当前位置:文档之家› 单调性奇偶性及周期性

单调性奇偶性及周期性

单调性奇偶性及周期性
单调性奇偶性及周期性

单调性奇偶性对称性及周期性 1.函数()21y k x b =++在(),-∞+∞上是减函数,则( )

A. 12k >

B. 12

k < C. 12k >-

D. 12k <- 2.已知01a <<,则( )

A. 22

1a a ??> ??? B. 1a a a a > C. 10.20.2a a > D. ()()111a a a a +>+ 3.定义在[]1,1-上的增函数()f x 满足: 122f ??=

???

,若()212f m -<,则实数m 的取值围是 ( ) A. 3,4?

?-∞ ??? B. 31,4??-???? C. 30,4?????? D. 3,14?? ???

4.下列函数在()0,+∞上是减函数的是 ( )

A. 1y x =+

B. 25y x =+

C. 22+3y x x =--

D. 31

y x =-+ 5.若对于任意实数x 总有()()0f x f x -+=,且()f x 在(]

,0-∞上是减函数,则( ) A. ()()3122f f f ??-<-< ??? B. ()()3122f f f ??-<-< ???

C. ()()3212f f f ??<-<- ???

D. ()()3212f f f ??<-<- ???

6.函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4]上为减函数,则a 的取值围为( )

A. 0

B. 0≤a <

C. 0≤a ≤

D. a >

7.函数y =

的单调递减区间为( )

A. (3,+∞)

B. (-∞,1)

C. (-∞,1)和(3,+∞)

D. (0,+∞)

8.若函数()()2122,1{ 1,1

a x x f x x ax x -+≤=-++>在R 上单调递减, 则实数a 的取值围是( ) A. 1,22?? ??? B. 1,12?? ???

C. 1,2??+∞ ???

D. (],2-∞ 9.如果函数()()221+2f x x a x =-+-在区间(],4-∞上单调递增 ,那么实数a 的取

值围是( )

A. 3a ≤-

B. 3a ≥-

C. 5a ≤

D. 5a ≥

10.函数()231

x f x x +=-,当[)2,x ∈+∞时,函数的值域为( ) A. (],7-∞ B. ()(],22,7-∞? C. (]2,7 D. [)2,+∞

11.函数()f x 的定义域为R , ()12f -=,对任意x R ∈, ()2f x '>,则()24f x x >+的解集为( ).

A. ()1,1-

B. ()1,-+∞

C. (),1-∞-

D. (),-∞+∞

12.若函数()2

2f x x a x =+-在()0,+∞上单调递增,则a 的围为 ( ) A. []4,2- B. []4,0- C. [)4,2- D. [

)2,2- 13.偶函数f (x )在(0,+∞)上递增,若f (2)=0,则

()()f x f x x +-<0的解集

是( )

A. (-2,0)∪(2,+∞)

B. (-∞,-2)∪(0,2)

C. (-∞,-2)∪(2,+∞)

D. (-2,0)∪(0,2) 14.函数()f x 是R 上的偶函数且在()0,+∞上减函数,又()21f -=,则不等式()11f x -<的解集为( )

A. {}| 3 x x >

B. {}| 1 x x <-

C. {}|1 3 x x -<<

D. {}

|3 1 x x x ><-或

15.函数在区间(-2,)上为增函数,则的取值围为( )

A. B. C. D.

16.已知函数()()2ln 23f x x x =--+,则()f x 的增区间为( )

A. (),1-∞-

B. ()3,1--

C. [)1,-+∞

D. [

)1,1- 17.已知52

x ≥,则()2452x x f x x -+=-有( ) A. 最大值52 B. 最小值52

C. 最大值2

D. 最小值2 18.函数()2233x x f x --=的单调减区间为

( )

A. (),-∞+∞

B. (),1-∞

C. ()1,+∞

D. (),2-∞

19.已知定义在R 上的偶函数, ()f x 在0x ≥时, ()()ln 1x

f x e x =++, 若()()1f a f a <-,则a 的取值围是( )

A. (),1-∞

B. 1,2?

?-∞ ??? C. 1,12?? ???

