当前位置:文档之家› 人教版高中物理学业水平测试知识点

人教版高中物理学业水平测试知识点

人教版高中物理学业水平测试知识点
人教版高中物理学业水平测试知识点

人教版2014年物理学业水平测试知识点复习

必修1知识点

1.质点(A )

在某些情况下,可以不考虑物体的大小和形状。这时,我们突出“物体具有质量”这一要素,把它简化为一个有质量的点,称为质点。(注意:不能以物体的绝对大小作为判断质点的依据)

2.参考系(A )

要描述一个物体的运动,首先要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化。这种用来做参考的物体称为参考系。

描述研究对象相对参考系的运动情况时,可假设参考系是“不动”的

3.路程和位移(A )

路程是物体运动轨迹的长度,是标量。

位移表示物体(质点)的位置变化。从初位置到末位置作一条有向线段,用这条有向线段表示位移,是矢量

4.速度 平均速度和瞬时速度(A )

如果在时间t ?内物体的位移是x ?,它的速度就可以表示为

t

x v ??=(1) 由(1)式求得的速度,表示的只是物体在时间间隔t ?内的平均快慢程度,称为平均速度。

如果t ?非常非常小,就可以认为 t

x ??表示的是物体在时刻t 的速度,这个速度叫做瞬时速度。

速度是表征运动物体位置变化快慢的物理量,是位移对时间的变化率,是矢量。

5.匀速直线运动(A )

任意相等时间内位移相等的直线运动叫匀速直线运动。

6.加速度(B ) 加速度是速度的变化量与发生这一变化所用时间的比值,t v

a ??= a 的方向与△v

的方向一致,是矢量。 加速度是表征物体速度变化快慢的物理量,与速度v 、速度的变化x ?v 均无必然关系。(怎样理解?)

7.用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A )

用电火花计时器(或电磁打点计时器)测速度

对于匀变速直线运动中间时刻的瞬时速度等于平均速度:纸带上连续3个点间的距离除以其时间间隔等于打中间点的瞬时速度。

可以用公式2aT x =?求加速度(为了减小误差可采用逐差法求)。注意:对aT x =?要正确

理解:连续..、相等..的时间间隔位移差...

8.匀变速直线运动的规律(B )

速度公式:v t =v o +at 位移公式:x=v o t+2

1at 2推论:v t 2-v o 2=2ax 中间时刻速度公式:2

t v =20t v v v += 中间位移速度公式:22202t x v v v += 位移差公式:

2aT x =? 关于初速度等于零的匀加速直线运动(T 为等分时间间隔),有以下特点:

1T 末、2T 末、3T 末……瞬时速度之比v 1∶v 2∶v 3∶……∶v n =1∶2∶3∶……∶n 1T 内、2T 内、3T 内……位移之比S 1∶S 2∶S 3……:S n =12∶22∶32∶……∶n 2

第一个T 内、第二个T 内、第三个T 内……位移之比

S Ⅰ∶S Ⅱ∶S Ⅲ∶……∶S N =1∶3∶5∶……∶(2N-1)

从静止开始通过连续相等的位移所用时间之比

t 1∶t 2∶t 3∶……∶t n =1∶2-1)∶3-2)∶… …∶n -1-n

9.匀速直线运动的x-t 图象(A )

匀速直线运动的x-t 图象一定是一条直线。随着时间的增大,如果物体的位移越来越大或斜率为正,则物体向正向运动,速度为正,否则物体做负向运动,速度为负。

匀速直线运动的v-t 图象是一条平行于t 轴的直线,匀速直线运动的速度大小和方向都不随时间变化。

描述上述四个图像所反映的运动性质 10.匀变速直线运动的v-t 图象(B )

匀变速直线运动的v-t 图象为一直线,直线的斜率大小表示加速度的数值,即a=k ,可从图象的倾斜程度可直接比较加速度的大小。

v-t 图象与坐标轴所包围的面积表示某一过程发生的位移

11.自由落体运动(A ) 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。自由落体运动是初速度为0加速度为g 的匀加速直线运动。

公式:V t =gt h=2

1gt 2 x t v t x t v

t 甲 乙 丙 丁

12.伽利略对自由落体运动的研究(A )

13.力(A )

物体与物体之间的相互作用称做力。(理解力的物质性、相互性、矢量性)

