当前位置:文档之家› (完整版)勾股定理知识点总结、经典例题

(完整版)勾股定理知识点总结、经典例题

(完整版)勾股定理知识点总结、经典例题
(完整版)勾股定理知识点总结、经典例题

知识点及例题

知识点一:勾股定理

如果直角三角形的两直角边长分别为: a , b ,斜边长为 c ,那么 a 2+b 2=c 2.即直角三角形中两直角边的平方和等

于斜边的平方.

要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

( 2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些

变式: c 2=a 2+b 2, a 2=c 2-b 2, b 2=c 2-a 2 , 知识点二:用面积证明勾股定理

方法一: 将四个全等的直角三角形拼成如图( 1)所示的正方形。

,所以 。

图( 2)中 ,所以 。

在(3)—1 中,甲的面积 =(大正方形面积)—( 4 个直角三角形面积) , 在(3)—2 中,乙和丙的面

积和 =(大正方形面积)—( 4 个直角三角形面积) 所以,甲的面积 =乙和丙的面积和,即: .

方法四: 如图( 4

)所示,将两个直角三角形拼成直角梯形。

,所以 。

知识点三:勾股定理的作用

c 2=(a+b) 2-2ab 方法三: 将四个全等的直角三角形分别拼成如图

方法

图(1)中

1.已知直角三角形的两条边长求第三边; 2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;

4.利用勾股定理,作出长为

的线段。

2. 在理解的基础上熟悉下列勾股数

满足不定方程 x 2+y 2=z 2的三个正整数, 称为勾股数(又称为高数或毕达哥拉斯数) ,显然,以 x,y,z 为三边长的三角 形一定是直角三角形。

熟悉下列勾股数,对解题是会有帮助的:

①3、4、5②5、12、13;③ 8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当 t>0 时,以 at,bt,ct 为三角形的三边长,此三角形必为直角三角形。 经典例题透析 类型一:勾股定理的直接用法

1、在 Rt △ ABC 中,∠ C=90°

(1)已知 a=6, c=10,求 b , (2)已知 a=40,b=9,求 c ; (3)已知 c=25, b=15,求 a. 思路点拨 : 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析: (1) 在△ ABC 中,∠ C=90

(2) 在△ ABC 中,∠ C=90

举一反三

【变式】 :如图∠B=∠ACD=90°, AD =13, CD =12, BC=3,则AB 的长是多少 【答案】∵∠ ACD =90°

AD = 13, CD=12 ∴AC 2 =AD 2-CD 2

=13 2- 122

=25

∴AC=5

又∵∠ ABC=90 °且 BC=3 ∴由勾股定理可得

AB 2=AC 2-BC 2

=52-32 =16

∴AB= 4

∴AB 的长是 4.

类型二:勾股定理的构造应用

2、如图,已知:在

中,

思路点拨 :由条件 ,想

到构造含

, ,再由勾股定理计算出 AD 、DC 的长,进而求出 BC 的

长.

解析 :作

于 D ,则因

∴ ( 的两个锐角互余)

总结升有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,

(3) 在△ ABC 中,∠ C=90 , c=25,

b=15,a= 为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 , a=6, c=10,b=

, a=40, b=9,c=

求:BC 的长.

角的直角三角形,为此作 于 D ,则有

,,

那么它所对的直角边等于斜边的一半)

根据勾股定理,在 中, 根据勾股定理,在 中,

. ∴.

总结升华 :利用勾股定理计算线段的长, 是勾股定理的一个重要应用 造直角三角形以便应用勾股定理 .

举一反三 【变式 1】如图,已知:

, , 于 P. 求证:

思路点拨 : 图中已有两个直角三角形,但是还没有以 BP 为边的直角三角形 . 因此,我们考虑构造一个以 BP 为 边的直角三角形 . 所以连结 BM. 这样,实际上就得到了 4 个直角三角形 . 那么根据勾股定理,可证明这几条线段的平 方之间的关系 .

解析 :连结 BM ,根据勾股定理,在

中,

.

而在 中,则根据勾股定理有

.

又∵ (已知), ∴.

在 中,根据勾股定理有

∴.