D. ()1+∞, 20.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a

-+=-+,且()g b a =,

则()2f 的值为( ) A. 2a B. 2 C. 174

D. 154 21.已知函数()23f x ax bx a b =+++是偶函数,且其定义域为[]1,2a a -,则( )

A. 1,03a b ==

B. 1,0a b =-=

C. 1,1a b =-=

D. 1,13

a b =-=- 22.若函数()f x 是周期为2的偶函数,当01x ≤≤时()()21f x x x =-,则

52f ??- ???

=( ) A. 12- B. 12 C. 14- D. 14

23.已知()y f x =是定义在R 上的奇函数,当0x ≥时,则()22f x x x =+,则

()1f -=( )

. A. 3- B. 1 C. 1- D. 3

24.已知函数()()g x f x x =-,其中()g x 是偶函数,且()21f =,则()2f -=( ).

A. 1-

B. 1

C. 3-

D. 3

25.已知

是上的奇函数,且当时,,则当时,的解析式是

( )

A. B. C. D.

26.已知定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则当x <0时,f (x )的表达式为( )

A. y =-x 2-2x

B. y =x 2+2x

C. y =-x 2+2x

D. y =x 2-2x

27.若函数()f x 为定义在[]2,3b b --上的偶函数,且在[]

0,3b -上单调递增,则()()1f x f ≤的解集为

A. []1,2

B. []3,5

C. []1,1-

D. 13,22??

???? 28.已知在上是奇函数,,当时,,则( )

A. B. C. D.

29.已知函数

,若,则 ( )

A. B. C. D.

30.已知函数()533f x ax bx cx =-+-, ()37f -=,则()3f 的值( )

A. 7-

B. 7

C. 13-

D. 13

31.已知函数()1f x +是偶函数,当(),1x ∈-∞时,函数()f x 单调递减,设

12a f ??=- ???

, ()1b f =-, ()2c f =,则,,a b c 的大小关系是( ) A. a b c << B. b a c << C. c b a << D. c a b <<

32.若函数()f x 为偶函数,且在()0,+∞上是减函数,又()30f =,则()()

02f x f x x +-<的解集为 ( )

A. ()3,3-

B. ()(),33,-∞-?+∞

C. ()()3,03,-?+∞

D. ()(),30,3-∞-?

33.函数()21ax b f x x +=

+是定义在()1,1-上的奇函数,且()225f =,则,a b 的值分别为( )

A. 0,1

B. 1,0

C. -1,1

D. -1,0

34.定义域为R 上的奇函数()f x 满足()()11f x f x -+=+,且()11f -=,则()2017f =( )

A. 2

B. 1

C. -1

D. -2

35.函数()y f x =在()0,3上是增函数,函数()3y f x =+为偶函数,则有( )

A. ()()7322f f f ??<< ???

B. ()()7322f f f ??<< ???

C. ()()7232f f f ??<< ???

D. ()()7232f f f ??<< ???

36.如果定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x),在(0,+∞)是减函数,又有f(3)=0,则x?f(x)<0的解集为()

A. {x|﹣3<x<0或x>3}

B. {x|x<﹣3或0<x<3}

C. {x|﹣3<x<0或0<x<3}

D. {x|x<﹣3或x>3}

函数的单调性与奇偶性综合 【课时目标】 1、能准确判断函数的单调性与奇偶性 2、会灵活利用函数的单调性与奇偶性求参数或参数的取值范围 3、能够解决抽象函数的单调性与奇偶性的问题 【基础训练】 1、单调性: (1)函数||2x x y +-=,单调递减区间为 (2)函数b x k y ++=)12(在实数集上是增函数,则k 的取值范围是 (3)已知函数2()(3)2f x ax a x =+++在区间[1,)+∞上为增函数,则实数a 的取值范围是 ___ (4)已知()f x 为R 上的减函数,则满足)1()1(f x f >的实数x 的取值范围是____________ — 2、奇偶性: (1)下列函数具有奇偶性的有 ①x x y 13+= ②x x y 2112-+-= ③x x y +=4 ④?? ???<--=>+=)0(2)0(0)0(222x x x x x y (2)函数1()f x x x =-的图像关于__________对称 (3)若函数(1)()y x x a =+-为偶函数,则a =__________ (4)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则_______ 【例题精讲】 例1、已知()f x 是偶函数,而且在0(,)+∞上是减函数.判断()f x 在0(,)-∞上是增函数还是减函数,并加以证明

