当前位置:文档之家› 超导磁悬浮列车

超导磁悬浮列车

超导磁悬浮列车
超导磁悬浮列车

12.(?浙江杭州质检)超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得的推进动力的新型交通工具.其推进原理可以简化为如图所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是L,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L,宽为L的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属的总电阻为R,运动中所受到的阻力恒为Ff,金属框的最大速度为vm,则磁场向右匀速运动的速度v可表示为()

A.v=(B2L2vm-FfR)/(B2L2)

B.v=(4B2L2vm+FfR)/(4B2L2)

C.v=(4B2L2vm-FfR)/(4B2L2)

D.v=(2B2L2vm+FfR)/(2B2L2)

【解析】导体棒ad和bc各以相对磁场的速度(v-vm)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-vm),回路中电流为:I=2BL(v-vm)/R,由于左右两边ad和bc均受到安培力,则合安培力F合=2×BLI=4B2L2(v -vm)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则Ff=F合,解得磁场向右匀速运动的速度v=(4B2L2vm+FfR)/(4B2L2),B对.

【答案】 B

莲山课件原文地址:https://www.doczj.com/doc/e513202197.html,/shti/gaosan/81939.htm

做直线运动,则有

最大半径

)当,由当,由

OM=r=0.2m

轴时的区域范围为

(1)2 (2)

I=,ab F=BIl=.

W=2F×l=2,

Q=W=2.

=,

—,i=-I

t=—,i=0.

t=—,i=I

—,u=,

t=—,u=×R=

t=—,u=.

磁悬浮列车的工作原理

超导磁悬浮列车的工作原理 超导磁悬浮列车工作时主要利用了磁性物质同性排斥异性吸引的基本原理,从而最终达到了列车悬浮在车轨上方,列车在磁力的牵引下高速前行,列 车在高速前行过程中自动调整姿势以避免倾斜的目的. 首先,对于列车之所以能够悬浮在轨道上方做简单说明:磁铁有同性相斥 和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁 同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导电磁铁 形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行 的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬 浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上 方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁 铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力 平衡,从而使车体悬浮于车道的导轨面上运行。 那么,磁体间为什么能产生如此强大的磁场而最终让沉重的车厢悬浮起 来呢?在演示实验中我们用的是极冷的液氮冷却那种放在车厢底部的超导元 件办到的。超导元件在相当低的温度下具有的完全导电性和完全抗磁性。而 实际运用的超导磁体是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制 成体积小功率强大的电磁铁。。超导磁悬浮列车的工作原理是利用超导材料 的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。 其次,磁悬浮列车的高速前进也是利用电磁体间的磁力完成的。 简单的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为 电磁铁。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列 车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁 体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极) 所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就 是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电 磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈 里流动的交流电的频率和电压。 具体地讲超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集 成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上 的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超 导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的 三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波, 这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这

上海磁悬浮列车中英双版

上海磁悬浮列车 磁悬浮列车是一种利用磁极吸引力和排斥力的高科技交通工具。简单地说,排斥力使列车悬起来、吸引力让列车开动。磁悬浮列车上装有电磁体,铁路底部则安装线圈。通电后,地面线圈产生的磁场极性与列车上的电磁体极性总保持相同,两者“同性相斥”,排斥力使列车悬浮起来。铁轨两侧也装有线圈,交流电使线圈变为电磁体。它与列车上的电磁体相互作用,使列车前进。列车头的电磁体(N极)被轨道上靠前一点的电磁体(S极)所吸引,同时被轨道上稍后一点的电磁体(N极)所排斥——结果是一“推”一“拉”。磁悬浮列车运行时与轨道保持一定的间隙(一般为1—10cm),因此运行安全、平稳舒适、无噪声,可以实现全自动化运行。磁悬浮列车的使用寿命可达35年,而普通轮轨列车只有20—25年。磁悬浮列车路轨的寿命是80年,普通路轨只有60年。此外,磁悬浮列车启动后39秒内即达到最高速度,目前的最高时速是552公里。据德国科学家预测,到2014年,磁悬浮列车采用新技术后,时速将达1000公里。而一般轮轨列车的最高时速为350公里。 “常导型”磁悬浮列车 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。 列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的吸引力与列车重力相互平衡,利用磁铁吸引力将列车浮起1厘米左右,使列车悬浮在轨道上运行。这必须精确控制电磁铁的电流。 悬浮列车的驱动和同步直线电动机原理一模一样。通俗说,在位于轨道两侧的线圈里流动的交流电,能将线圈变成电磁体,由于它于列车上的电磁体的相互作用,使列车开动。 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N 极,N极变成S极。循环交替,列车就向前奔驰。 稳定性由导向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。 “常导型”磁悬浮列车的构想由德国工程师赫尔曼?肯佩尔于1922年提出。 “常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。 上海磁悬浮列车时速430公里,一个供电区内只能允许一辆列车运行,轨道两侧25米处有隔离网,上下两侧也有防护设备。转弯处半径达8000米,肉眼观察几乎是一条直线;最小的半径也达1300米。

