当前位置:文档之家› DBL理论模型及方解石溶解沉积速率预报-岩溶动力学重点试验室

DBL理论模型及方解石溶解沉积速率预报-岩溶动力学重点试验室

DBL理论模型及方解石溶解沉积速率预报-岩溶动力学重点试验室
DBL理论模型及方解石溶解沉积速率预报-岩溶动力学重点试验室

2020-2021年高中物理模型分类解析模型9 杆绳速度分解(解析版)

模型9 杆绳速度分解(解析版) 1.模型特点 沿绳(或杆)方向的速度分量大小相等。 2.思路与方法 合速度就是物体的实际运动速度v 分速度 方法:v 1与v 2的合成遵循平行四边形定则。 【典例1】(湖北省“荆、襄、宜七校考试联盟”2017 2018学年高一下学期期中)人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速率是( B ) A .v 0cos θ B .v 0cos θ C .v 0sin θ D .v 0sin θ 【答案】B 【解析】物体A 的运动是由绳的运动和垂直绳子方向的转动合成的,如图,则v =v 0 cos θ,故选B 。 【变式训练1】如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。当绳与河岸的夹角为α时,船的速率为 ( )

A. v sin α B. αsin v C. v cos α D. α cos v 【答案】 C 【解析】如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识有 v 船=v cos α,所以C 正确,A 、B 、D 错误。 【典例2】A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A 以v 1的速度向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示。物体B 的运动速度v B 为(绳始终有拉力)( ) A. βαsin sin 1v B. βαsin cos 1v C. βαcos sin 1v D. 1cos cos v β α 【答案】 D 【解析】 A 、B 两物体的速度分解如图 由图可知:v 绳A =v 1cos α v 绳B =v B cos β 由于v 绳A =v 绳B

专题10 曲线运动及其实例分析(解析版)-2021届高考物理热点题型归纳与变式演练

2021届高考物理一轮复习热点题型归纳与变式演练 专题10 曲线运动及其实例分析 【专题导航】 目录 热点题型一曲线运动的条件和特征 (1) 热点题型二运动的合成与分解 (4) 热点题型三小船渡河模型 (10) 热点题型四绳(杆)端速度分解模型 (13) 类型一绳端速度分解模型 (14) 类型二杆端速度分解模型 (16) 【题型归纳】 热点题型一曲线运动的条件和特征 【题型要点】1.物体做曲线运动的条件与轨迹分析

相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断 (1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 4.特征 (1)运动学特征:做曲线运动的物体的速度方向时刻发生变化,即曲线运动一定为变速运动. (2)动力学特征:由于做曲线运动的物体所受合外力一定不为零且和速度方向始终不在同一条直线上(做曲线运动的条件).合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小. (3)轨迹特征:曲线运动的轨迹始终夹在合外力的方向与速度的方向之间,而且向合外力的一侧弯曲. (4) 能量特征:如果物体所受的合外力始终和物体的速度垂直,则合外力对物体不做功,物体的动能不变; 若合外力不与物体的速度方向垂直,则合外力对物体做功,物体的动能发生变化. 【例1】(2020·杭州质检)如图,这是物体做匀变速曲线运动的轨迹的示意图.已知物体在B点的加速度方向与速度方向垂直,则下列说法中正确的是() A.C点的速率小于B点的速率 B.A点的加速度比C点的加速度大

弹簧阻尼系统动力学模型ams仿真

弹簧阻尼系统动力学模 型a m s仿真 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

震源车系统动力学模型分析报告一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(WorkingGrid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1设置工作网格对话框 2)在ADAMS/View零件库中选择矩形图标,参数选择为“onGround”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“NewPart”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4创建弹簧阻尼器

4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。 图2-5添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置EndTime为5.0,StepSize为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。 图3-1位移与时间图像以及FFT变换图像 图3-2速度与时间图像以及FFT变换图像 图3-3加速度与时间图像以及FFT变换图像 通过傅里叶变换,从图中可以看出系统为三阶系统,表现出三阶的固有频率,通过测量得到w1=2.72,w2=4.29,w3=6.15.。 2)为了更进一步验证系统的各阶固有频率,我们给系统施加一定频率的正弦激振力,使系统做受迫振动,观察系统的振动情况, (a)F1=50*sin(2*3.14*w1*time)时,物块振动的速度与时间的图像如3-4所示。 图3-4 F1作用下速度与时间图像以及FFT变换图像

系统动力学模型部分集

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

绳杆端速度分解模型问题的分析含答案

绳(杆)端速度分解模型 一、基础知识 1、模型特点 沿绳(或杆)方向的速度分量大小相等. 2、思路与方法 合运动→绳拉物体的实际运动速度v 分运动→?? ? 其一:沿绳(或杆)的速度v 1 其二:与绳(或杆)垂直的分速度v 2 方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________.