根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长 AD 、 BC 交于 E 。

∵∠A= ∠60°,∠ B=90°,∴∠ E=30°。 ∴AE=2AB=8 , CE=2CD=4 ,

∴ BE 2=AE 2-AB 2=82-42=48,BE= = 。 ∵DE 2= CE 2-CD 2=42-22=12,∴DE=

= 。

∴S 四边形 ABCD =S △ABE -S △CDE = AB · BE- CD · DE=

当题目中没有垂直条件时,也经常作垂线构

分析:如何构造直角三角形是解本题的关键,可以连结 AC ,或延长 AB 、DC 交于 F ,或延长 AD 、BC 交于点 E ,

CD=2 。求:四边形 ABCD 的面积。

变式 2】已知:如图,∠ B= ∠D=90°

类型三:勾股定理的实际应用

(一)用勾股定理求两点之间的距离问题

3、如图所示,在一次夏令营活动中,小明从营地 A 点出发,沿北偏东60°方向走了到达 B 点,然后再沿北偏西30°方向走了500m 到达目的地 C 点。

(1)求A、C 两点之间的距离。

∴∠ DAB= ∠ ABE=60 °

∵30°+∠CBA+∠ABE=180 °

∴∠ CBA=90 °

即△ ABC 为直角三角形

由已知可得:BC=500m ,AB= 由勾股定理可得:

所以

(2)在Rt △ABC 中,

∵ BC=500m ,AC=1000m

∴∠ CAB=30 °

∵∠ DAB=60 °

∴∠ DAC=30 °

即点 C 在点 A 的北偏东30°的方向

总结升华:本题是一道实际问题,从已知条件出发判断出△ ABC 是直角三角形是解决问题的关键。本题涉及平行线的性质和勾股定理等知识。

举一反三

【变式】一辆装满货物的卡车,其外形高 2.5 米,宽 1.6 米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图所示,点D 在离厂门中线0.8 米处,且CD ⊥AB,与地面交于H.

解:OC=1 米(大门宽度一半),

OD =0.8 米(卡车宽度一半)在Rt △OCD 中,由勾股定理得:

CD===0.6米,

C H=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4 米的余量,所以卡车能通过厂门.

(二)用勾股定理求最短问题

4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄 A 、

B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.

解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为

AB+BC+CD =3,AB+BC+CD = 3

图(3)中,在Rt△ ABC 中

同理

∴图(3)中的路线长为

图(4)中,延长EF交BC 于H,则FH⊥BC,BH=CH

由∠ FBH=及勾股定理得:

EA =ED=FB =FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF =

3>2.828>2.732

∴图(4)的连接线路最短,即图(4)的架设方案最省电线.

总结升华:在实际生产工作中,往往工程设计的方案比较多,需要运用所学的数学知识进行计算,比较从中选出最优设计.本题利用勾股定理、等腰三角形的判定、全等三角形的性质.

举一反三

【变式】如图,一圆柱体的底面周长为20cm ,高AB为4cm,BC是上底面的直径.一只蚂蚁从点 A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

解:

∴ AC = = = ≈10.77( cm )(勾股定理) 答:最短路程约为10.77 cm . 类型四:利用勾股定理作长为 的线段

5、作长为

、 、 的线段。

思路点拨: 由勾股定理得,直角边为 1 的等腰直角三角形,斜边长就等于 ,直角边为 和 1 的直角三角形斜 边长就是 ,类似地可作 。

作法:如图所示

作法:如图所示在数轴上找到 A 点,使 OA=3 ,作 AC ⊥OA 且截取 AC=1 ,以 OC 为半径, 以 O 为圆心做弧,弧与

数轴的交点 B 即为 。

类型五:逆命题与勾股定理逆定理

6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. (正确) 2.原命题:对顶角相等(正确) 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. (正确) 4.原命题:角平分线上的点,到这个角的两边距离相等. (正确) 思路点拨: 掌握原命题与逆命题的关系。

解析: 1. 逆命题:有四只脚的是猫(不正确)

2. 逆命题:相等的角是对顶角(不正确)

3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上. ?(正确)

4. 逆命题:到角两边距离相等的点,在这个角的平分线上. (正确) 总结升华: 本题是为了学习勾股定理的

逆命题做准备。

7、如果Δ ABC 的三边分别为 a 、b 、 c ,且满足 a 2+b 2+c 2+50=6a+8b+10c ,判断Δ ABC 的形状。

1)作直角边为 1(单位长)的等腰直角

2)以 AB 为一条直角边,作另一直角边

为 3)顺次这样做下去,最后做到直角三

ACB ,使 AB 为斜边; 1 的直角 。斜边为

,这样斜边 、 、

、 的长度就是

总结升华:( 1)以上作法根据勾股定理均可证明是正确的; ( 2)取单位长时可自定。一般习惯用国际标准的单位,

如 1cm 、 1m 等,我们作图时只要取定一个长为单位即可。

举一反三 【变式】在数轴上表示 的点。

解析: 可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长

为整数,

而 10又是 9和 1这两个完全平方数的和,得另外两边分别是 3和 1。

如图,在 Rt △ABC中,BC=底面周长的一半=10 cm , 根据勾股定理得 (提问:勾股定理)