施力物体同时也是受力物体,受力物体同时也是施力物体。

按力的性质分,常见的力有重力、弹力、摩擦力、电场力、磁场力

物体与物体之间存在四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用。

14.重力(A )

地面附近的一切物体都受到地球的引力,由于地球的吸引而使物体受到的力叫做重力。

G=mg (g=9.8N/Kg ) 方向: 重力的作用点:重心。 不考虑地球自转,地球表面物体的重力等于万有引力.mg=G 2R

Mm 15.形变与弹力(A )

物体在力的作用下形状或体积发生改变,叫做形变。有些物体在形变后能够恢复原状,这种形变叫做弹性形变。

发生形变的物体由于要恢复原状,对跟它接触的物体产生力的作用,这种力叫做弹力。 判断弹力的方向应注意到接触处的情况:平面产生成受到的弹力(压力或支持力)垂直于平面;曲面上某处的弹力垂直于曲面该处的切面;某一个点的弹力垂直于与它接触的平面(或曲面)的切线.

弹簧的弹力与弹簧的形变量成正比 F=KX (即:胡克定律。X 涵义:伸长或缩短的长度)

16.滑动摩擦力 静摩擦力(A )

两个相互接触而保持相对静止的物体,当他们之间存在滑动趋势时,在它们的接触面上会产生阻碍物体间相对滑动的力,这种力叫静摩擦力。

两个互相接触挤压且发生相对运动的物体,在它们的接触面上会产生阻碍相对运动的力,这个力叫做滑动摩擦力。

无论是静摩擦力或滑动摩擦力,所谓的“滑动趋势”“相对运动”其参考系对象均指与之接触的“接触面”,而不是另外的物体。或者这样理解:“静”、“动”仅对接触面而言。(运动的物体可能受静摩擦力,静止的物体可能受滑动摩擦力。你怎样理解?举例说明)

产生摩擦力的条件

(1)两物体相互接触(2)接触的物体必须相互挤压发生形变,有弹力(3)两物体有相对运动或相对运动的趋势(4)两接触面不光滑

一般说来,静摩擦力根据力的平衡条件来求解,滑动摩擦力根据F=N F 求解,请正确理解N F 的涵义(是什么?).另外滑动摩擦力大小与接触面积、运动速度有关吗?

17.力的合成与分解(B )

平行四边行定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两

个邻边之间的对角线就表示合力的大小和方向。

力的分解是力的合成的逆运算。

合力可以等于分力,也可以小于或大于分力.

要正确处理平衡问题(如物体保持静止、匀速直线运动)首要的是学会对物体进行受力分析,规范作出受力示意图,将某个力分解或将某些力合成,这点要根据具体的问题选择最优化的方法,在平时的练习中善于观察、总结。

18.探究、实验:力的合成的平行四边形定则(A )

19.共点力作用下物体的平衡(A )

如果一个物体受到N 个共点力的作用而处于平衡状态,那么这N 个力的合力为零

20.牛顿第一定律(A )

一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.这就是牛顿第一定律。牛顿第一运动定律表明,物体具有保持原来匀速直线运动状态或静止状态的性质,我们把这个性质叫做惯性。牛顿第一定律又叫做惯性定律。

量度物体惯性大小的物理量是它们的质量。质量越大,惯性越大,质量不变,惯性不变。

21.探究加速度与力、质量的关系(A )

研究方法:控制变量法,先保持质量m 不变,研究a 与F 之间的关系,再保持F 不变,研究a 与m 之间的关系。数据分析上作a-F 图象和a-m

1图象 22.牛顿第二定律(C )

物体的加速度跟物体受到的作用力成正比,跟物体的质量成反比。加速度的方向与合力方向一致。F 合=ma

牛顿第二定律用最简洁的方式揭示了自然界中纷繁复杂现象背后的规律,使人们对力和运动的关系有了深刻、正确的认识,其意义十分重大。

在研究匀变速直线运动的时候,涉及到加速度,一般要对物体进行受力分析,用牛顿第二定律建立方程

23.牛顿第三定律(A )

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。 作用力和反作用力性质一定相同,作用在两个不同的物体上.而一对平衡力一定作用在同一个物体上,力的性质可以相同,也可以不同.