答案 v cos θ F cos θ m 解析物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v0,v= v 0 cos θ . 拉力F产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度 a=F cos θ m . 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v,绳AO 段与水平面的夹角为θ,OB段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大 解析小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果, 所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知 v A = v cos θ . 答案 v cos θ

高考物理热点题型归纳与变式演练:专题10 曲线运动及其实例分析

高考物理一轮复习热点题型归纳与变式演练 专题10 曲线运动及其实例分析 【专题导航】 目录 热点题型一曲线运动的条件和特征 (1) 热点题型二运动的合成与分解 (3) 热点题型三小船渡河模型 (8) 热点题型四绳(杆)端速度分解模型 (10) 类型一绳端速度分解模型 (11) 类型二杆端速度分解模型 (13) 【题型归纳】 热点题型一曲线运动的条件和特征 【题型要点】1.物体做曲线运动的条件与轨迹分析 相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断 (1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小;

(3)当合力方向与速度方向垂直时,速率不变. 4.特征 (1)运动学特征:做曲线运动的物体的速度方向时刻发生变化,即曲线运动一定为变速运动. (2)动力学特征:由于做曲线运动的物体所受合外力一定不为零且和速度方向始终不在同一条直线上(做曲线运动的条件).合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小. (3)轨迹特征:曲线运动的轨迹始终夹在合外力的方向与速度的方向之间,而且向合外力的一侧弯曲. (4)能量特征:如果物体所受的合外力始终和物体的速度垂直,则合外力对物体不做功,物体的动能不变;若合外力不与物体的速度方向垂直,则合外力对物体做功,物体的动能发生变化. 【例1】(2020·杭州质检)如图,这是物体做匀变速曲线运动的轨迹的示意图.已知物体在B点的加速度方向与速度方向垂直,则下列说法中正确的是() A.C点的速率小于B点的速率 B.A点的加速度比C点的加速度大 C.C点的速率大于B点的速率 D.从A点到C点加速度与速度的夹角先增大后减小,速率是先减小后增大 【变式1】(2020·江西上饶市重点中学六校第一次联考)下列关于运动和力的叙述中,正确的是() A.做曲线运动的物体,其加速度方向一定是变化的 B.物体做圆周运动,所受的合力一定是向心力 C.物体所受合力恒定,该物体速率随时间一定均匀变化 D.物体运动的速率在增加,所受合力一定做正功 【变式2】(多选)(2020·宁波月考)光滑水平面上一运动质点以速度v0通过点O,如图所示,与此同时给质点加上沿x轴正方向的恒力F x和沿y轴正方向的恒力F y,则() A.因为有F x,质点一定做曲线运动 B.如果F y<F x,质点向y轴一侧做曲线运动 C.如果F y=F x tan α,质点做直线运动 D.如果F x>F y cot α,质点向x轴一侧做曲线运动

(完整版)绳(杆)端速度分解模型问题的分析(含答案)

绳(杆)端速度分解模型 一、基础知识 1、模型特点 沿绳(或杆)方向的速度分量大小相等. 2、思路与方法 合运动→绳拉物体的实际运动速度v 分运动→????? 其一:沿绳(或杆)的速度v 1 其二:与绳(或杆)垂直的分速度v 2 方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________. 答案 v 0cos θ F cos θm 解析 物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v 0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v 分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v 0,v =v 0 cos θ . 拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度a =F cos θm . 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的

