平面三角形单元有限元程序设计
- 格式:docx
- 大小:276.27 KB
- 文档页数:9
第八章 平面问题的有限元分析及三角形单元的应用第一节 概述分析弹性力学平面问题时,最简单的单元式由三个结点组成的三角形单元。
当用以分析平面应力问题时,可将其视为三角板;当用以分析平面应变问题时,则可式为三棱柱。
各单元在结点处为铰结。
图8-1所示位移悬臂梁离散为三角形单元的组合体以矩阵形式列出弹性力学平面问题的基本量和基本方程。
谈形体所受体力分量可表示为[]Tyxy x p p p p p =⎥⎥⎦⎤⎢⎢⎣⎡= (8-1)所受面力分量可表示为[]Tyxy x p p p p p =⎥⎥⎦⎤⎢⎢⎣⎡= (8-2)体内任一点应力分量可表示为[]T xy y x τδδδ= (8-3)任一点的应变分量可表示为[]T xy y x γεεε= (8-4)任一点的位移分量可表示为[]Tv u =δ (8-5)弹性力学平面问题的几何方程的矩阵表达式为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂+∂∂∂∂∂∂=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x u y v y v x u xy y x εεεε (8-6) 平面应力问题的物理方程的矩阵表达式为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡xy y x xy y x E γεεμμμμτσσ2100010112 (8-7)或简写成为 εσD = (8-8)式中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=2100010112μμμμE D (8-9)称为弹性矩阵。
平面应变问题的物理方程也可写成式(8-8),但须将式(8-9)中的E 换成21μ-E,μ换成21μμ-,因此得出⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+-=)1(22100011011)21)(1()1(22μμμμμμμμμE D (8-10)平衡微分方程及边界条件也可以用矩阵表示,但弹性力学有限元位移法中,通常用虚功方程代替平衡微分方程和应力边界条件。
虚功方程的矩阵表达式为⎰⎰⎰⎰⎰***=+tdxdy tds p f ptdxdy f T T σε (8-11)式中:[]Tv u f ***=,表示虚位移;[]Txyx x ****=γεεε,表示与虚位移相对应的虚应变。
附录:平面问题三角形单元源程序******************************************************************* * ANALYSIS PROGTAM OF FINITE ELEMENT METHOD * * FOR PLANE STRESS/STRAIN OF TRIANGULAR ELEMENT * * ----- FEMT3.FOR ----- * *------------------------------------------------------------- * * Subroutines: 1-SDATA, 2-STE, 3-ATE, 4-DTE, 5-BTE, 6-STIFF * * 7-EQUPE, 8-INSCD, 9-BGSMT, 10-SIGME * ******************************************************************* DIMENSION LND(50,3),X(100),Y(100),JR(20,3),PJ(20,3),P(200) REAL KS(200,100)OPEN(5,FILE='FEMT3.DAT')OPEN(6,FILE='FEMT3.OUT',STATUS='NEW')READ(5,*) NJ,NE,NS,NPJ,IPS(结点、单元、支承、荷载、类型)WRITE(6,*)' FINITE ELEMENT ANALYSIS IN PLANE PROBLEM'WRITE(6,*)' SOURCE DATA OUTPUT'WRITE(6,20) NJ,NE,NS,NPJ,IPS20 FORMAT(4X,'NJ',3X,'NE',3X,'NS',3X,'NPJ',2X,'IPS'/1X,5I5)IF(IPS.EQ.0) WRITE(6,*)' PLANE STRESS PROBLEM'IF(IPS.EQ.1) WRITE(6,*)' PLANE STRAIN PROBLEM'CALL SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,T,V,LND,X,Y,JR,PJ)NJ2=2*NJWRITE(6,50) NJ250 FORMAT(/1X,'DEGREES OF FREEDOM=',I5)WRITE(6,60) NW60 FORMAT(1X,'BAND WIDTH=',I5)CALL STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS)(总刚6)CALL EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P)({P}7)CALL INSCD(NS,NW,NJ2,JR,KS,P)(引入支承条件8)CALL BGSMT(NJ,NJ2,NW,KS,P)(解方程9)CALL SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)(求应力10)CLOSE(5)CLOSE(6)END*--------------------------------------------------------C SUBPROGRAM-1C INPUT STRUCTURAL DATASUBROUTINE SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,* T,V,LND,X,Y,JR,PJ)DIMENSION LND(NE,3),X(NJ),Y(NJ),JR(NS,3),PJ(NPJ,3)READ(5,*) E,PR,T,V(弹性模量、泊松比、厚度、容重)WRITE(6,10) E,PR,T,V10 FORMAT(/6X,'E',10X,'PR',9X,'T',9X,'V'/,4F10.2)READ(5,*)((LND(I,J),J=1,3),I=1,NE)(结点编码)WRITE(6,20)20 FORMAT(/1X,'ELEMENT INFORMATION'/3X,'ELEM',3X,* 'I J K'/)WRITE(6,30)(I,(LND(I,J),J=1,3),I=1,NE)30 FORMAT(1X,4I5)READ(5,*)(X(I),Y(I),I=1,NJ)(结点坐标)WRITE(6,40)40 FORMAT(/1X,'COORDINATES OF NODES'/3X,'NODES',* 8X,'X',13X,'Y')WRITE(6,50)(I,X(I),Y(I),I=1,NJ)50 FORMAT(1X,I5,2E15.6)READ(5,*)((JR(I,J),J=1,3),I=1,NS)(约束信息)WRITE(6,60)60 FORMAT(/1X,'CONSTRAINED NODES'/3X,'NODE',3X,'X',4X,'Y') WRITE(6,70)((JR(I,J),J=1,3),I=1,NS)70 FORMAT(1X,3I5)READ(5,*)((PJ(I,J),J=1,3),I=1,NPJ)(荷载信息)WRITE(6,80)80 FORMAT(/1X,'LOAD CASES'/3X,'NODE',8X,'X',13X,'Y')WRITE(6,90)((PJ(I,J),J=1,3),I=1,NPJ)90 FORMAT(1X,F5.0,2E15.6)100 NW=0(半带宽)DO 110 IE=1,NEDO 110 I=1,3DO 110 J=1,3IW=IABS(LND(IE,I)-LND(IE,J))IF(NW.LT.IW) THENNW=IWENDIF110 CONTINUENW=(NW+1)*2IF(IPS.NE.0) THENE=E/(1.0-PR*PR)PR=PR/(1.0-PR)ENDIFEND*---------------------------------------------------------C SUBPROGRAM-2C CALCULATE ELEMENT STIFFNESS MATRIXSUBROUTINE STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6),D(3,3)REAL KE(6,6)CALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL DTE(E,PR,D)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,6DO 10 J=1,6KE(I,J)=0.DO 10 K=1,3DO 10 K1=1,310 KE(I,J)=KE(I,J)+B(K,I)*D(K,K1)*B(K1,J)C=AE*TDO 30 I=1,6DO 30 J=1,630 KE(I,J)=KE(I,J)*CEND*------------------------------------------------ C SUBPROGRAM-3C CALCULATE ELEMENT AREASUBROUTINE ATE(IE,NJ,NE,LND,X,Y,AE)DIMENSION LND(NE,3),X(NJ),Y(NJ)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=.5*(XIJ*YIK-XIK*YIJ)END*----------------------------------------------C SUBPROGRAM-4C CALCULATE ELASTICITY MATRIXSUBROUTINE DTE(E,PR,D)DIMENSION D(3,3)DO 10 I=1,3DO 10 J=1,310 D(I,J)=0.D(1,1)=E/(1.-PR*PR)D(1,2)=E*PR/(1.-PR*PR)D(2,1)=D(1,2)D(2,2)=D(1,1)D(3,3)=.5*E/(1.