思路点拨 :要判断Δ ABC 的形状,需要找到 a 、b 、 c 的关系,而题目中只有条件 a 2+b 2+c 2+50=6a+8b+10c ,故只有 从该条件入手,解决问题。

解析 :由 a 2+b 2+c 2+50=6a+8b+10c ,得 : a 2-6a+9+b 2-8b+16+c 2-10c+25=0, ∴ (a-3)2+(b-4) 2+(c-5) 2=0。 ∵ (a-3)2≥

0, (b-4) 2≥ 0, (c-5)2≥ 0。 ∴ a=3, b=4 ,c=5。 ∵ 32+42=52, ∴ a 2+b 2=c 2。

由勾股定理的逆定理,得Δ ABC 是直角三角形。

总结升华 :勾股定理的逆定理是通过数量关系来研究图形的位置关系的 ,在证明中也常要用到。

【变式 2】已知 :△ ABC 的三边分别为 m 2-n 2,2mn,m 2+n 2(m,n 为正整数 ,且 m > n),判断△ ABC 是否为直角三角形 分析 :本题是利用勾股定理的的逆定理, 只要证明 :a 2+b 2=c 2即可

【变式 3】如图正方形 ABCD ,E 为 BC 中点,F 为AB 上一点,且 BF= AB 。 请问 FE 与 DE 是否垂直 ?请说明。 【答案】答: DE ⊥ EF 。

证明:设 BF=a ,则 BE=EC=2a, AF=3a , AB=4a,

∴ EF 2=BF 2+BE 2=a 2+4a 2=5a 2; DE 2=CE 2+CD 2=4a 2+16a 2=20a 2。 连接 DF (如图)

DF 2=AF 2+AD 2=9a 2+16a 2=25a 2。 ∴ DF 2=EF 2+DE 2, ∴ FE ⊥ DE 。

经典例题精析

类型一:勾股定理及其逆定理的基本用法

1、若直角三角形两直角边的比是 3: 4,斜边长是 20,求此直角三角形的面积。

思路点拨: 在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定 理列出方程,求出未知数的值进而求面积。

解析: 设此直角三角形两直角边分别是 3x , 4x ,根据题意得:

(3x )2+(4x )2=202 化简得 x 2= 16;

∴直角三角形的面积= × 3x ×4x =6x 2=96

总结升华: 直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。 举一反三 【 变式 1】等边三角形的边长为 2,求它的面积。 【答案】如图,等边△ ABC ,作 AD ⊥BC 于D

举一反三 【变式 1】四边形 ABCD 中,∠ B=90 °, AB=3 , 【答案】:连结 AC

∵∠ B=90°, AB=3 ,BC=4

∴ AC 2=AB 2+BC 2=25 (勾股定理) ∴ AC=5

∵ AC 2+CD 2=169 ,AD 2=169 ∴ AC 2+CD 2=AD 2

∴∠ ACD=90 °(勾股定理逆定理)

BC=4 ,CD=12 , AD=13 ,求四边形 ABCD 的面积。

证明:

所以△ ABC 是直角三角形 .

则: BD = BC (等腰三角形底边上的高与底边上的中线互相重合) ∵AB =AC =BC =2(等边三角形各边都相等) ∴BD =1

在直角三角形 ABD 中, AB 2= AD 2+BD 2,即: AD 2=AB 2- BD 2= 4-1= 3 ∴AD =

S △ ABC = BC ·AD =

注:等边三角形面积公式:若等边三角形边长为 a ,则其面积为 a 。

变式 2】直角三角形周长为 12cm ,斜边长为 5cm ,求直角三角形的面积。 答案 】设此直角三角形两直角边长分别是 x , y ,根据题意得:

由( 1)得: x+y =7, (x+y ) 2= 49, x 2+2xy+y 2=49 (3)

(3)-(2),得: xy = 12

∴直角三角形的面积是 xy = ×12= 6(cm 2)

