定的要求,适用于任意分布的资料。 2.两组距离判别 两组距离判别的基本原理。设有两组总体B A G G 和,相应抽出样品个数为21,n n , n n n =+)(21,每个样品观测p 个指标得观测数据如下,

第六节 简单分子的空间结构

第六节简单分子的空间结构 在前面几节,我们学习了几种常见的空间模型,本节将着重探讨简单分子的空间构型。这里会涉及不少杂化理论、价层电子互斥理论、离域π键和等电子体原理,本节不着重探讨,请大家参考有关竞赛和大学参考书,或是《高中化学竞赛辅导习题集——三维化学》选编的某些内容。下表是通过杂化理论和价层电子互斥理论确定的常见分子的空间构型,供大家参考。

【讨论】给出一个分子或离子,我们一般先找出中心原子,确定它的成键电子对数和孤电子对数,判断杂化类型和电子对构型,再判断分子或离子的构型。由于等电子体具有类似的空间结构,我们也可以据此判断复杂的分子或离子的空间构型。我们结合以下例题具体讨论。 【例题1】磷的氯化物有PCl3和PCl5,氮的氯化物只有NCl3,为什么没有NCl5?白磷在过量氯气(其分子有三种不同的相对分子质量)中燃烧时,其产物共有几种不同分子。① 【分析】PCl5中心原子P有3d轨道,能与3s、3p轨道一起参与杂化,杂化类型为sp3d,构型为三角双锥。第二问是通过同位素来考察三角双锥的空间构型:“三角”是一个正三角形的三个顶点,等价的三个点;“双锥”是对称的两个锥顶。P35Cl5的37Cl的一取代物可在角上和锥顶上2种情况;37Cl的二取代物可在两个角上、两个锥顶上和一个角一个锥顶上3种情况;利用对称性,三取代物、四取代物与二取代物、一取代物是相同的。共计有(1+2+3)×2=12种。 【解答】N原子最外层无d轨道,不能发生sp3d杂化,故无NCl5。 12种。 【练习1】PCl5是一种白色固体,加热到160℃不经过液态阶段就变成蒸气,测得180℃下的蒸气密度(折合成标准状况)为9.3g/L,极性为零,P-Cl键长为204pm和211pm两种。继续加热到250℃时测得压力为计算值的两倍。PCl5在加压下于148℃液化,形成一种能导电的熔体,测得P-Cl 的键长为198pm和206pm两种。(P、Cl相对原子质量为31.0、35.5)回答如下问题: ①180℃下,PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。 ②在250℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。 ③PCl5熔体为什么能导电?用最简洁的方式作出解释。 ④PBr5气态分子结构与PCl5相似,它的熔体也能导电,但经测定其中

分子的空间构型(选修三)

电离能与电负性变化 同周期(左右)同主族(上下) 原子结构核电荷数逐渐增大增大 能层(电子层)数相同增多 原子半径逐渐减小逐渐增大 元素性质化合价最高正价由+1+7负价 数=(8—族序数) 最高正价和负价数均相同,最高 正价数=族序数 元素的金属性和非 金属性 金属性逐渐减弱,非金属性 逐渐增强 金属性逐渐增强,非金属性逐渐 减弱 第一电离能呈增大趋势(注意反常点: ⅡA族和ⅢA族、ⅤA族和 ⅥA族) 逐渐减小 电负性逐渐增大逐渐减小 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素第一电离能的运用: a.电离能是原子核外电子分层排布的实验验证. b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价). d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱). 例8.下列各组元素,按原子半径依次减小,元素第一电离能逐渐升高的顺序排列的是A.K、Na、Li B.N、O、C C.Cl、S、P D.Al、Mg、Na

由传递函数转换成状态空间模型

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211ΛΛ )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=---ΛΛ 假设1+=m n 外部描述 ←—实现问题:有了内部结构—→模拟系统 内部描述 SISO ???+=+=du cx y bu Ax x & 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()() ()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++L L ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m ΛΛ 对上式取拉氏反变换,则 ???++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m &Λ&Λ1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x Λ&,于是有 ?????? ?+----===-u x a x a x a x x x x x n n n n 12113 22 1Λ&M &&