+PR)END*------------------------------------------------ C SUBPROGRAM-5C CALCULATE MATRIX [B]SUBROUTINE BTE(IE,NJ,NE,LND,X,Y,AE,B)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)DO 10 II=1,3DO 10 JJ=1,610 B(II,JJ)=0.B(1,1)=Y(J)-Y(K)B(1,3)=Y(K)-Y(I)B(1,5)=Y(I)-Y(J)B(2,2)=X(K)-X(J)B(2,4)=X(I)-X(K)B(2,6)=X(J)-X(I)B(3,1)=B(2,2)B(3,2)=B(1,1)B(3,3)=B(2,4)B(3,4)=B(1,3)B(3,5)=B(2,6)B(3,6)=B(1,5)DO 20 I1=1,3DO 20 J1=1,620 B(I1,J1)=.5/AE*B(I1,J1)END*------------------------------------------------------- C SUBPROGRAM-6C CALCULATE GLOBAL STIFFNESS MATRIXSUBROUTINE STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS) DIMENSION LND(NE,3),X(NJ),Y(NJ)REAL KS(NJ2,NW),KE(6,6)DO 5 I=1,NJ2DO 5 J=1,NW5 KS(I,J)=0.DO 10 IE=1,NECALL STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DO 10 I=1,3IZ=LND(IE,I)DO 10 II=1,2IH =2*(I -1)+IIIDH=2*(IZ-1)+IIDO 10 J=1,3JZ=LND(IE,J)DO 10 JJ=1,2L =2*(J -1)+JJIL=2*(JZ-1)+JJIF(IL.GE.IDH) THENIDL=IL-IDH+1KS(IDH,IDL)=KS(IDH,IDL)+KE(IH,L)ENDIF10 CONTINUEEND*-------------------------------------------------------- C SUBPROGRAM-7C CALCULATE NODAL LOAD VECTORSUBROUTINE EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P) DIMENSION LND(NE,3),X(NJ),Y(NJ),PJ(NPJ,3),P(NJ2) DO 10 I=1,NJ210 P(I)=0.DO 20 I=1,NPJII=PJ(I,1)P(2*II-1)=PJ(I,2)20 P(2*II)=PJ(I,3)30 IF(V.EQ.0.) GOTO 50DO 40 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)PE=-V*AE*T/3.DO 40 I=1,3II=LND(IE,I)40 P(2*II)=P(2*II)+PE50 RETURNEND*---------------------------------------------C SUBPROGRAM-8C INTRODUCE BOUNDARY CONDITIONSUBROUTINE INSCD(NS,NW,NJ2,JR,KS,P)DIMENSION P(NJ2),JR(NS,3)REAL KS(NJ2,NW)DO 30 I=1,NSIR=JR(I,1)DO 30 J=2,3IF(JR(I,J).EQ.0) GOTO 30II=2*IR+J-3KS(II,1)=1.DO 10 JJ=2,NW10 KS(II,JJ)=0.IF(II.GT.NW) JO=NWIF(II.LE.NW) JO=IIDO 20 JJ=2,JO20 KS(II-JJ+1,JJ)=0.P(II)=0.30 CONTINUEEND*-------------------------------------------C SUBPROGRAM-9C SOLVE EQUATIONS BY GS METHODSUBROUTINE BGSMT(NJ,NJ2,NW,KS,P)DIMENSION P(NJ2)REAL KS(NJ2,NW)NJ1=NJ2-1DO 20 K=1,NJ1IF(NJ2.GT.K+NW-1) IM=K+NW-1IF(NJ2.LE.K+NW-1) IM=NJ2K1=K+1DO 20 I=K1,IML=I-K+1C=KS(K,L)/KS(K,1)IW=NW-L+1DO 10 J=1,IWM=J+I-K10 KS(I,J)=KS(I,J)-C*KS(K,M)20 P(I)=P(I)-C*P(K)P(NJ2)=P(NJ2)/KS(NJ2,1)DO 40 I1=1,NJ1I=NJ2-I1IF(NW.GT.NJ2-I+1) JO=NJ2-I+1IF(NW.LE.NJ2-I+1) JO=NWDO 30 J=2,JOK=J+I-130 P(I)=P(I)-KS(I,J)*P(K)40 P(I)=P(I)/KS(I,1)WRITE(6,50)50 FORMAT(/1X,'NODAL DISPLACEMENTS'/3X,* 'NODE',5X,'X-DISP.',8X,'Y-DISP.')DO 60 I=1,NJ60 WRITE(6,70) I,P(2*I-1),P(2*I)70 FORMAT(1X,I5,2E15.6)END*---------------------------------------------------C SUBPROGRAM-10C CALCULATE ELEMENT STRESS MATRIXSUBROUTINE SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)DIMENSION LND(NE,3),X(NJ),Y(NJ),D(3,3),B(3,6), * S(3,6),ST(3),P(NJ2),DE(6)WRITE(6,*)WRITE(6,*)' ELEMENT STRESSES'CALL DTE(E,PR,D)DO 50 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,3DO 10 J=1,6S(I,J)=0.DO 10 K=1,310 S(I,J)=S(I,J)+D(I,K)*B(K,J)DO 20 I=1,3DO 20 J=1,2IH=2*(I-1)+JIW=2*(LND(IE,I)-1)+J20 DE(IH)=P(IW)DO 30 I=1,3ST(I)=0.DO 30 J=1,630 ST(I)=ST(I)+S(I,J)*DE(J)SGX=ST(1)SGY=ST(2)TXY=ST(3)ASG=(SGX+SGY)*.5RSG=SQRT(.25*(SGX-SGY)**2+TXY*TXY)SGMA=ASG+RSGSGMI=ASG-RSGIF(SGY.EQ.SGMI) CETA=0.IF(SGY.NE.SGMI) CETA=90.