例2、()f x 是定义在R 的奇函数,且()f x 在0(,)+∞上是增函数,10()f =,则不等式0()()f x f x x --<的解集为_________________ } 练习:已知()f x 是定义在(3,3)-上的偶函数,当0 x ≤< ()f x 的图象如右图,则不等式(1)()0x f x -?≤ 变:()f x 是定义在22[,]-的奇函数,且()f x 在02[,]上单调递减,若1()()f m f m -<,则实数m 的取值范围是________________ … 例3、已知函数()1).f x a =≠ (1)若0a >,则()f x 的定义域是 (2) 若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是______________ 例4:(1)函数()y f x =的图象关于直线1x =对称,若当1x ≤时,2()1f x x =+,求()f x · (2)函数()y f x =的图象关于点(1,1)对称,若当1x ≤时,2()1f x x =+,求()f x

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

函数之周期性与对称性的理解 首先请大家辨析一下这几个等式关系: 2 )2()()62 )2()(5) 2()()4)2)()30 )2()(20 )2()(1=++=+-++-=+==++=+-+x f x f x f x f x f x f x f x f x f x f x f x f )()) 以上6个等式,其中1)、4)、5)是在讲对称性,2)、3)、6)是在讲述周期性。 在教学过程中,我们发现很多学生到高三了还无法自如地辨析,其实大家只需记住六字口诀就能加以辨析: “同周期、异对称” 1)、4)、5)中x 的系数相同,即为周期,2)、3)、6)中x 的系数相异,即为对称,这样我们就能迅速辨析哪些是在讲周期,哪些是对称。 那具体周期为多少?具体关于什么对称呢?这又是大家一个容易混淆的点。 一、下面先讲对称问题的理解,以1)为例: 0)2()(=+-+x f x f 我们要从本质上理解这个等式:令第一个括号里的1x x =,22x x =+-,则满足221=+x x , 即横坐标的和为2,那就意味着两个横坐标的中点为1=x 。同样的,令1)(y x f =,2)2(y x f =+-,则满足021=+y y ,即这两个点的纵坐标和为零,那就意味着纵坐标互为相反数。那么如果现在我换种方式描述,我说两个点),(),(2211y x y x 与,满足221=+x x ,021=+y y ,那 我们就可以在平面直角坐标系中把这两个点的对称关系画出来了。由图1我们可以很直观的看出来这两个点关于(1,0)中心对称,这两个点都在y=f(x)上,从而整个 函数关于(1,0)中心对称。 同样的,我们分析4),2121,2y y x x ==+,在图像上表示对称关系如下:A 、B 两点关于

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数的对称性、奇偶性和周期性的综合运用 一.函数的对称性 的图象自身对称 1、轴对称 对于函数f(x)的定义域内任意一个x, 称. . 推论1 . 推论2 . 2、中心对称 对于函数f(x)的定义域内任意一个x, . . . . 小结: 轴对称与中心对称的区别 轴对称:f(a+x)= f(b-x)中,自变量系数互为相反数(内反),函数值相等(差为零);

中心对称:f(a+x)= - f(b-x)+2c中,自变量系数互为相反数(内反),函数值和为定值.(二)两个函数的图象相互对称 1; 特别地,函数y=f(a+x)与y=f(a-x)关于直线x=0(y轴)轴对称; y轴对称; 求对称轴方法:令a+x=b-x,得 2、函数y=f(a+x)+c与y=-f(b-x)+d 特别地,函数y=f(a+x)与y=-f(a-x)关于点(0,0)(原点)中心对称. . 求对称中心方法:横坐标令a+x=b-x,得 二.函数的奇偶性 1. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x) (f(x) -f(-x)=0),那么 函数f(x)叫做偶函数.偶函数的图象关于y轴(x=0)对称. 推论:若y=f(x+a)为偶函数,则f(x+a)=f(-x+a),即y=f(x)的图像关于直线x=a轴对称. 2. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x) (f(x) +f(-x)=0),那么 函数f(x)叫做奇函数.奇函数的图象关于原点(0,0)对称. 推论:若y=f(x+a)为奇函数,则f(-x+a)=-f(a+x),即y=f(x) 的图像关于点(a,0)中心对称. 三.函数的周期性 1. 定义:对于定义域内的任意一个,都存在非零常数,使得