速度多大? 解析小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果,所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知 v A= v cos θ. 答案 v cos θ 3、如图所示,在水平地面上做匀速直线运动的小车, 通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一 时刻的速度分别为v1和v2,绳子对物体的拉力为F T,物体所 受重力为G,则下列说法正确的是() A.物体做匀速运动,且v1=v2 B.物体做加速运动,且v2>v1 C.物体做加速运动,且F T>G D.物体做匀速运动,且F T=G 答案 C 解析把v1分解如图所示,v2=v1cos α,α变小,v2变大,物体做加速运动,超重,F T>G,选项C正确. 4、人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0 匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为 θ,则物体A实际运动的速度是()

活性污泥法的反应动力学原理及其应用

活性污泥法的反应动力学原理及其应用 活性污泥法反应动力学可以定量或半定量地揭示系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 它主要包括:① 基质降解的动力学,涉及基质降解与基质浓度、生物量等因素的关系;② 微生物增长动力学,涉及微生物增长与基质浓度、生物量、增长常数等因素的关系;③ 还研究底物降解与生物量增长、底物降解与需氧、营养要求等的关系。 在建立活性污泥法反应动力学模型时,有以下假设:① 除特别说明外,都认为反应器内物料是完全混合的,对于推流式曝气池系统,则是在此基础上加以修正;② 活性污泥系统的运行条件绝对稳定;③ 二次沉淀池内无微生物活动,也无污泥累积并且水与固体分离良好;④ 进水基质均为溶解性的,并且浓度不变,也不含微生物;⑤ 系统中不含有毒物质和抑制物质。 一、活性污泥反应动力学的基础——米—门公式与莫诺德模式 1、米—门公式 Michaelis—Menton 提出酶的“中间产物”学说,通过理论推导和实验验证,提出了含单一基质单一反应的酶促反应动力学公式,即米—门公式: S K S v m += m ax ν 式中:v ——酶促反应中产物生成的反应速率; m ax v ——产物生成的最高速率; m K ——米氏常数(又称饱和常数,半速常数); S ——基质浓度。

中间产物学说:P E ES S E +??+ 米门公式的图示: 2、莫诺德模式 ① 莫诺德模式的基本形式: Monod 于1942年和1950年曾两次进行了单一基质的纯菌种培养实验,也发现了与上述酶促反应类似的规律,进而提出了与米门公式想类似的表达微生物比增殖速率与基质浓度之间的动力学公式,即莫诺德模式: S K S s +?= m ax μ μ 式中: ( )x dt dx /=μ——微生物的比增殖速率,d kgVSS kgVSS ?/; m ax μ——基质达到饱和浓度时,微生物的最大比增殖速率, S ——反应器内的基质浓度,mg/l ; s K ——饱和常数,也是半速常数。 随后发现,用由混合微生物群体组成的活性污泥对多种基质进行微生物增殖实验,也取得了符合这种关系的结果。 可以假定:在微生物比增殖速率与底物的比降解速率之间存在下列比例关系: v max v=v max O K m

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

绳末端速度的分解处理方法及提升

绳末端速度的分解处理方法及提升 林西一中物理组王冰 在学习“运动的合成和分解”这一部分内容时,会遇到这样一类题:跟不可伸长的绳有关,解题时要进行绳末端速度的分解。学生在学习时表现出困惑和不理解,同时这是学生学习中的难点和易错点。现就这类题结合例题说明,并举一反三,进行解题的提高。 题1. 如图1,人在岸上用跨过滑轮的绳,拉水中小船,人以速度v匀速前进,求当船头绳与水平方向的夹角为θ时,船速V的大小。 学生常见错误: 把船速看作是绳速v 这样画的错误在于:物体的实际运动速度才是合速度,在人拉小船靠岸的过程中,小船的实际运动速度(即合速度)为水平向前,那么把v当做小船的实际速度,当然是不对的。解决问题的关键: (1)弄清题目中所涉及的速度关系; (2)分清哪个是合速度,哪个是分速度; (3)我们的研究对象是物体,用什么手段研究它的运动。 为解决问题,对几个速度及研究对象加以说明: 几个速度: 1,绳端速度:即绳子末端的速度,也就是与绳末端相连的物体的速度,是合速度。例如题1中,绳左端的速度就是人的速度v,绳右端的速度是小船的速度V,v与V都是合速度。2,绳身的“移动”速度:是指绳子通过滑轮的速度,其大小对于同一根绳来说,个点均相同,其方向总是沿着绳子方向。绳身移动速度是联系两端物体速度关系的纽带,它在绳的两端往往又扮演着不同角色,可能等于物体速度,也可能是物体速度的一个分量。 判断方法是:看绳端物体速度方向是否沿着绳子方向,如果绳端速度沿着绳子的方向,那么绳身移动的速度就是物体的速度。例如题1中,绳身移动速度在左端等于人的速度v; 若绳端物体速度方向与绳子有一定夹角时,则绳身速度就是物体的一个分速度,例如题1中,绳身移动速度在右端就是小船速度V的一个分量。 3,绳身的“转动”速度:当绳身移动速度作为绳子某端物体速度的一个分速度时,该绳端物体速度的另一个分速度,就是与绳子垂直的“转动”速度,该速度反映绳子以滑轮为轴,向上或向下转动的快慢。例如题1中,小船靠岸的过程中,绳右端绕滑轮向下转动,则绳右端转动速度的方向是垂直于绳子向下的。 研究对象: 从问题入手,求船速V的大小,以小船为研究对象,那我们分析小船在靠岸的过程中,是一直向前走的,这不能是我们得打答案。题目中给了人的速度v,怎样把人和小船联系起来呢?