-57.29578*ATAN* (TXY/(SGY-SGMI))50 WRITE(6,60) IE,SGX,SGY,TXY,SGMA,SGMI,CETA60 FORMAT(1X,'ELEMENT NO.=',I4/2X,'SIGX=',E10.4, * 2X,'SIGY=',E10.4,2X,'TXY =',E10.4/2X,'SGMA=', * E10.4,2X,'SGMI=',E10.4,2X,'CETA=',E10.4)END。
matlab有限元三角形单元编程
在MATLAB中进行有限元分析,可以使用其自带的有限元分析工具箱(FEATool)进行编程。
以下是一个简单的例子,演示如何使用三角形单元进行有限元分析:
1. 打开MATLAB,进入FEATool环境。
2. 创建新的有限元模型。
选择“Model”菜单下的“New Model”选项,进入“Model Builder”界面。
3. 在“Model Builder”界面中,选择“2D Triangle”单元类型,并在绘图区域中绘制出三角形网格。
4. 在“Model Builder”界面中,设置材料属性、边界条件和载荷等参数。
5. 运行有限元分析。
选择“Model”菜单下的“Solve”选项,进行有限元求解。
6. 查看结果。
选择“Model”菜单下的“Results”选项,可以查看位移、应力、应变等结果。
以上是一个简单的例子,演示了如何使用三角形单元进行有限元分析。
在实际应用中,还需要根据具体问题进行详细的建模和计算。
matlab有限元三角形单元程序以下是一个简单的 MATLAB 有限元三角形单元程序的示例:```matlab% 定义模型参数E = 1000; % 弹性模量nu = 0.3; % 泊松比thickness = 1; % 板的厚度% 定义节点坐标nodes = [0, 0; 1, 0; 1, 1; 0, 1; 0.5, 0.5];% 定义单元连接关系connectivity = [1, 2, 5; 2, 3, 5; 3, 4, 5; 4, 1, 5];% 计算总节点数和总单元数numNodes = size(nodes, 1);numElements = size(connectivity, 1);% 初始化全局刚度矩阵和载荷向量K = zeros(numNodes);F = zeros(numNodes, 1);% 循环遍历每个单元for i = 1:numElements% 查找当前单元的节点编号nodesIndex = connectivity(i, :);% 根据节点编号从全局坐标矩阵中取出节点坐标coordinates = nodes(nodesIndex, :);% 计算当前单元的局部刚度矩阵localK = calculateLocalStiffness(E, nu, thickness, coordinates);% 组装局部刚度矩阵到全局刚度矩阵中K(nodesIndex, nodesIndex) = K(nodesIndex, nodesIndex) + localK;% 计算当前单元的局部载荷向量localF = calculateLocalLoad(thickness, coordinates);% 组装局部载荷向量到全局载荷向量中F(nodesIndex) = F(nodesIndex) + localF;end% 边界条件:节点1固定K(1, :) = 0;K(1, 1) = 1;F(1) = 0;% 解线性方程组U = K \ F;% 输出位移结果disp('节点位移:');disp(U);% 计算应力结果stress = calculateStress(E, nu, thickness, nodes, connectivity, U);% 输出应力结果disp('节点应力:');disp(stress);% 计算局部刚度矩阵的函数function localK = calculateLocalStiffness(E, nu, thickness, coordinates)% 计算单元的雅可比矩阵J = (1/2) * [coordinates(2,1)-coordinates(1,1), coordinates(3,1)-coordinates(1,1);coordinates(2,2)-coordinates(1,2), coordinates(3,2)-coordinates(1,2)];% 计算雅可比矩阵的逆矩阵invJ = inv(J);% 计算单元刚度矩阵B = invJ * [-1, 1, 0; -1, 0, 1];D = (E/(1-nu^2)) * [1, nu, 0; nu, 1, 0; 0, 0, (1-nu)/2]; localK = thickness * abs(det(J)) * (B' * D * B);end% 计算局部载荷向量的函数function localF = calculateLocalLoad(thickness, coordinates) localF = zeros(3, 1);midPoint = [sum(coordinates(:,1))/3,sum(coordinates(:,2))/3];localF(3) = thickness * 1 * det([coordinates(1,:); coordinates(2,:); midPoint]);end% 计算各节点应力的函数function stress = calculateStress(E, nu, thickness, nodes, connectivity, U)stress = zeros(size(nodes, 1), 3);for i = 1:size(connectivity, 1)nodesIndex = connectivity(i, :);coordinates = nodes(nodesIndex, :);Ke = calculateLocalStiffness(E, nu, thickness, coordinates);Ue = U(nodesIndex);stress(nodesIndex, :) = stress(nodesIndex, :) + (Ke * Ue)';endstress = stress / thickness;end```这个程序实现了一个简单的平面三角形单元有限元分析,包括定义节点坐标和单元连接关系、计算全局刚度矩阵和载荷向量、施加边界条件、解线性方程组、计算节点位移和应力等。
三角形常应变单元程序的编制与使用有限元法是求解微分方程边值问题的一种通用数值方法,该方法是一种基于变分法(或变分里兹法)而发展起来的求解微分方程的数值计算方法,以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。
有限元分析的基本步骤可归纳为三大步:结构离散、单元分析和整体分析。
对于平面问题,结构离散常用的网格形状有三角形、矩形、任意四边形,以三个顶点为节点的三角形单元是最简单的平面单元,它较矩形或四边形对曲边边界有更好的适应性,而矩形或四边形单元较三节点三角形有更高的计算精度。
Matlab语言是进行矩阵运算的强大工具,因此,用Matlab语言编写有限元中平面问题的程序有优越性。
本章将详细介绍如何利用Matlab语言编制三角形常应变单元的计算程序,程序流程图见图1。
有限元法中三节点三角形分析结构的步骤如下:1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。
2)单元分析,建立单元刚度矩阵。
3)整体分析,建立总刚矩阵。
4)建立整体结构的等效节点荷载和总荷载矩阵5)边界条件处理。
6)解方程,求出节点位移。
7)求出各单元的单元应力。
8)计算结果整理。
计算结果整理包括位移和应力两个方面;位移计算结果一般不需要特别的处理,利用计算出的节点位移分量,就可画出结构任意方向的位移云图;而应力解的误差表现在单元内部不满足平衡方程,单元与单元边界处应力一般不连续,在边界上应力解一般与力的边界条件不相符合。
图1 程序流程图1.1 程序说明%******************************************************************* % 三角形常应变单元求解结构主程序%******************************************************************* ●功能:运用有限元法中三角形常应变单元解平面问题的计算主程序。
1 P9 m9 m
一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m,E=200GPa,=0.25,t=0.1m,忽略自重。试计算薄板的位移及应力分布。
要求: 1. 编写有限元计算机程序,计算节点位移及单元应力。(划分三角形单元,单元数不得少于30个); 2. 采用有限元软件分析该问题(有限元软件网格与程序设计网格必须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3. 提交程序编写过程的详细报告及计算机程序; 4. 所有同学参加答辩,并演示有限元计算程序。
有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。
一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则 2
刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算
单元刚度的集成:''''''215656665656266256561661eZeeeZeZeeeekkkKkkkkkk 边界约束的处理:划0置1法
X Y
P X
Y
P
节点编号 单元编号 3 适用:这种方法适用于边界节点位移分量为已知(含为0)的各种约束。 做法: (1) 将总刚矩阵〔K〕中相应于已知位移行主对角线元素置1,其他元素改为零;同 时将载荷列阵{R}中相应元素用已知位移置换。 ◎ 这样,由该方程求得的此位移值一定等于已知量。 (2) 将〔K〕中已知位移相应的列的非主对角成元素也置0,以保持〔K〕的对称性。 ◎ 当然,在已知位移分量不为零的情况下,这样做就改变了方程左端的数值,为 保证方程成立,须在方程右端减去已知位移对该方程的贡献——已知位移和相应总刚元素的乘积。 ◎ 若约束为零位移约束时,此步则可省去。 特点: (1) 经以上处理同样可以消除刚性位移(约束足够的前提下),去掉未知约束反力。 (2) 但这种方法不改变方程阶数,利于存贮。 (3) 不过,若是要求出约束反力,仍要重新计算各个划去的总刚元素。