中国磁悬浮列车原理

磁悬浮列车 1.磁悬浮技术的原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2.磁悬浮技术的应用 国际上对磁悬浮轴承的研究工作也非常活跃。1988年召开了第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年,美国航空航天管理局还召开了第一次磁悬浮技术在航天中应用的讨论会。现在,美国、法国、瑞士、日本和中国都在大力支持开展磁悬浮轴承的研究工作。国际上的这些努力,推动了磁悬浮轴承在工业上的广泛应用。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段,落后外国约20年。1986年,广州机床研究所与哈尔滨工业大学首先对“磁力轴承的开发及其在FMS中的应用”这一课题进行了研究。此后,清华大学、西安交通大学、天津大学、山东科技大学、南京航空航天大学等都在进行这方面的研究工作。 目前在工业上得到广泛应用的基本上都是传统的磁悬浮轴承(需要位置传感器的磁悬浮轴承),这种轴承需要5个或10个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。此外,由于传感器的价格较高,从而导致磁悬浮轴承的售价很高,大大限制了它在工业上的推广应用。 2009年8月,参观者在北京看磁悬浮列车轨道,北京城建设计研究总院的总工杨秀仁透露,北京正在做一条磁悬浮线的长期规划———通往门头沟的S1轨道线路正在筹划,计划采用中国自主研发的磁悬浮技术。而由北京控股磁悬浮技术发展有限公司和国防科技大学合作的中低速磁浮列车,是中国唯一具有完全自主知识产权的磁悬浮列车。 3.磁悬浮技术的前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴

磁悬浮列车研究及应用

磁悬浮列车研究及应用 磁悬浮列车:未来城市交通理想的模式 世界各国的实践证明:要想依靠无限制地扩大城市道路供给系统来解决城市汽车交通问题往往事倍功半,未来的理想交通模式在哪里呢?磁悬浮列车技术的研制成功令人眼界大开,这种集约型的、与环境协调的城市公交系统不愧为人类智慧的结晶。现在就看这个世界上哪个城市能够先走一步了。 列车悬浮在轨道上 磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的高速列车系统,时速可达500千米以上,是当今速度最快的地面客运交通系统。磁悬浮列车具有速度高、能耗低、噪音小、启动速度快、安全舒适、低污染、维护少等一系列优点。实验证实,磁悬浮列车在时速500千米速度下,每座位的能耗仅为飞机的1/3至1/2、汽车的70%;安全性是飞机的20倍,轮轨列车的250倍,公路系统的700倍。 日本、德国自60年代以来,已对磁悬浮列车进行了大量的研究和试验,耗资数十亿美元,总体技术已趋成熟。可是日德迄今迟迟未能投入商业营运。 日本德国抓紧试验 德国于1980年建设31.5千米长的试验线,1987年开始载人试验,总共安全运行38万千米。 日本在80年代后期拟定了从东京至大阪长500千米、时速500千米的磁悬浮列车运营线计划,后建成了长18.4千米的山梨试验线,无人行驶时,时速为550千米,有人行驶时,时速达531千米,效果良好。 在东京以西一条长18千米的试验轨道上,磁悬浮列车每天都在行驶。它的名字叫作Maglevs,即Magnetic Levitation(磁悬浮列车)的简称。磁悬浮列车集先进电脑控制、低温学及超导磁铁的技术于一身,以求达致超高速的旅程。 在一次示范行驶中,由日本铁道技术研究学院开设的山梨试验中心总经理鹤贺齐说,该中心消耗将近40年时间、投入3000亿日元(约合28亿美元)政府资助金及进行了10万千米试验路程作为有关技术的研究,现已证实利用磁悬浮列车技术作为商业客运工具是可行的。现在,他们更有应用和发展的机会:日本政府正考虑开设往来东京和大阪的第二条铁路,以应付日本最繁忙行车线的需求,因为每天穿梭上述两大城市的新干线火车已经到达饱和的状态。 昂贵是唯一弱点 鉴于磁悬浮列车依靠尖端科技,它的唯一弱点就是:非常昂贵。根据日本有关部门最保