绳杆相关联物体的速度求解

绳、杆相关联物体的速度求解 江苏省新沂市第一中学张统勋 绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。 “关联速度”问题特点:沿杆或绳方向的速度分量大小相等。 绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。②在绳或杆连体中,物体实际运动方向就是合速度的方向。③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。 常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果。以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。 一、绳相关联问题 1.一绳一物题型 ⑴所拉的物体匀速运动 【例1】如图1所示, 人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为T,则此时 A.人拉绳行走的速度为v cosθ B.人拉绳行走的速度为v/cosθ C.船的加速度为 D.船的加速度为

解析:船的速度产生了两个效果: 一是滑轮与船间的绳缩短, 二是绳绕滑轮顺时针转动, 因此将船的速度进行分解如图所示, 人拉绳行走的速度v人=v cosθ, A对, B错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为T,与水平方向成θ角,因此T cosθ-f=ma,解得: ,C正确,D错误。 答案:AC。 点评:人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。即若按图3所示进行分解,则水平分速度为船的速度,得人拉绳行走的速度为v/cosθ,会错选B选项。 ⑵匀速拉动物体 【例2】如图4所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为α时,船的速度是多少? 解析:方法1——微元分析法 取小量θ,如图5所示,设角度变化θ所需的时间为Δt,取CD=CB,在Δt时间内船的位移为AB,绳子端点C的位移大小为绳子缩短的长度AD。由于θ→0°,所以∠BDA→90°。所以AD=ABcosα① 又AD=vΔt②

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

绳杆连接物的关联速度

绳(杆)连接物的关联速度 ---梁志亮 绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。希望能通过下面几个例题,帮助同学们消除解题中的困惑。 例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少? 解析: 方法一: 图1 1、找关联点(A点) 2、判断合速度(水平向左) 3、速度的合成与分解(沿绳子与垂直绳子) 4、验证正误(新位置在两坐标轴方向上) 船的实际运动是水平运动,它产生的实际效果可以从图B中的A

点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。由图可知:v=v1/cosθ 方法二:微元法:如图C 1、关联点在很短时间内经过一小位移S 2、绳子缩短了S′=OA-OB=PA=Scosθ

绳子末端速度的分解问题

绳子末端速度的分解问题 信阳高中陈庆威 绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。下面通过对几个典型例题的详细分析,希望能帮助同学们消除解题中的困惑。 例1:如图A所示,在河岸上利用定滑轮拉绳绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少? 解析: 方法一: 1、找关联点(A点) 2、判断合速度(水平向左) 3、速度的合成与分解(沿绳子与垂直绳子) 4、验证正误(新位置在两坐标轴方向上) 船的实际运动是水平运动,它产生的实际效果可以A点为例说明:一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。由图可知:v=v1/cosθ 方法二:微元法: 1、关联点在很短时间内经过一小位移S 2、绳子缩短了S′=OA-OB=PA=Scosθ 3、速度比即是位移比。 例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是【】