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

函数单调性、奇偶性、周期性和对称性的综合应用 例1、设f (x )是定义在R 上的奇函数,且()x f y =的图象关于直线2 1=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________. 【考点分析】本题考查函数的周期性 解析:()()00f f -=-得()00f =,假设()0f n = 因为点(n -,0)和点(1,0n +)关于12x =对称,所以()()()10f n f n f n +=-=-= 因此,对一切正整数n 都有:()0f n = 从而:()()()()()123450f f f f f ++++=。本题答案填写:0 例2、(2006福建卷)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x = 设644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51()()22 c f f ==<0,∴c a b <<,选D. 例3、(安徽卷理)函数()f x 对于任意实数x 满足条件()() 12f x f x +=,若()15,f =-则()()5f f =__________。 【考点分析】本题考查函数的周期性与求函数值,中档题。 解析:由()()12f x f x +=得()() 14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5 f f f f f =-=-==--+。 【窥管之见】函数的周期性在高考考查中除了在三角函数中较为直接考查外,一 般都比较灵活。本题应直观理解()() 12f x f x += “只要加2,则变倒数,加两次则回原位” 则一通尽通也。 例4、设()f x 是()+∞∞-,上的奇函数,()()x f x f -=+2,当0≤x ≤1时,()x x f =,则f ()等于( ) A.0.5 B.-0.5 D.-

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

专项5函数单调性、奇偶性、周期性、对称性综合 有关函数的奇偶性、单调性、周期性和图像的综合问题,历来都是一个难点,并且几乎是必考的重点内容,它考察的 内容应该说是非常多的,综合性也是非常强的,而且不易想,因而,对很多同学來说,十分头疼,在这一章节内容上, 我们绝对要摒弃大量做题不顾总结的复习思路,基于此,我们从以下几个方面讲这部分内容。 第一个问题,就是对于“已知奇/偶函数一段定义域上的解析式,求另一段的解析式”这样的问题,最为基础题,同学 们一定要知道怎么解决这种问题,但是对于求确切的/(G )的问题,这里的。代指一个确切的常数,我们可以不求出另 一 ?段上的解析式,我们采取“进/退周期”的方式,什么意思呢?就是如果讣我们求的于(G )中的。不在己经解析式的 定义域上,对于比定义域右端点值大的,要根据周期定义每次减一个周期,逐步将其转化到已知解析式的定义域之上, 比如,题目让我们求/(13),我们通过分析发现该函数的周期为2,而我们只知道XG (0,2).上的解析式,那么我们就 可以“退周期”,即/(13) = /(2x6+l) = /(l),即只需要求出这个/(I)就是了,同理,对于比定义域小的,我们用 同样方法,可以“进周期”,求解相关问题。 第二个问题,我们必须要说这个周期的问题,周期其实在高中教材中只是在必修四三角函数中学了,但是函数中却经 常出现,而且不算是超纲内容,这一点需要大家知道,不能因为函数教材屮没有讲就认为不需要掌握,但是有一点需 要大家知道,那就是对于周期性,我们更多的是记住一些结论,推到这些结论是不要求的,因此,我们在这里总结这 些结论,希望大家都记住。 如果一个函数满足= + 则这个函数就是以。为一个周期的函数,这里要强调“一个周期”,事实上,弦/都 是这个函数的周期,也就是说/(x) = f(ka + x), /(x) = f(ka-x), /(x) = f(x-a),还有一?些有关周期的拓展定义: 第三个问题,是有关于图像的问题,特别是图像的做法,有很多是需要掌握对称性规律的,相关的对称性规律结论请 回顾复习专项4,专项4屮有比较基础的对称性总结函数关于兀轴、y 轴、坐标原点对称的规律;特别强调下列三种函 数l.f(x)l,/(lg(x)l),/(g(lxl)),这三种绝对值加到不同地方的函数图像本身的对称性规律要掌握好。 奇函数、偶函数、反函数和一些常见的函数,如对号函数等的对称性 对于耍求函数有几个零点或者两个函数有几个交点的问题,作图是最主耍的方法,作图的吋候,一定要按照我们学过 的函数图像的三种变换进行画图,从授基本的图形开始画,通过平移、对称一步一步的得到我们想要的函数图像,做 图的过程小,如果有带有绝对值,一定要想着使丿IJ 相应带有绝对值的作图规律,坚决不允许通过描点连线的方式进行 作图。 下面开启做题Z 旅,下面的这些题,淘汰、更换历经了很长时间,不论简单还是难度稍微大些,都是非常好的试题, 一定要认认真真完成,对于错题,还要进行总结分析。 1. /⑴为奇函数,g ⑴= /(x) + 9,g(2) = 3,则/(2)= _______________ 2. .f(x)为定义在/?上的奇函数,当xhO 时,/(Q = 2" + 2x + b ,则/(-1)= _____________ ①弘+沪_卍);②弘+沪命;③弘+沪 1 /(x ) ,则函数/(兀)的周期为2a 。