磁悬浮列车技术 论文

磁悬浮列车技术 苏州科技学院天平学院陈耀1330117102 【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。 【关键词】:悬浮、推进、导向、创新 【正文】 一、工作原理 磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。 导向系统

导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。悬浮系统 目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互排斥产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

磁悬浮列车主要由悬浮系统

磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图3。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

磁悬浮列车原理

第九篇磁悬浮列车原理 §9.1磁悬浮列车综述 你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了! 其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。 但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

磁悬浮原理

[转载]磁悬浮原理

磁悬浮转子真空计工作原理图 时间:2008-09-16 来源:真空技术网整理编辑:真空技术网 根据磁悬浮转子转速的衰减与其周围气体分子的外摩擦有关的原理制成的真空测量仪表称为磁悬浮转子真空计。 图22:磁悬浮转子真空计结构图 由图22可见,除了用于磁悬浮转子的螺旋线圈2外,在真空室下边还设置一敏感线圈5,通过伺服电路控制螺旋线圈2的电流,使转子悬浮在预定高度。在真空室两侧的一对驱动线圈3产生旋转磁场,驱动转子以每秒200~400转的速度自转。虽然转子在给定的垂直位置会自动地趋向磁场最强处(一般在垂直对称轴上),但若受外界扰动,转子将围绕轴作水平振动。图中紧临真空室下方的阻尼钢针6可使这种振动衰减。 这种真空计是基于气体分子对自由旋转钢球的减速作用而工作的。当钢球被驱动线圈的磁场

从静止加速到每秒400转速之后,停止驱动场,由于气体分子摩擦的积分作用引起钢球自转速度衰减,其转速衰减与气体压力p有着严格的对应关系。 磁悬浮转子真空计是标准真空计,量程宽(10-1~10-5Pa),用它作互校传递标准时,累积误差小,可靠性重复性好。 SKF公司最新推出磁浮轴承(图文) SKF(斯凯孚)公司最新推出磁浮轴承。半导体工业需要极纯净的环境 来制造日益复杂的电路晶片,其中,TMP(Turbo Molecular Pumps)涡轮子真 空泵主要是利用高速旋转的涡轮叶片转子,撞击气体分子后,把气体分子带出 制程腔体。由于需要高速旋转,传统陶珠轴承系统存在油气污染问题,目前业界已大量使用无接触的磁浮轴承。 SKF磁浮轴承还可应用于三轴加工中心机床,主轴转速10万转/分钟。 此主轴目前是展示阶段的原型,唯有依赖磁浮轴承才能达到如此高的转速,而如此高的表面加工精度及轴承寿命,是传统滚动轴承所无法达到的。 磁浮轴承的性能由于软件算法的改进而大大加强,坚固性,稳定性,经济性的提高使磁浮轴承从试验

物理演示实验报告(磁悬浮列车演示实验报告)

磁悬浮列车演示实验报告 【实验目的】 1.利用超导体对永磁体的排斥作用演示磁悬浮; 【实验器材】 1.超导磁悬浮列车演示仪,如图70-1所示。由二部分组成:磁导轨支架、磁导轨。其中磁导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10×6 mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。 2.高温超导体,是用熔融结构生长工艺制备的,含Ag的YBacuo系高温超导体。之所以称为高温超导体是因为它在液氮温度77KC(-196℃)下呈现出超导性,以区别于以往在液氦温度42K(-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,厚度为6 mm ,其临界转变温度为90K 左右(-183℃)。 3.液氮。 上图:实验装置图 下图:磁导轨 【实验原理】 实验原理: 超导是超导电性的简称.它是指金属或合金在极低温度下(接近绝对零度)电阻变为零的性质.它是一种宏观量子现象,只有依据量子力学才能给与正确的微观解释.这就是BCS理论. 这是一台高临界温度超导磁悬浮的动态演示装置.该装置为一个盛放高临界温度超导体的简易列车模型,在具有磁束缚的封闭磁轨道上方,利用超导体对永磁体的排斥作用,演示磁悬浮;;并可在旋转磁场加速装置作用下,沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧YBaCuO超导体表面时,磁通线从表面进入超导体内,在超导体内形成很大的磁通密度梯度,感应出高临界电流,从而对永磁体产生排斥,排斥力随相对距离的减小而逐渐增大,它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上;高温超导体是用熔融结构生长工艺制备的含Ag的YBaCuO系高温超导体,所以称为高温超导体是因为它在液氮温度