A. 加速上升,且加速度不断增大 B. 加速上升,且加速度不断减小 C. 减速上升,且加速度不断减小 D. 匀速上升 解析物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率v A=v1=vsinθ。随着汽车的运动,θ增大,v A=v1增大,故A应加速上升。 由v-t图线的意义知,其斜率为加速度,在0°~90°范围内,随θ角的增大,曲线y=sin θ的斜率逐渐减小,所以A上升的加速度逐渐减小。 答案 B 点评本题主要考查了运动的分解,解题的关键是要分清合速度与分速度。一般情况下,物体相对于给定的参考系(一般为地面)的实际运动就是合运动,本例中,汽车的实际运动就是合运动。另外,运动的分解要按照它的实际效果进行。 例3.如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为() A.v B.v sinθC.v cosθD. v sin θ 解:将A的速度分解为沿绳子方向和垂直于绳子方向, 根据平行四边形定则得,v B=vsinθ.故B正确,A、C、D错误. 故选B.

绳端速度分解模型

绳(杆)端速度分解模型 1.人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A实际运动的速度是() A.v0sinθB. C.v0cosθD. 2.有一个直角支架AOB,OA水平放置,OB竖直向下,OA上套有小环P,OB 上套有小环Q,两环间由一根质量不计不可伸长的细绳相连,小环P受 水平向右外力作用使其匀速向右平动,在P平动过程中,关于Q的运动 情况以下说法正确的是() A.Q匀速上升B.Q减速上升 C.Q匀加速上升D.Q变加速上升 3.一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H.车由静止开始向左做匀加速运动,经过时间t绳子与水平方向的夹角为θ,如图所示,则 A.车向左运动的加速度的大小为 B.车向左运动的加速度的大小为

C.重物m在t时刻速度的大小为 D.重物m在t时刻速度的大小为 、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以速度v1向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示.物 体B的运动速度vB为(绳始终有拉力)() A.v1sinα/sinβB.v1cosα/sinβ C.v1sinα/cosβD.v1cosα/cosβ 5.有一竖直放置的T型架,表面光滑,两质量相等的滑块A、B分别套在水平杆与竖直杆上,A、B用一不可伸长的轻细绳相连,A、B可看作质点,如图所示,开始时细绳水平伸直,A、B静止.由静止释放B后,已知当细绳与竖直方向的夹角为60°时,滑块B沿着竖直杆下滑的速度为v,则连接A、B的绳长为() A. B. C. D.

绳(杆)端速度分解模型问题的分析(含答案)复习课程

绳(杆)端速度分解模型问题的分析(含答案)

仅供学习与交流,如有侵权请联系网站删除 谢谢2 绳(杆)端速度分解模型 一、基础知识 1、模型特点 沿绳(或杆)方向的速度分量大小相等. 2、思路与方法 合运动→绳拉物体的实际运动速度v 分运动→????? 其一:沿绳(或杆)的速度v 1其二:与绳(或杆)垂直的分速度v 2 方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________. 答案 v 0cos θ F cos θm 解析 物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v 0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v 分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v 0,v =v 0cos θ . 拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度a =F cos θm . 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳 AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小

绳端速度分解模型问题的分析

绳(杆)端速度分解模型 一、基础知识 1、 模型特点 沿绳(或杆)方向的速度分量大小相等. 2、 思路与方法 合运动T 绳拉物体的实际运动速度 v 分运动T 其一:沿绳(或杆)的速度V 1 其二:与绳(或杆)垂直的分速度V 2 方法:V 1与V 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动?应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为 V 0,当绳 与水平方向夹角为 0时,物体的速度 v 为 _____________ .若此时绳上的拉力大小为 F ,物体的 质量为m 忽略地面的摩擦力,那么,此时物体的加速度为 _______________ . 解析物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于 v o ; (2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长?即速度 v 分解为沿绳 V o 方向和垂直绳方向的分速度,如图所示, v cos 0 = V o , v = . cos 0 拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为 F eos 0,加速度a F eos 0 = _^. 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为 v ,绳AO 段与水平面的夹角为 0 , 0B 段与水平面的夹角为 a .不计摩擦和轮的质量,则此时小船 的速度多大? 解析 小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果, 所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知 答案 V o cos 0 F eos 0 m