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断

V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断 V=8+7×4=8n+2m,这里n=4,∴m=2, ∴G=m+n=2+4=6,所以XeF4的分子构型为正方形 当配位原子中有氢原子且V<16时:V=2r+8n+2m, G=m+n+r。

例:CH4分子构型的判断 V=4+1×4=2r+8n+2m,这里r=4,n=0,∴m=0,∴G=m+n+r=0+0+4=4,所以CH4的分子构型为四面体NH3分子构型的判断 V=5+1×3=2r+8n+2m,这里r=3,n=0,∴m=1, ∴G=m+n+r=1+0+3=4,所以NH3的分子构型为三角锥 H2O分子构型的判断 V=6+1×2=2r+8n+2m,这里r=2,n=0,∴m=2, ∴G=m+n+r=2+0+2=4,所以H2O的分子构型为V型 HClO分子构型的判断 V=1+7+6=2r+8n+2m,这里r=1,n=1,∴m=2, ∴G=m+n+r=2+1+1=4,所以HClO的分子构型为V型HNO分子构型的判断 V=1+5+6=2r+8n+2m,这里r=1,n=1,∴m=1, ∴G=m+n+r=1+1+1=3,所以HNO的分子构型为V型HCN分子构型的判断 V=1+4+5=2r+8n+2m,这里r=1,n=1,∴m=0, ∴G=m+n+r=0+1+1=2,所以HCN的分子构型为直线型 注:以上所介绍的方法只有当V为偶数时才适用,当V 为奇数时,只需将V和G看成比它们大1的偶数即可!

空间构型步骤

空间构型步骤 价层电子对理论(VSEPR theory)预测分子空间构型步骤为: 1.确定中心原子中价层电子对数 中心原子的价层电子数和配体所提供的共用电子数的总和减去离子带电荷数除以2 即[价电子对数=1/2(中心原子的价电子数+配位原子提供的σ电子数-离子电荷代数值)],即为中心原子的价层电子对数。 规定:(1)作为配体,卤素原子和H 原子提供1个电子,氧族元素的原子不提供电子; (2)作为中心原子,卤素原子按提供7个电子计算,氧族元素的原子按提供6个电子计算; (3)对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减去正离子的电荷数 (4)计算电子对数时,若剩余1个电子,亦当作1对电子处理。(5) 双键、叁键等多重键作为1对电子看待。 2.判断分子的空间构型 根据中心原子的价层电子对数,从表中找出相应的价层电子对构型后,再根据价层电子对中的孤对电子数,确定电子对的排布方式和分子的空间构型。 电子对数电子对空间排 布 孤电子对数分子类型分子形状(分子空间构型)实例 2 直线0 AB2 直线BeCl2 3 平面三角形0 AB3 平面三角形BF3 1 . . :AB2 V型SnCl2 4 正四面体0 AB4 正四面体CH4 1 :AB3 三角锥NH3 2 . . :AB2 V型H2O 5 三角双锥0 AB5 三角双锥PCL5 1 :AB4 变形四面体TeCl4 2 . . :AB3 T型ClF3 3 . . :AB2 . . 直线I3- 6 正八面体0 AB6 正八面体SF6 1 :AB5 四方锥IF5 2 . . :AB4 平面正方形ICl4 实例分析:试判断PCl5 离子的空间构型。 解:P离子的正电荷数为5,中心原子P有5个价电子,Cl原子各提供1个电子,所以P原子的价层电子对数为(5+5-0)/2 = 5,其排布方式为三角双锥。因价层电子对中无孤对电子,所以PCl5 为三角双锥构型。实例分析:试判断H2O分子的空间构型。解:O是H2O分子的中心原子,它有6个价电子,与O化合的2个H原子各提供1个电子,所以O原子价层电子对数为(6+2)/2 = 4,其排布方式为四面体,因价层电子对中有2对