磁悬浮列车运行原理

磁悬浮列车运行原理 磁悬浮列车是现代高科技发展的产物。其原理是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。其研究和制造涉及自动控制、电力电子技术、直线推进技术、机械设计制造、故障监测与诊断等众多学科,技术十分复杂,是一个国家科技实力和工业水平的重要标志。它与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,有着“零高度飞行器”的美誉,是一种具有广阔前景的新型交通工具,特别适合城市轨道交通。磁悬浮列车按悬浮方式不同一般分为推斥型和吸力型两种,按运行速度又有高速和中低速之分,这次国防科大研制开发的磁悬浮列车属于中低速常导吸力型磁悬浮列车。 磁悬浮列车的种类 磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 德国和日本是世界上最早开展磁悬浮列车研究的国家,德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。日本开发的磁悬浮列车MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

超导磁悬浮应用

《超导磁悬浮应用》 摘要:1.高温超导技术的发现简单介绍,以及在磁悬浮系统方面的广阔的应用前景。2. 高温超导磁悬浮列车的核心是车载高温超导磁悬浮系统, 这个系统要求较大尺寸的液氮低温容器, 并且要求高温超导体块材与导轨之间的间隙(即磁悬浮净高度) 越大越好。 关键词:液氮低温容器,永磁导轨,超细铌钛合金多芯,电磁诱导供电系统线 1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C 时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然

离开锡盘表面,慢慢地飘起,悬空不动。迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。 为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30度,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无磨擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。 随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一

磁悬浮列车工作原理

磁悬浮列车工作原理 磁悬浮列车的原理是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”。 列车上装有超导磁体,由于悬浮而在线圈上高速前进。这些线圈固定在铁路的底部,由于电磁感应,在线圈里产生电流,地面上线圈产生的磁场极性与列车上的电磁体极性总是保持相同,这样在线圈和电磁体之间就会一直存在排斥力,从而使列车悬浮起来。 前进的原理:在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。在线圈里流动的电流流向会不断反转过来。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。 当今,世界上的磁悬浮列车主要有两种"悬浮"形式,一种是推斥式;另一种为吸力式。推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与

电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 "若即若离",是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种"若即若离"的状态,磁悬浮间隙约1厘米,因而有"零高度飞行器"的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合365JT城市轨道交通。

磁悬浮原理

磁悬浮原理 磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。它的时速可达到500公里以上,是当今世界最快的地面客运交通工具,有速度快、爬坡能力强、能耗低运行时噪音小、安全舒适、不燃油,污染少等优点。并且它采用采用高架方式,占用的耕地很少。磁悬浮列车意味着这些火车利用磁的基本原理悬浮在导轨上来代替旧的钢轮和轨道列车。磁悬浮技术利用电磁力将整个列车车厢托起,摆脱了讨厌的摩擦力和令人不快的锵锵声,实现与地面无接触、无燃料的快速“飞行”。 稍有物理知识的人都知道:把两块磁铁相同的一极靠近,它们就相互排斥,反之,把相反的一极靠近,它们就互相吸引。托起磁悬浮列车的,那似乎神秘的悬浮之力,其实就是这两种吸引力与排斥力。 应用准确的定义来说,磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。虽然磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架及悬挂系统等许多传统机车车辆的特点,但由于列车在牵引运行时与轨道之间无机械接触,因此从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题,所以它也许会成为人们梦寐以求的理想陆上交通工具。