24.力学单位制(A )

在力学范围内,国际单位制规定长度、质量、时间为三个基本物理量。它们的单位米、千克、秒为基本单位。

必修2知识点

25.功(B )

力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。 功的定义式:αcos ?=FL W (适用于恒力做功)

注意: 0=α时,FL W =;但 90=α时,0=W ,力不做功; 180=α时,FL W -=.

功虽有正负之分,但功是标量,其负值表示阻力做功。

26功率(B )

功与完成这些功所用时间的比值。 平均功率:t

W P = ; 功率是表示物体做功快慢的物理量。

力与速度方向一致时:P=Fv

27.重力势能 重力势能的变化与重力做功的关系(A )

物体的重力势能等于它所受重力与所处高度的乘积,mgh E P =。重力势能的值与所选取的参考平面有关。

重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少. 重力对物体所做的功等于物体重力势能的减少量:P G E W ?-=。

重力做功的特点:重力对物体所做的功只与物体的是始末位置有关,而跟物体的具体运动路径无关。

28.弹性势能(A )

29.动能(A ) 物体由于运动而具有的能量。22

1mv E k = 物体质量越大,速度越大则物体的动能越大。

※30.探究、实验:做功与物体动能变化的关系(A )

31.动能定理(C )

合力在某个过程中对物体所做的功,等于物体在这个过程中动能的变化。

表达式:12k k E E W -=合或k E W ?=合。

动能定理适用于恒力作用、变力作用;适用于直线运动、曲线运动;是解决非匀变速运动的最好途径,在动力学问题中应增强运用动能定理解题的主动意识。

32.机械能守恒定律(C )

机械能:机械能是动能、重力势能、弹性势能的统称,可表示为:

E (机械能)=E k (动能)+E p (势能)

机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。

)(E E E E K2P2K1P1恒量E =+=+,式中K1P1E E 、是物体处于状态1时的势能和动能,K2P2E E 、 是物体处于状态2时的势能和动能。使用该式应先选取某个位置作为零势能参考平面。

还可以使用“转化式”△E k (增)=△E p (减) (或△E k (减)=△E p (增),无需选参考平面)

33.用电火花计时器(或电磁打点计时器)验证机械能守恒定律(A )

实验目的:通过对自由落体运动的研究验证机械能守恒定律。

速度的测量:做匀变速运动的纸带上某点的瞬时速度,等于相邻两点间的平均速度。 下落高度的测量:等于纸带上两点间的距离

比较V 2与2gh 相等或近似相等,则说明机械能守恒

34.能量守恒定律(A )

能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

35.能源 能量转化和转移的方向性(A )

能源是人类可以利用的能量,是人类社会活动的物质基础。人类利用能源大致经历了三个时期,即柴薪时期、煤炭时期、石油时期。

能量的耗散:燃料燃烧时一旦把自己的热量释放出去,它就不会再次自动聚集起来供人类重新利用;电池中的化学能转化为电能,它又通过灯泡转化成内能和光能,热和光被其他物质吸收之后变成周围环境的内能,我们也无法把这些内能收集起来重新利用。这种现象叫做能量的耗散。能量耗散表明,在能源的利用过程中,即在能量的转化过程中,能量在数量上并未减少,但在可利用的品质上降低了,从便于利用变成不利于利用的了。能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性。

36.运动的合成与分解(B )

如果某物体同时参与几个运动,那么这物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。

运动合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量即位移、速度、加速度的合成与分解。由于它们都是矢量,所以它们都遵循矢量的合成与分解法则。

合运动和分运动的关系:

(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。

(2)独立性:某方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。

(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束的。

37.平抛运动的规律(C )

将物体以一定的水平速度抛出,在不计空气阻力的情况下,物体所做的运动。 平抛运动的特点:(1)加速度a=g 恒定,方向竖直向下;(2)运动轨迹是抛物线。 平抛运动的处理方法:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。x=v 0t y=2

1gt 2 38.匀速圆周运动(A )

质点沿圆周运动,如果在相等的时间里通过的圆弧长度都相等,这种运动就叫做匀速圆周运动。

注意匀速圆周运动不是匀速运动,是曲线运动,速度方向不断变化.