判别分析与数学建模

判别分析与数学建模 一、问题引入 首先,我们来考虑一下2000年“网易杯”全国大学生数学建模竞赛的A题是关于“DNA 序列分类”的问题: 人类基因组中的DNA全序列是由4个碱基A,T,C,G按一定顺序排成的长约30亿的序列,毫无疑问,这是一本记录着人类自身生老病死及遗传进化的全部信息的“天书”。但是,除了这四种碱基外,人们对它所包含的内容知之甚少,如何破译这部“天书”是二十一世纪最重要的任务之一。在这个目标中,研究DNA全序列具有什么结构,由这4个字符排成的看似随机的序列中隐藏着什么规律,又是解读这部天书的基础,是生物信息学(Bioinformatics)最重要的课题之一。 虽然人类对这部“天书”知之甚少,但也发现了DNA序列中的一些规律性和结构。例如,在全序列中有一些是用于编码蛋白质的序列片段,即由这4个字符组成的64种不同的3字符串,其中大多数用于编码构成蛋白质的20种氨基酸。又例如,在不用于编码蛋白质的序列片段中,A和T的含量特别多些,于是以某些碱基特别丰富作为特征去研究DNA序列的结构也取得了一些结果。此外,利用统计的方法还发现序列的某些片段之间具有相关性,等等。这些发现让人们相信,DNA序列中存在着局部的和全局性的结构,充分发掘序列的结构对理解DNA全序列是十分有意义的。 作为研究DNA序列的结构的尝试,试对以下序列进行分类: 问题:下面有20个已知类别的人工制造的序列(见附表),其中序列标号1—10 为A类,11-20为B类。请从中提取特征,构造分类方法,并用这些已知类别的序列,衡量你的方法是否足够好。然后用你认为满意的方法,对另外20个未标明类别的人工序列(标号21—40)进行分类,把结果用序号(按从小到大的顺序)标明它们的类别(无法分类的不写入): A类;B类 附表: Art-model-data 1.aggcacggaaaaacgggaataacggaggaggacttggcacggcattacacggaggacgaggtaaagg aggcttgtctacggccggaagtgaagggggatatgaccgcttgg 2.cggaggacaaacgggatggcggtattggaggtggcggactgttcggggaattattcggtttaaacgg gacaaggaaggcggctggaacaaccggacggtggcagcaaagga 3.gggacggatacggattctggccacggacggaaaggaggacacggcggacatacacggcggcaacgga cggaacggaggaaggagggcggcaatcggtacggaggcggcgga 4.atggataacggaaacaaaccagacaaacttcggtagaaatacagaagcttagatgcatatgtttttt aaataaaatttgtattattatggtatcataaaaaaaggttgcga 5.cggctggcggacaacggactggcggattccaaaaacggaggaggcggacggaggctacaccaccgtt tcggcggaaaggcggagggctggcaggaggctcattacggggag 6.atggaaaattttcggaaaggcggcaggcaggaggcaaaggcggaaaggaaggaaacggcggatattt cggaagtggatattaggagggcggaataaaggaacggcggcaca 7.atgggattattgaatggcggaggaagatccggaataaaatatggcggaaagaacttgttttcggaaa tggaaaaaggactaggaatcggcggcaggaaggatatggaggcg 8.atggccgatcggcttaggctggaaggaacaaataggcggaattaaggaaggcgttctcgcttttcga caaggaggcggaccataggaggcggattaggaacggttatgagg

spss进行判别分析步骤

spss进行判别分析步骤 1.Discriminant Analysis判别分析主对话框 如图1-1 所示 图1-1 Discriminant Analysis 主对话框 (1)选择分类变量及其范围 在主对话框中左面的矩形框中选择表明已知的观测量所属类别的变量(一定是离散变量),

按上面的一个向右的箭头按钮,使该变量名移到右面的Grouping Variable 框中。 此时矩形框下面的Define Range 按钮加亮,按该按钮屏幕显示一个小对话框如图1-2 所示,供指定该分类变量的数值范围。 图1-2 Define Range 对话框 在Minimum 框中输入该分类变量的最小值在Maximum 框中输入该分类变量的最大值。按Continue 按钮返回主对话框。 (2)指定判别分析的自变量