【变式 3】若直角三角形的三边长分别是 n+1, n+2, n+3 ,求 n 。

思路点拨: 首先要确定斜边(最长的边)长 n+3 ,然后利用勾股定理列方程求解。 解:此直角三角形的斜边长为 n+3,由勾股定理可得:

(n+1)2+(n+2)2=( n+3)2 化简得: n 2= 4

∴n =±2,但当 n =- 2时, n+1=- 1<0,∴ n = 2

总结升华: 注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是 斜边的情况下,首先要先确定斜边,直角边。

【变式 4】以下列各组数为边长,能组成直角三角形的是( ) A 、8,15,17 B 、4, 5,6 C 、5,8,10 D 、8,39,40

解析: 此题可直接用勾股定理的逆定理来进行判断,

对数据较大的可以用 c 2=a 2+b 2 的变形: b 2=c 2-a 2=(c -a )(c+a )来判断。 例如:对于选择 D , ∵82≠( 40+39)×( 40-39),

∴以 8,39,40 为边长不能组成直角三角形。

∴ S 四边形 ABCD =S △ABC +S △ACD = AB

类型二:勾股定理的应用

2、如图,公路 MN 和公路 PQ 在点 P 处交汇,且∠ QPN =30°,点 A 处有一所中学, AP =160m 。假设拖拉机行 驶时,周围 100m 以内会受到噪音的影响,那么拖拉机在公路 MN 上沿 PN 方向行驶时,学校是否会受到噪声影响?请 说明理由,如果受影响,已知拖拉机的速度为 18km/h ,那么学校受影响的时间为多少秒?

同理可以判断其它选项。 【答案】: A

【变式 5】四边形 ABCD 中,∠ B=90°, AB=3 , 解:连结 AC

∵∠ B=90 °, AB=3 ,BC=4

∴ AC 2=AB 2+BC 2=25 (勾股定理) ∴AC=5

∵AC 2+CD 2=169,AD 2=169 ∴ AC 2+CD 2=AD 2

∴∠ ACD=90 °(勾股定理逆定理)

BC=4 ,CD=12 , AD=13 ,求四边形 ABCD 的面积。 BC+ AC ·CD=36

思路点拨:(1)要判断拖拉机的噪音是否影响学校 A ,实质上是看 A 到公路的距离是否小于 100m, 小于 100m 则

受影响,大于 100m 则不受影响,故作垂线段 AB 并计算其长度。 (2)要求出学校受影响的时间,实质是要求拖拉机对 学校 A 的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。

解析:作 AB ⊥MN ,垂足为 B 。

在 Rt ΔABP 中,∵∠ ABP = 90°,∠ APB = 30°, AP = 160,

∴ AB = AP = 80。 (在直角三角形中, 30°所对的直角边等于斜边的一半) ∵点 A 到直线 MN 的距离小于 100m, ∴这所中学会受到噪声的影响。

如图,假设拖拉机在公路 MN 上沿 PN 方向行驶到点 C 处学校开始受到影响,那么 AC = 100(m ), 由勾股定理得: BC 2=1002-802= 3600,∴ BC = 60。

同理,拖拉机行驶到点 D 处学校开始脱离影响,那么, AD =100(m ),BD =60(m ), ∴CD =120

(m )。

拖拉机行驶的速度为 : 18km/h =5m/s t = 120m ÷ 5m/s = 24s 。

答:拖拉机在公路 MN 上沿 PN 方向行驶时,学校会受到噪声影响,学校受影响的时间为 24 秒。

总结升华 : 勾股定理是求线段的长度的很重要的方法 ,若图形缺少直角条件 ,则可以通过作辅助垂线的方法 ,构造直角 三角形以便利用勾股定理。

举一反三 【 变式 1】如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径” ,在花园内走出了一条 “路”。他们仅仅少走了 _________ 步路(假设 2 步为 1m ),却踩伤了花草。

解析:他们原来走的路为 3+4= 7(m )

设走“捷径”的路长为 xm ,则 故少走的路长为 7- 5= 2(m )

又因为 2 步为 1m ,所以他们仅仅少走了 4 步路。【答案】 4

变式 2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为 1

角形称为单位正三角形。

1)直接写出单位正三角形的高与面积。

2)图中的平行四边形 ABCD 含有多少个单位正三角形?平行四边形 ABCD 的面积是多少? 3)求出图中线段 AC 的长(可作辅助线) 。

答案】( 1)单位正三角形的高为

,面积是

1 的正三角形,这样的三

2)如图可直接得出平行四边形 ABCD 含有 24 个单位正三角形,因此其面积 。

3)过 A 作AK ⊥BC 于点 K (如图所示),则在 Rt △ACK 中,

,故

类型三:数学思想方法 (一)转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.