39.线速度、角速度和周期(A )

线速度:物体在某时间内通过的弧长与所用时间的比值,其方向在圆周的切线方向上。 表达式:t

l v = 角速度:物体在某段时间内通过的角度与所用时间的比值。

表达式:t θ

ω=,其单位为弧度每秒,s rad /。

周期:匀速运动的物体运动一周所用的时间。 频率:T

f 1=,单位:赫兹(H Z ) 线速度、角速度、周期间的关系:

ωπωπr v T T r v ===,/2,/.2。

40.向心加速度(A )

做匀速圆周运动的物体,加速度方向指向圆心,这个加速度叫向心加速度。 大小:

r T r r v a n 222.2??? ??===πω 方向:指向圆心。

向心加速度是描述匀速圆周运动中物体线速度变化快慢的物理量

41.向心力(C )

产生向心加速度的力。

向心力的方向:指向圆心,与线速度的方向垂直。

向心力的大小:做匀速圆周运动所需的向心力的大小为r mv r m F /2

2==ω 向心力的作用:只改变速度的方向,不改变速度的大小。

向心力是效果力。在对物体进行受力分析时,不能认为物体多受了个向心力。向心力是物体受到的某一个力或某一个力的分力或某几个力的合力.

注意:在涉及圆周运动的问题中,一定要对某个位置进行正确的受力分析,明确那些力的合力提供所需的向心力。

★竖直面内圆周运动最高点处的受力特点及分类

分三种情况进行讨论。

⑴弹力只可能向下,如绳拉球。

⑵弹力只可能向上,如车过桥。

⑶弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。任意值。但可以进一步讨论:①当gR v >时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。②当弹力大小Fmg 时,向心力只有一解:F +mg ;当弹力F=mg 时,向心力等于零。

42.万有引力定律(A )

自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。

表达式:221r m m G F =

43.人造地球卫星(A )

首先强调一点:一切涉及环绕运动问题,其解题、推导的出发点均是:F 引=F 向,然后根据题意将二力展开。

卫星环绕速度v 、角速度ω、周期T 与半径r 的关系: 由r T m r m r mv r Mm G 22

2224/πω===,可得:

r GM v =,r 越大,v 越小;(记住此公式)

3r GM =ω,r 越大,ω越小; GM r T 3

24π=,r 越大,T 越大。

44.宇宙速度(A )

第一宇宙速度(环绕速度):s km v /9.7=;(记住此值)

第二宇宙速度(脱离速度):s km v /2.11=;

第三宇宙速度(逃逸速度):s km v /7.16=。

会求第一宇宙速度: 卫星贴近地球表面飞行R v m R Mm G 22= 地球表面近似有 mg R Mm G =2

则有 s Km gR v /9.7==

3-1知识点

46.电荷 电荷守恒定律 A

(1)自然界的两种电荷:玻璃棒跟丝绸摩擦, 玻璃棒 带正电;橡胶棒跟毛皮摩擦,橡胶棒带负电。

(2)元电荷e= 1.6×10-19 C,所有物体的带电量都是元电荷的 整数 倍。

(3)使物体带电的方法有三种:接触起电、摩擦起电、感应起电,无论哪种方法,都是电荷在物体之间的转移或从物体的一部分转移到另一部分,电荷的总量是不变。

(4)电荷守恒定律

47.库仑定律 A

(1)库仑定律的成立条件:真空中静止的点电荷。

(2)带电体可以看成点电荷的条件:如果带电体间距离比它们自身线度的大小大得多,以至带电体的形状和大小对相互作用力的影响可以忽略不计,这样的带电体可以看成点电荷。

(3)定律的内容:真空中两个静止的点电荷之间的相互作用力,跟它们电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上。

(4)表达式:F=22

1r Q kQ ,k= 9×109 Nm2/ c2

注意(1)适用条件为真空中静止点电荷

(2)计算时各量带入绝对值,力的方向利用电性来判断

48.电场 电场强度 电场线 A

(1)电场:存在于电荷周围的特殊物质。实物和场是物质存在的两种方式。

(2)电场强度的定义:放入电场中某点的电荷所受到的电场力跟它的电量的比值。 表达式:E=F/q 。电场强度的单位是N/C 。电场强度的大小与放入电场中的电荷无关,只由电场本身决定。

(3)点电荷的场强公式

2r Q k q F E ==

(4)电场强度方向的规定:电场中某点的电场强度的方向跟 正 电荷在该点受的电场力的方向相同。负电荷在该点受的电场力的方向 相反 。

(5)、电场线

1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,曲线上某点的切线方向表示场强的方向。

2、几种典型电场的电场线

3、电场线的特点

(1)假想的

(2)起----正电荷;无穷远处 止----负电荷;无穷远处

(3)不闭合 (4)不相交

(5)疏密----强弱 切线方向---场强方向

第一章 第4节 电势能 电势

一、电势能

1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能.