程序如下: 变量说明 NNODE 单元节点数 NPION 总结点数 NELEM 单元数 NVFIX 受约束边界点数 FIXED 约束信息数组 NFORCE 节点力数 FORCE 节点力数组 COORD 结构节点坐标数组 LNODS 单元定义数组 YOUNG 弹性模量 POISS 泊松比 THICK 厚度 B 单元应变矩阵(3*6) D 单元弹性矩阵(3*3) S 单元应力矩阵(3*6) A 单元面积 ESTIF 单元刚度矩阵 ASTIF 总体刚度矩阵 ASLOD 总体荷载向量 4
ASDISP 节点位移向量 ELEDISP 单元节点位移向量 STRESS 单元应力
%********************************************************** %初始化 clear format short e %设定输出类型 clear %清除内存变量 NELEM=36 %单元个数(单元编码总数) NPION=28 %结点个数(结点编码总数) NVFIX=2 %受约束边界点数 NFORCE=1 %结点荷载个数 YOUNG=2e11 %弹性模量 POISS=0.25 %泊松比 THICK=0.1 %厚度 LNODS=[1 2 3;2 4 5;2 5 3;3 5 6; 4 7 8;4 8 5;5 8 9;5 9 6; 6 9 10;7 11 12;7 12 8;8 12 13; 8 13 9;9 13 14;9 14 10;10 14 15; 11 16 17;11 17 12; 12 17 18; 12 18 13; 13 18 19; 13 19 14;14 19 20;14 20 15; 15 20 21;16 22 23;16 23 17;17 23 24; 17 24 18;18 24 25;18 25 19;25 19 26; 19 26 20;20 26 27;20 27 21;21 27 28] %单元定义数组(单元结点号) %相应为单元结点号(编码)、按逆时针顺序输入 COORD=[0 0;-0.75 1.5;0.75 1.5;-1.5 3;0 3; 1.5 3;-2.25 4.5;-0.75 4.5;0.75 4.5; 2.25 4.5;-3 6;-1.5 6;0 6;1.5 6;3 6; -3.75 7.5;-2.25 7.5; -0.75 7.5;0.75 7.5; 2.25 7.5;3.75 7.5;-4.5 9;-3 9; -1.5 9;0 9;1.5 9;3 9;4.5 9] %结点坐标数组 %坐标:x,y 坐标(共 NPOIN 组) FORCE=[1 0 -15] %结点力数组(受力结点编号, x 方向,y 方向) FIXED=[22 1 1;28 1 1] %约束信息(约束点,x 约束,y 约束) %有约束为 1,无约束为 0 %********************************************************** %生成单元刚度矩阵并组成总体刚度矩阵 ASTIF=zeros(2*NPION,2*NPION); %生成特定大小总体刚度矩阵并置 0 %********************************************************** for i=1:NELEM 5
%生成弹性矩阵 D D= [1 POISS 0; POISS 1 0; 0 0 (1-POISS)/2]*YOUNG/(1-POISS^2) %********************************************************** %计算当前单元的面积 A=-det([1 COORD(LNODS(i,1),1) COORD(LNODS(i,1),2); 1 COORD(LNODS(i,2),1) COORD(LNODS(i,2),2); 1 COORD(LNODS(i,3),1) COORD(LNODS(i,3),2)])/2 %********************************************************** %生成应变矩阵 B for j=0:2
b(j+1)=COORD(LNODS(i,(rem((j+1),3))+1),2)-COORD(LNODS(i,(rem((j+2),3))+1),2);
c(j+1)=-COORD(LNODS(i,(rem((j+1),3))+1),1)+COORD(LNODS(i,(rem((j+2),3))+1),1); end B=[b(1) 0 b(2) 0 b(3) 0; 0 c(1) 0 c(2) 0 c(3); c(1) b(1) c(2) b(2) c(3) b(3)]/(2*A); B1( :,:,i)=B; %********************************************************** %求应力矩阵 S=D*B S=D*B; ESTIF=B'*S*THICK*A; %求解单元刚度矩阵 a=LNODS(i,:); %临时向量,用来记录当前单元的节点编号 for j=1:3 for k=1:3
ASTIF((a(j)*2-1):a(j)*2,(a(k)*2-1):a(k)*2)=ASTIF((a(j)*2-1):a(j)*2,(a(k)*2-1):a(k)*2)+ESTIF(j*2-1:j*2,k*2-1:k*2); %根据节点编号对应关系将单元刚度分块叠加到总刚 %度矩阵中 end end end %********************************************************** %将约束信息加入总体刚度矩阵(对角元素改一法)