活性污泥法动力学模型的研究进展

活性污泥法动力学模型的研究进展 [摘要]从模型的机理、功能等方面对活性污泥法动力学的微生物模型、传统静态模型和动态模型进行简要的介绍,并分析比较了各自的优缺点。 [关键词]活性污泥法模型ASM 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对于活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder 等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已成为国际废水生物处理领域的研究热点。但我国在该领域的研究尚处于起步阶段,与国际先进水平还存在很大差距。 1微生物模型 1942年,Monod发现均衡生长的细菌的生长曲线与活性酶催化的生化反应曲线类似,1949年发表了在静态反应器中经过系统研究得出的Monod模型[1]:Monod模型实质上是一个经验式,是在单一微生物对单一基质、微生物处 于平衡生长状态且无毒性存在的条件下得出的结论。Monod模型的提出使废水生物处理的设计和运行更加理论化和系统化,提高了人们对废水生物处理机理的认识,进一步促进了生物处理设计理论的发展。由于微生物模型描述的是微生物生长和限制微生物生长的基质浓度之间的关系,它是活性污泥法数学模型的理论基础。微生物模型的不断发展和计算机技术的普及同时也推动了活性污泥数学模型研究的日趋深入。 2传统静态模型 传统静态模型主要有20世纪50-70年代推出的Eckenfelder、Mckinney和Lawrence-McCarty模型,这些模型所采用的是生长-衰减机理[2]。 2.1Eckenfelder模型 该模型提出当微生物处于生长率上升阶段时,基质浓度高,微生物生长速度与基质浓度无关,呈零级反应;当微生物处于生长率下降阶段时,微生物生长主要受食料不足的限制,微生物的增长与基质的降解遵循一级反应关系;当微生物处于内源代谢阶段时,微生物进行自身氧化。 2.2McKinney模型 该模型忽略了微生物浓度对基质去除速度的影响,认为在活性污泥反应器内,微生物浓度与底物浓度相比,属低基质浓度,微生物处于生长率下降阶段,代谢过程为基质浓度所控制,遵循一级反应动力学。并首次提出活性物质的概念,

1.关联速度

模型一速度的合成 两个互成角度的分运动合运动的性质 两个匀速直线运动 一个匀速直线运动、 一个匀变速直线运动 两个初速度为零的 匀加速直线运动 两个初速度不为零 的匀变速直线运动 1.如图所示,红蜡块能在玻璃管的水中匀速上升,若红蜡块在A点 匀速上升的同时,使玻璃管水平向右做匀加速直线运动,则红蜡块实际 运动的轨迹是图中的( ) A.直线P B.曲线Q C.曲线R D.无法确定 2.[对曲线运动轨迹的判断]各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方 向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的( ) 3.如图所示,光滑水平桌面上,一个小球以速度v向右做匀速运动,它经过靠近桌边的竖直木板ad边时,木板开始做自由落体运动.若木板开始运动时,cd边与桌面相齐,则小球在木板上的投影轨迹是( )

4.如图所示的直角三角板紧贴在固定的刻度尺上方,现假使三角板沿刻度尺水平向右匀速运动的同时,一支铅笔从三角板直角边的最下端,由静止开始沿此边向上做匀加速直线运动,下列关于铅笔尖的运动及其留下的痕迹的判断中,正确的是( ) A .笔尖留下的痕迹是一条抛物线 B .笔尖留下的痕迹是一条倾斜的直线 C .在运动过程中,笔尖运动的速度方向始终保持不变 D .在运动过程中,笔尖运动的加速度方向始终保持不变 5.如图所示,一辆邮车以速度u 沿平直公路匀速行驶,在离此公路距离s 处有一个邮递员,当他和邮车的连线与公路的夹角为α时开始沿直线匀速奔跑,已知他奔跑的最大速度为v,试问: (1)他应向什么方向跑才能尽快与邮车相遇 (2)他至少以多大的速度奔跑,才能与邮车相遇 绳(杆)端速度分解模型 1.模型特点 2.思路与方法 合运动→ 分运动→ ? ?? ?? 其一:沿绳 或杆的速度v 1 其二:与绳或杆垂直的分速度v 2 方法: 3.解题的原则: 把物体的实际速度分解为 和 两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.

相关主题
文本预览
相关文档 最新文档