2、电势能的变化与电场力做功的关系

二、电势

1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E p

=? 单位:伏特(V ) 标量

3.顺着电场线的方向,电势越来越低。

第一章 第5节 电势差 电场力的功

一、电势差:电势差等于电场中两点电势的差值

B A AB U ??-=

二、电场力的功

pB pA AB E E W -=

AB AB qU W =

电场力做功的特点:电场力做功与重力做功一样,只与始末位置有关,与路径无关.

第一章 第6节 匀强电场中场强与电势差的关系

一、场强与电势的关系? 结论:电势与场强没有直接关系!

二、匀强电场中场强与电势差的关系

Ed U =

匀强电场中两点间的电势差等于场强与这两点间沿电场方向距离的乘积

d U

E Ed U =?=

第一章 第7节 静电现象的应用

1、静电的应用:静电复印,静电除尘,静电喷漆

2、静电的防止:避雷针、油罐车的链条

第一章 第8节 电容器、电容

一、电容器

1、电容器:任何两个彼此绝缘、相互靠近的导体可组成一个电容器,贮藏电量和能量。两个导体称为电容器的两极。

2、电容器的充电、放电.

二、电容

1、电容:C=Q/U ,式中Q 指每一个极板带电量的绝对值 单位:法拉(F ) 常用单位有微法(μF ),皮法(pF )

2、平行板电容器的电容:kd S C πε4=

第二章 第一节 电流和电源

一、电流

1、电流:电荷的定向移动形成电流。

第二章 第三节 电功 电功率 焦耳定律

一、电功电功率

2.电功率是描述电流做功快慢的物理量。

UI t W P ==

额定功率:是指用电器在额定电压下工作时消耗的功率。

实际功率:是指用电器在实际电压下工作时消耗的功率。

二、焦耳定律

1.焦耳定律:电流流过导体时,导体上产生的热量Q=I 2Rt

2、电功和电热的关系

a.在纯电阻电路中,电流做功,电能完全转化为电路的内能.因而电功等于电热,有: t R U Rt I UIt W )(22

=== R U R I UI P 2

2=== 第二章 第六节 闭合电路的欧姆定律

一、电源

1、电源是一种把其他形式能转化为电能的一种装置,能使其两极间有电势差.

2、电源的电动势E

a.电动势是反映电源把其他形式能转化为电能的本领的物理量,

只由电源本身结构特

b.数值上等于电源未接入电路(即断路)时两极间电压,E=U 断,单位:伏.

二、电路

1.内电路:电源两极(不含两极)以内,电流从电源内部通过时形成的通路,该通路上也有电阻被称为内电阻r

2.外电路:接在电源两极(包括两极)之间的所有元件线路总体,这部分的总电阻称为外电阻R 这部分两端即电源两极间的电压称为外电压也叫路端电压.

三.闭合电路欧姆定律

1、电路中电动势与电压的关系 Ε =U 内 +U 外 (普适)

2.闭合电路欧姆定律:闭合电路中的电流与电源电动势成正比,与内、外电路的电阻之和成反比.