图1-3 展开Selection Variable 对话框的主对话框 在主对话框的左面的变量表中选择表明观测量特征的变量,按下面一个箭头按钮。 把选中的变量移到Independents 矩形框中,作为参与判别分析的变量。 (3)选择观测量 图1-4 Set Value 子对话框

如果希望使用一部分观测量进行判别函数的推导而且有一 个变量的某个值可以作为这些观测量的标识, 则用Select 功能进行选择,操作方法是单击Select 按钮展开Selection Variable。选择框如图1-3 所示。 并从变量列表框中选择变量移入该框中再单击Selection Variable 选择框右侧的Value按钮, 展开Set Value(子对话框)对话框,如图1-4 所示,键入标识参与分析的观测量所具有的该变量值, 一般均使用数据文件中的所有合法观测量此步骤可以省略。(4)选择分析方法 在主对话框中自变量矩形框下面有两个选择项,被选中的方法前面的圆圈中加有黑点。这两个选择项是用于选择判别分

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法

以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断

V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断 V=8+7×4=8n+2m,这里n=4,∴m=2, ∴G=m+n=2+4=6,所以XeF4的分子构型为正方形 当配位原子中有氢原子且V<16时:V=2r+8n+2m, G=m+n+r。例:CH4分子构型的判断 V=4+1×4=2r+8n+2m,这里r=4,n=0,∴m=0,∴G=m+n+r=0+0+4=4,所以CH4的分子构型为四面体NH3分子构型的判断 V=5+1×3=2r+8n+2m,这里r=3,n=0,∴m=1, ∴G=m+n+r=1+0+3=4,所以NH3的分子构型为三角锥 H2O分子构型的判断 V=6+1×2=2r+8n+2m,这里r=2,n=0,∴m=2, ∴G=m+n+r=2+0+2=4,所以H2O的分子构型为V型 HClO分子构型的判断 V=1+7+6=2r+8n+2m,这里r=1,n=1,∴m=2, ∴G=m+n+r=2+1+1=4,所以HClO的分子构型为V型HNO分子构型的判断 V=1+5+6=2r+8n+2m,这里r=1,n=1,∴m=1, ∴G=m+n+r=1+1+1=3,所以HNO的分子构型为V型

状态空间模型

状态空间模型概述 状态空间模型是动态时域模型,以隐含着的时间为自变量。状态空间模型在经济时间序列分析中的应用正在迅速增加。其中应用较为普遍的状态空间模型是由Akaike提出并由Mehra进一步发展而成的典型相关(canonical correlation)方法。由Aoki等人提出的估计向量值状态空间模型的新方法能得到所谓内部平衡的状态空间模型,只要去掉系统矩阵中的相应元素就可以得到任何低阶近似模型而不必重新估计,而且只要原来的模型是稳定的,则得到的低阶近似模型也是稳定的。 状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。 协调积分概念的提出具有两方面的意义:

①如果一组非平稳时间序列是协调积分过程,就有可能同时考察他们之间的长期稳定关系和短期关系的变化; ②如果一组非平稳时间序列是协调积分过程,则只要将协调回归误差代入系统状态方程即可纠正系统下一时刻状态的估计值,形成所谓误差纠正模型。 Aoki的向量值状态空间模型在处理积分时间序列时,引入了协调积分概念和与之相关的误差纠正方法,因此向量值状态空间模型也是误差纠正模型。一个向量值时间序列是否为积分序列需判断其是否含有单位根,即状态空间模型的动态矩阵是否含有量值为1的特征值。根据动态矩阵的特征值即可将时间序列分解成两个部分,其中特征值为1的部分(包括接近1的“近积分”部分)表示随机游走趋势,其余为弱平稳部分,两部分分别建模就得到了两步建模法中的趋势模型和周期模型。 状态空间模型的假设条件是动态系统符号马尔科夫特性,即给定系统的现在状态,则系统的将来与其过去独立。 [编辑] 状态空间模型的分类 状态空间模型包括两个模型:一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;二是输出或量