根据吸引力和排斥力的基本原理,国际上磁悬浮列车有两个发展方向。一个是以德国为代表的常规磁铁吸引式悬浮系统--EMS系统,利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸引上来,悬空运行,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400-500公里,适合于城市间的长距离快速运输;另一个是以日本的为代表的排斥式悬浮系统--EDS系统,它使用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行,这种磁悬浮列车的悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两个国家都坚定地认为自己国家的系统是最好的,都在把各自的技术推向实用化阶段。估计到下一个? 磁悬浮的构想是由德国工程师赫尔曼?肯佩尔于1922年首先提出的。磁悬浮列车包含有两项基本技术,一项是使列车悬浮起来的电磁系统,另一项是用于牵引的直线电动机。 直线电动机的原理早在18世纪末就已经出现,形象地说,是把圆形旋转电机剖开并展成直线型的电机结构。它依靠铺在线路上的长定子线圈极性交错变化的电磁场,根据同极相斥异极相吸的原理进行牵引。 在肯佩尔的主持下,经过漫长的研究,德国于1971年造出了世界上第一台功能较强的磁悬浮列车。 磁悬浮列车按悬浮方式又分为常导型及超导型两种。常导磁悬浮列车由车上常导电流产生电磁吸引力,吸引轨道下方的导磁体,使列车浮起。常导型技术比较简单,由于产生的电磁吸引力相对较小,列车悬

日本超导磁悬浮列车开发现状

日本超导磁悬浮列车开发现状 田野 磁悬浮列车由于具有安全性、稳定性、与环境适应性以及高速、适合大量运输等特点,被视为21世纪综合运输系统中最具发展前途的高科技运输手段之一。日本出于谋求国土经济均衡发展,以及通过超导磁悬浮技术的开发带动各相关产业发展的目的,自1962年起就开始了直线电机推动悬浮方式列车的预研制工作。至1999年2月10日,随着在日本山梨县境内进行的5节车辆时速500公里荷重270人分编组运行试验的成功,日本超导磁悬浮列车的基本研制计划已接近尾声,将可以转入商业性运营线路开发建设阶段。日本拟于下世纪初在东京、名古屋、大阪之间铺设磁悬浮列车中央新干线。现将MLXO1型超导磁悬浮列车概况介绍如下。 1.超导系统 超导线圈:超导线圈是磁悬浮列车的最关键设备之一,它与U型列车行驶导槽中设置的推力、上浮、导向线圈一起使列车获得上浮、推进、导向力。日本使用的超导物质是将超细铌钛合金多芯线埋入铜母线内制成的超导电线,当此种超导电线浸入液氦(-269℃)中时进入超导状态产生强大磁场。这是世界上首次在实用运输设备上用超导技术实现可获得550公里稳定时速的大功率强磁线圈,其电压为22KV。 车载超低温冷冻系统:每一车载强磁单元上分别装有一台液氦及一台液氮压缩制冷机。液氦压缩机的作用是将由于外部热能及列车本身行驶时产生的热能逐渐气化了的氦气重新冷冻还原成液氦。液氮压缩制冷机的作用是将冷却超导线圈外部隔热板的液氮制冷剂重新冷却,保持-196℃低温液氮状态。MLX01型列车装备的压缩机为目前世界上体积最小、能力最强的节能型车载液氦及液氮压缩机,并且实现了连续工作1万小时无故障的纪录。使得列车运行时一次充氦(氮)以后无需再补充液氮或液氦。 磁屏蔽技术:由于超导线圈工作时产生的巨大磁场,如无有效屏蔽手段将危害乘客的健康,MLX01型列车使用了一种称之为EFE的屏蔽材料(工业纯铁类),有效地将客车内的磁场降至10高斯以内,可以确保乘客的安全。 2.车体技术 高强度轻型设计:当列车以550公里时速穿越隧道时,空气密度压力的突然变化及列车头部突入隧道时产生的微气压波会给车体带来巨大压力,对车体

磁悬浮列车技术论文

磁悬浮列车技术 【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。 【关键词】:悬浮、推进、导向、创新 【正文】 一、工作原理 磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。 导向系统 导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。 悬浮系统 目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。 图4给出了两种系统的结构差别。(EMS) 辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外