I =E/(R+r) 或Ε =IR+Ir 3.适用条件:纯电阻电路

四、实验:测定电池的电动势和内阻

1、基本原理 闭合电路的欧姆定律:E=U+Ir

U:路端电压 I:通过电源的电流

只要测出几组(至少两组)U 、I 值就可求出E 、r

2、实验基本电路

在坐标纸上以I 为横坐标,U 为纵坐标,用测出几组的U ,I 值画出U -I 图像. E 等于U 轴截距

A V U/V

E *

* *

* *

*

r 等于直线的斜率的绝对值

49.磁场 磁感线 A

(1)磁场:磁体和电流周围都存在磁场。

(2(磁场方向:在磁场中的某点,小磁针北极受力的方向,即小磁针静止时北极所指的方向,就是那一点的磁场方向。

(3)磁感线的特点:a.磁感线是假想的线b.两条磁感线不会相交c.磁感线一定是闭合的

50.地磁场 A

(1)磁偏角:地磁北极在地理南极附近,小磁针并不准确指南或指北,其间有一个交角,叫磁偏角。科学家发现,磁偏角在缓慢变化。

(2)地磁场方向:赤道上方地磁场方向水平向北。

51.电流的磁场 安培定则 A

(1)电流的磁效应的发现:1820 丹麦 奥斯特

(2)安培定则:通电直导线,通电圆环,通电螺线管

52.磁感应强度 磁通量 A

(1)磁感应强度的定义:当通电导线与磁场方向垂直时,导线所受的安培力跟电流与导线长度乘积的比值,即B=F/IL 。单位:特(T )

(2)磁感应强度的方向:磁场的方向

(3)磁通量:穿过一个闭合电路的磁感线的多少。

53.安培力的大小 左手定则 A

(1)安培力:通电导线在磁场中受到的作用力叫安培力

(2)安培力的计算公式:F=BIL ;

通电导线与磁场方向垂直时,此时安培力有最大值F=BIL ;通电导线与磁场方向平行时,此时安培力有最小值F=0。

(3)左手定则:伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。

54.洛伦兹力的方向 A

(1)洛伦兹力:磁场对运动电荷的作用力.

(2)安培力是洛伦兹力的宏观表现.

(3) 左手定则判定洛伦兹力的方向:伸开左手,使拇指跟其余的四指垂直,且与手掌都在同一平面内,让磁感线穿入手心,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向。负电荷的受力方向与正电荷的受力方向相反. E I r = 短

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

高中物理学业水平测试题

黑龙江省普通高中学业水平考试物理模拟卷七 第一部分选择题(全体考生必答,共60分) 一、单项选择题(本题共25小题,每小题2分,共50分。每题给出的四个选项中,只有一项是符合题目要求的) 1.下列对物体运动的描述,不是以地面为参考系的是 A.大江东去 B.轻舟已过万重山 C.夕阳西下 D.飞花两岸照船红 2.突出问题的主要因素,忽略次要因素,建立理想化的“模型”,是物理学经常采用的一种科学研究方法。质点就是这种模型之一。下列关于地球能否看作质点的说法正确的是 A.地球质量太大,不能把地球看作质点 B.地球体积太大,不能把地球看作质点 C.研究地球绕太阳的公转时可以把地球看作质点 D.研究地球的自转时可以把地球看作质点 3.在长为50m的标准泳池举行200m的游泳比赛,参赛运动员从出发至比赛终点的位移和路程分别是A.0 m,50 m B.50 m,100 m C.100 m,50 m D.0 m,200 m 4.火车从广州东站开往北京站,下列的计时数据指时间的是 A.列车在16时10分由广州东站发车 B.列车于16时10分在武昌站停车 C.列车约在凌晨3点15分到达武昌站 D.列车从广州东站到北京站运行约22小时 5.某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该加速度的理解正确的是 A.每经过1 秒,物体的速度增加1倍 B.每经过l 秒,物体的速度增加2m/s C.物体运动的最小速度是2m/s D.物体运动的最大速度是2m/s 6.右图是利用打点计时器记录物体匀变速直线运动信 息所得到的纸带。为便于测量和计算,每 5 个点取一 个计数点.已知s1<s2<s3<s4<s5。对于纸带上2 、3 、4 这三个计数点,相应的瞬时速度关系为 A.计数点2 的速度最大B.计数点3 的速度最大 C.计数点4 的速度最大D.三个计数点的速度都相等 7.某质点做匀加速直线运动,零时刻的速度大小为3m/s ,经过1s 后速度大小为4m/s, 该质点的加速度大小是 A.1m/s2 B.2 m/s2 C.3 m/s2 D.4 m/s2 8.“飞流直下三千尺,疑是银河落九天”是唐代诗人李白描写庐山瀑布的佳句。某瀑布中的水下落的时间是4 s,若把水的下落近似简化为自由落体,g 取10 m/s2,则下列计算瀑布高度结果大约正确的是 A. 10m B.80m C.100m D.500m 9.下列描述物体做匀速直线运动的图象是 10.关于弹力,下列表述正确的是 A.杯子放在桌面上,杯和桌均不发生形变