E 、

F 分别是 AB 、 AC 边上的点,且

形的中线有特殊的性质,不妨先连接

AD .

解:连接 AD .

因为∠ BAC=90 °, AB=AC . 又因为 AD 为△ ABC 的中线, 所以 AD=DC=DB .AD ⊥BC . 且∠ BAD= ∠C=45 °.

因为∠ EDA+ ∠ADF=90 °. 又因为∠ CDF+ ∠ ADF=90 °. 所以∠ EDA= ∠CDF . 所以△ AED ≌△ CFD ( ASA ). 所以 AE=FC=5 . 同理: AF=BE=12 .

在 Rt △AEF 中,根据勾股定理得: ,所以 EF=13。

升华 :此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以 知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直 中求解。

方程的思想方法

图所示,已知△ ABC 中,∠ C=90°,∠ A=60 °,

,求 、

思路点拨: 由 ,再找出 、 的关系即可求出 和 的值。 解:在 Rt △ABC 中,∠ A=60 °,∠ B=90 °-∠A=30

则 ,由勾股定理,得 。 因为 ,所以 ,

, , 。 , , 。

在直角三角形中, 30°的锐角的所对的直角边是斜边的一半。

变式 】如图所示,折叠矩形的一边 AD ,使点 D 落在 BC 边的点 F 处,已知 AB=8cm , BC=10cm ,求

解:因为△ ADE 与△AFE 关于 AE 对称,所以 AD=AF , DE=EF 。 因为四边形 ABCD 是矩形,所以∠ B=∠

C=90°, 在 Rt △ABF 中, AF=AD=BC=10cm , AB=8cm ,

所以 。 所以

的值。

总结升华: 举一反三: EF 的长。

思路点

拨: 三角

所以关键是线段的转化, 3、如图所示,△ ABC 是等腰直角三角形, AB=AC , D 是斜边 BC 的中点, 总结 了解:当已 角三角形 (二) 4、如

设,则。

在Rt△ECF 中,,即,解得。

即EF 的长为5cm 。

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

中考数学二轮复习勾股定理知识点及练习题及答案

中考数学二轮复习勾股定理知识点及练习题及答案 一、选择题 1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=?BEC ,1FG =,则2AB 为( ) A .4 B .5 C .6 D .7 2.如图,点A 的坐标是(2)2, ,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( ) A .(2,0) B .(4,0) C .(-22,0) D .(3,0) 3.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是 ( ) A .等腰三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 4.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( ) A .0个 B .1个 C .2个 D .3个 5.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( ) A .6 B .6 C .42 D .266.已知:如图在△ABC ,△AD E 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论: ①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( )

A.1 B.2 C.3 D.4 7.已知△ABC的三边分别是6,8,10,则△ABC的面积是() A.24 B.30 C.40 D.48 8.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)() A.3 B.5 C.4.2D.4 9.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75?的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为() A.北偏西15?B.南偏西75° C.南偏东15?或北偏西15?D.南偏西15?或北偏东15? 10.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是() A.3 4 B. 3 5 C. 4 5 D. 12 5 二、填空题 11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___. 12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A,B,C是网格线交点).

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.doczj.com/doc/e53397548.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.doczj.com/doc/e53397548.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

勾股定理知识点及练习题附解析

一、选择题 1.如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△PAB=3S△PCD,则动点P到点A,B两点距离之和PA+PB的最小值为() A.5 B.35C.332 D.213 2.如图,在等腰三角形ABC中,AC=BC=5,AB=8,D为底边上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF= () A.5 B.8 C.13 D.4.8 3.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是() A.4 B.5 C.7 D.6 4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( ) A.3 B.15 4 C.5 D. 15 2 5.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()

A .2cm B .2.5cm C .3cm D .4cm 6.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .42 C .8 D .10 7.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间 8.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( ) A .② B .①② C .①③ D .②③ 9.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米 B .15平方千米 C .75平方千米 D .750平方千米 10.如图,在ABC ?中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=?, 4BE =,7AD =,则AB 的长为( ) A .10 B .53 C .213 D .15

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

相关主题
文本预览
相关文档 最新文档