判别分析中Fisher判别法的应用教材

1 绪论 1.1课题背景 随着社会经济不断发展,科学技术的不断进步,人们已经进入了信息时代,要在大量的信息中获得有科学价值的结果,从而统计方法越来越成为人们必不可少的工具和手段。多元统计分析是近年来发展迅速的统计分析方法之一,应用于自然科学和社会各个领域,成为探索多元世界强有力的工具。 判别分析是统计分析中的典型代表,判别分析的主要目的是识别一个个体所属类别的情况下有着广泛的应用。潜在的应用包括预测一个公司是否成功;决定一个学生是否录取;在医疗诊断中,根据病人的多种检查指标判断此病人是否有某种疾病等等。它是在已知观测对象的分类结果和若干表明观测对象特征的变量值的情况下,建立一定的判别准则,使得利用判别准则对新的观测对象的类别进行判断时,出错的概率很小。而Fisher判别方法是多元统计分析中判别分析方法的常用方法之一,能在各领域得到应用。通常用来判别某观测量是属于哪种类型。在方法的具体实现上,采用国内广泛使用的统计软件SPSS (Statistical Product and Service Solutions),它也是美国SPSS公司在20世纪80年代初开发的国际上最流行的视窗统计软件包之一 1.2 Fisher判别法的概述 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。Fisher 判别法是判别分析中的一种,其思想是投影,Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,…,xp)寻找一个能使它降为一维数值的线性函数y(x):()j j x y = x∑ C 然后应用这个线性函数把P维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。这个线性函数应该能够在把P维空间中的所有点转化为一维数值之后,既能最大限度地缩小同类中各个样本点之间的差异,又能最大限度地扩大不同类别中各个样本点之间的差异,这样才可能获得较高的判别效率。在这里借用了一元方差分析的思想,即依据组间均方差与组内均方差之比最大的原则来进行判别。 1.3 算法优缺点分析

分子空间构型推断

杂化轨道数的计算方法和空间构型 一、杂化轨道数(价层电子对数n)的计算方法 方法一:价层电子对互斥理论(VSEPR) 公式:n=[中心原子价电子数+ 每个配原子提供的价电子数×m-电荷数]÷2 注意式中: (1)中心原子的价电子数=主族序数 例如:B:3,C:4,N:5,O:6,X:7,稀有气体:8 (2)配位原子提供的价电子数: H与卤素:1,O与S为0 N原子做配位原子时为-1 (3)电荷数:要把“±”一起代进去。 例1:SO2(6+0)/2=3 sp2杂化。 例2:SO3(6+0)/2=3 sp2杂化。 例3:SO32-(6+0+2)/2=4 sp3杂化。 例4:SO42-(6+0+2)/2=4 sp3杂化。 例5:CN-(4-1+1)/2=2 sp杂化。 例6:NH4+(5+4-1)/2=4 sp3杂化。 例7:ClO3-(7+0+1)/2=4 sp3杂化。 例8:PO33-(5+0+3)/2=4 sp3杂化。 例9:PO43-(5+0+3)/2=4 sp3杂化。 练习:sp杂化:BeCl2、CO2; sp2杂化:BF3、HCHO; sp3杂化CH4、NH3、H2O。 方法二:因为杂化轨道只能用于形成σ键或用来容纳孤电子对,故有: 公式:杂化轨道数n=中心原子σ键个数+孤电子对数 例:HClO中心原子为O:H- -Cl n=2+2=4 结合上述信息完成下表: 代表物杂化轨道数杂化轨道类型分子结构 CO22+0=2 sp 直线形 CH2O 3+0=3 sp2平面三角形 CH44+0=4 sp3正四面体型 SO22+1=3 sp2V形 NH33+1=4 sp3三角锥型 H2O 2+2=4 sp3V形 1

相关主题
文本预览
相关文档 最新文档