新高中物理合格考试知识点(公式定理总结)

新高中物理合格考试知识点(公式定理总结) 1. 加速度(矢):描述速度变化快慢,t v a ??=。加速:a 、v 同向;减速:a 、v 反向。 2. V-t 图:①时间轴上方:v 正向,下方:v 反向。②纵坐标绝对值:v 的大小。③图线向上斜:a 正向,向下斜:a 反向。④图线斜率大小:a 的大小。⑤图线与时间轴包围图形的面积:位移,时间轴上为正向位移,时间轴下为反向位移。 3. 匀变速直线运动①at v v 0+=,②20at 2 1t v x +=,③ax 2v -v 202=。(注意方向) 4. 推论:①2aT x =?(匀变速直线运动在连续的相等的时间T 内位移之差为定值aT 2)(纸带算a )②2 v v v v t 02t +==(某段平均速度=该段中间时刻的瞬时速度=该段初末速度的平均值(纸带算v ) 5. 自由落体(v 0=0,a=g ):①gt v =,②2gt 2 1h =,③gh 2v 2= 6. 弹簧弹力:F 弹=k Δx ,(k :劲度系数N/m ,Δx :形变量) 7. 滑动摩擦力:F f =μF N ,(F N 为接触面的压力或支持力) 8. 静摩擦力:根据物体的运动状态在静摩擦力方向上受力分析 9. 牛顿第一定律:F 合=0,则物体静止或匀速直线运动 10. 牛顿第二定律:F 合=ma 11. 超重:a 向上(加速上升/减速下降);失重:a 向下(加速下降/减速上升)

12. 牛顿第三定律:相互作用力总等大反向共线,作用在两个物体上,同时产生同时消失 13. 功(标):αFlcos W =(α为F 与l 的夹角),单位:J 14. 功率(标):t W P = ,单位:W ,αFvcos P =瞬(α为F 与v 的夹角) 15. 动能(标):2k mv 21E =,单位:J 16. 重力势能(标):mgh E p =,(注意选定零势能面) 17. 动能定理:1k 2k E -E W =合,(注意W 的+/-)(W 合为合力的功/各个力做功之和) 18. 重力做功:mgh W G =,(W G +,E p 减少;W G -,E p 增加) 19. 机械能变化12G E -E W 机机外除=,机械能守恒:除了重力以外的力不做功 20. 库仑力:221r q q k F =(点电荷,真空中,k=9x109Nm 2/C 2)(同号相斥,异号相吸) 21. 元电荷:e=1.6x10-19C ,(最小的电荷量,电子或质子所带电荷量) 22. 电场强度(矢):q F E = ,(定义式,通用,q 为试探电荷,正电荷FE 同向,负电荷FE 反向),单位:N/C 或V/m ,矢量合成 23. 点电荷电场:2r Q k E =,(Q 为场源电荷);方向:正电荷:背离正电荷;负电荷:指向负电荷 24. 匀强电场d U E =(d :沿电场线方向的距离) 25. 电场线切线方向表示E 的方向,电场线疏密程度表示E 的大小,沿电场线方向电势降低,电场线方向是电势降低最快的方向,电场线与

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

人教版高一物理必修二知识点总结

曲线运动 一、曲线运动 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 ①匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动; ②变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (2)特点: ①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。 ③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动速率将不变。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。 ③独立性:每个分运动都是独立的,不受其他运动的影响 ④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的 (2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①物体的实际运动是合运动 ②速度、时间、位移、加速度要一一对应 ③如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 3.小船渡河问题 一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短: 设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V L t = , sin90=1当船头与河岸垂直时,渡河时间最短,c V L t = m in (与水 速的大小无关) 渡河位移:222t v L s s += (2)渡河位移最短: ①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ sin v L t = 船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c ②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:L V V L s c s ==θcos

高中物理学业水平测试知识点(全)