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

课次教学计划(教案)课题函数的单调性和奇偶性 教学目标1.通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别2. 结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性 教学策略 重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数 教学策略:讲练结合,查漏补缺 函数的单调性 1.例1:观察y=x2的图象,回答下列问题 问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么??随 着x的增加,y值在增加。 问题2:怎样用数学语言表示呢? ?设x 1 、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1f(x2). 那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有 (严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升 的,减函数的图象是下降的。 12 (3)函数的单调性是对某个区间而言的,它是一个局部概念。 3.例2.己知函数f(x)=-x2+2x+3,⑴画出函数的图象;⑵根据图象写出函数f(x)的单调区间;⑶利用定义证明函数f(x)=-x2+2x+3在区间(-∞,1]上是增函数;⑷当函数f(x)在区间(一∞,m]上是增函数时,数m的取值围.

函 数 的 对 称 性 一个函数的自对称 定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。就是该函数的对称轴是x a =。 定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。就是该函数的对称点是(,0)a 。 定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x += 对称。就是该函数的对称轴是2 a b x +=。 定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点( ,0)2a b +对称。就是该函数的对称点是(,0)2 a b +。 还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于( ,)22a b m +这个点对称。 周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数. 它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1() f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=) (11)(x f x f -+ 特征是x 的符号相同。 习 题 1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。 2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点) 3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根? 4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值. 5、定义在R 上的函数()f x 满足5()()02 f x f x ++=且5 ()4 f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52 x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数 (C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数 例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。 (1)f(x)是奇函数,则有f(-x+a)= f(x+a)是奇函数,则f(-x+a)= (2)函数f(x-1)是偶函数,求y=f(x)的对称轴。

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感谢现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“ 2 121) ()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往 往还是考察单调性; 3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值范围); 6.确定函数解析式或定义域中某一未知数(参数)的取值范围.

二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值范围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; (2)计算 的解析式,并考察其与 的解析式的关系; (3)下结论 . 【典型例题】 增,若a =)3 1 (log 2 f ,b =)2 1 (log 3 f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >> C .b a c >> D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质.

高中数学:函数单调性和奇偶性的综合练习及答案 1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是() A.y=x3 B.y=|x|+1 C.y=-x2+1 D.y=2-|x| 2.f(x)=x2+|x|() A.是偶函数,在(-∞,+∞)上是增函数 B.是偶函数,在(-∞,+∞)上是减函数 C.不是偶函数,在(-∞,+∞)上是增函数 D.是偶函数,且在(0,+∞)是增函数 3.已知函数f(x)=3x-(x≠0),则函数() A.是奇函数,且在(0,+∞)上是减函数 B.是偶函数,且在(0,+∞)上是减函数 C.是奇函数,且在(0,+∞)上是增函数 D.是偶函数,且在(0,+∞)上是增函数 4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)() A.在[-1,0]上是增函数 B.在[-1,-]上增函数,在(-,0]上是减函数 C.在[1,0]上是减函数 D.在[-1,-]上是减函数,在(-,0]上是增函数 5.f(x)是定义在R上的增函数,则下列结论一定正确的是() A.f(x)+f(-x)是偶函数且是增函数 B.f(x)+f(-x)是偶函数且是减函数 C.f(x)-f(-x)是奇函数且是增函数 D.f(x)-f(-x)是奇函数且是减函数 6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是() A.f(1)>f(2) B.f(1)>f(-2) C.f(-1)>f(-2) D.f(-1)

7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是() A.fb>0,给出下列不等式 ①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)g(b)-g(-a);④f(a)-f(-b)

相关主题
文本预览
相关文档 最新文档