磁悬浮列车

磁悬浮列车简介 磁悬浮列车是一种没有车轮的陆上无接触式有轨交通工具,时速可达到500公里。它的结合能,是利用常导或超导电磁铁与感应磁场之间产生相互吸引或排斥力,使列车“悬浮”在轨道后或下面,作无摩擦的运行,从而克服了传统列车车轨粘着限制、机械噪声和磨损等问题,并且具有启动、停车快和爬坡能力强等优点。 早在1922年,德国的赫尔曼?肯珀就提出了电磁原理,并在1934年申请了磁浮列车的专利,并由此开始为人类编织一个高速乘行的梦想。人们对速度追求的目光,因而转向摩擦阻力大大减小的磁悬浮从技术的角度上来说,磁悬浮并不如量子计算机之类的发明高深。用一小块磁铁,再随便个钉子什么的,就可以轻易的让我们体会到磁力产生的吸引力和,可,。当然,这种悬浮只是示意性的,很难达到稳定的状态。科学家的创想不是我们用一块简单的磁铁就可以摆弄出来的。 数十年的发展,时至今日,磁悬浮技术形成了分别以德国和日本为代表的两大研究方向——EMS系统和EDS系统。德国认准的EMS(常导磁吸型)系统,是利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸附上来悬浮运行。日本看好的EDS(排斥式悬浮)系统,则是用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行。目前两种车型都达到了500公里左右的时速,两种方案都切实可行,孰优孰劣,也确实难分高下。 [编辑本段] “常导型” 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力使车辆浮起来。 列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的吸引力与列车重力相互平衡,利用磁铁吸引力将列车浮起1厘米左右,使列车悬浮在轨道上运行。这必须精确控制电磁铁的电流。 悬浮列车的驱动和同步直线电动机原理一模一样。通俗说,在位于轨道两侧的线圈里流动的交流电,能将线圈变成电磁体,由于它与列车上的电磁体的相互作用,使列车开动。

超导磁悬浮列车的原理

超导磁悬浮列车的原理 超导是超导电性的简称,它是指金属、合金或其它材料在低温条件下电阻变为零,电流通过时不会有任何损失的性质。当温度升高时,原有的超导态会变成正常的状态。超导现象是荷兰物理学家翁纳斯(H.K.Onnes,1853-1926年)首先发现的。 翁纳斯在1908年首次把最后一个"永久气体"氦气液化,并得到了低于4K 的低温。1911年他在测量一个固态汞样品的电阻与温度的关系时发现,当温度下降到4.2K附近时,样品的电阻突然减小到仪器无法觉察出的一个小值(当时约为1 10– 5)。由实验测出的汞的电阻率在4.2K附近的变化情况,该曲线表示在低于4.15K的温度下汞的电阻率为零。 电阻率为零,即完全没有电阻的状态称为超导态。除了汞以外,以后又陆续发现有许多金属及合金在低温下也能转变成超导态,但它们的转变温度(或叫临界温度Tc)不同。 利用超导体的持续电流可做一个很有趣的悬浮实验。将一个小磁棒丢入一个超导铅碗内,可看到小磁棒悬浮在铅碗内而不下落。这是由于电磁感应使铅碗表面感应出了持续电流。根据楞次定律,电流的磁场将对磁棒产生斥力,磁棒越靠近铅碗,斥力就越大。最后这斥力可以大到足以抵消磁棒所受重力而使它悬浮在空中。 自1825年世界上第一条标准轨铁路出现以来,轮轨火车一直是人们出行的交通工具.然而,随着火车速度的提高,轮子和钢轨之间产生的猛烈冲击引起列车的强烈震动,发出很强的噪音,从而使乘客感到不舒服.由于列车行驶速度愈高,阻力就愈大.所以,当火车行驶速度超过每小时300公里时,就很难再提速了. 如果能够使火车从铁轨上浮起来,消除了火车车轮与铁轨之间的摩擦,就能大幅度地提高火车的速度.但如何使火车从铁轨上浮起来呢科学家想到了两种解决方法:一种是气浮法,即使火车向铁轨地面大量喷气而利用其反作用力把火车浮起;另一种是磁浮法,即利用两个同名磁极之间的磁斥力或两个异名磁极之间

磁悬浮技术

磁悬浮基本原理及磁悬浮列车的应用与分析 姓名:张迪 学号:5120309486 班级:F1203017 日期:2013.10.8

磁悬浮技术 空间电磁悬浮技术简介 随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation)简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 磁悬浮是利用悬浮磁力(图1)使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早起模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。目前(2009年)国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 图1

相关主题
文本预览
相关文档 最新文档