物理知识点公式汇总 必修1知识点 1.质点(A ) 在某些情况下,可以不考虑物体的大小和形状。这时,我们突出“物体具有质量”这一要素,把它简化为一个有质量的点,称为质点。(注意:不能以物体的绝对大小作为判断质点的依据) 2.参考系(A ) 要描述一个物体的运动,首先要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化。这种用来做参考的物体称为参考系。 描述研究对象相对参考系的运动情况时,可假设参考系是“不动”的 3.路程和位移(A ) 路程是物体运动轨迹的长度,是标量。 位移表示物体(质点)的位置变化。从初位置到末位置作一条有向线段,用这条有向线段表示位移,是矢量 4.速度 平均速度和瞬时速度(A ) 如果在时间t ?内物体的位移是x ?,它的速度就可以表示为 t x v ??= (1) 由(1)式求得的速度,表示的只是物体在时间间隔t ?内的平均快慢程度,称为平均速度。 如果t ?非常非常小,就可以认为 t x ??表示的是物体在时刻t 的速度,这个速度叫做瞬时速度。 速度是表征运动物体位置变化快慢的物理量,是位移对时间的变化率,是矢量。 5.匀速直线运动(A ) 任意相等时间内位移相等的直线运动叫匀速直线运动。 6.加速度(A ) 加速度是速度的变化量与发生这一变化所用时间的比值,t v a ??= a 的方向与△v 的方 向一致,是矢量。 加速度是表征物体速度变化快慢的物理量,与速度v 、速度的变化x ?v 均无必然关系。(怎 样理解?) 7.用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A ) 用电火花计时器(或电磁打点计时器)测速度 对于匀变速直线运动中间时刻的瞬时速度等于平均速度:纸带上连续3个点间的距离除以其时间间隔等于打中间点的瞬时速度。 可以用公式2 aT x =?求加速度(为了减小误差可采用逐差法求)。注意:对aT x =?要正确理解: 连续..、相等..的时间间隔位移差... 8.匀变速直线运动的规律(B )

新高一物理合格考知识点

新高一物理合格考知识点 1. 加速度a (矢):描述速度变化快慢,t v a ??= 。加速:a 、v 同向;减速:a 、v 反向。 2. V-t 图:①时间轴上方:v 正向,下方:v 反向。②纵坐标绝对值:v 的大小。③图线向上斜:a 正向,向下斜:a 反向。④图线斜率大小:a 的大小。⑤图线与时间轴包围图形的面积:位移,时间轴上为正向位移,时间轴下为反向位移。 3. 匀变速直线运动①at v v 0+=,②20at 2 1t v x +=,③ax 2v -v 2 02=。(注意方向) 4. 推论:①2aT x =?(匀变速直线运动在连续的相等的时间T 内位移之差为定值aT 2)(纸带算a )②2 v v v v t 02 t += =(某段平均速度=该段中间时刻的瞬时速度=该段初末速度的平均值(纸带算v ) 5. 自由落体(v 0=0,a=g ):①gt v =,②2 gt 2 1h = ,③gh 2v 2= 6. 弹簧弹力:F 弹=k Δx ,(k :劲度系数N/m ,Δx :形变量) 7. 滑动摩擦力:F f =μF N ,(F N 为接触面的压力或支持力) 8. 静摩擦力:根据物体的运动状态在静摩擦力方向上受力分析 9. 牛顿第一定律:F 合=0,则物体静止或匀速直线运动 10. 牛顿第二定律:F 合=ma 11. 超重:a 向上(加速上升/减速下降);失重:a 向下(加速下降/减速上升) 12. 牛顿第三定律:相互作用力总等大反向共线,作用在两个物体上,同时产生同时消失 13. 功(标):αFlcos W =(α为F 与l 的夹角),单位:J 14. 功率(标):t W P = ,单位:W ,αFvcos P =瞬(α为F 与v 的夹角) 15. 动能(标):2k mv 2 1 E =,单位:J 16. 重力势能(标):mgh E p =,(注意选定零势能面) 17. 动能定理:1k 2k E -E W =合,(注意W 的+/-)(W 合为合力的功/各个力做功之和) 18. 重力做功:mgh W G =,(W G +,E p 减少;W G -,E p 增加) 19. 机械能变化12G E -E W 机机外除=,机械能守恒:除了重力以外的力不做功 20. 库仑力:2 21r q q k F =(点电荷,真空中,k=9x109Nm 2/C 2 )(同号相斥,异号相吸) 21. 元电荷:e=1.6x10-19 C ,(最小的电荷量,电子或质子所带电荷量) 22. 电场强度(矢):q F E = ,(定义式,通用,q 为试探电荷,正电荷FE 同向,负电荷FE 反向),单位:N/C 或V/m ,矢量合成 23. 点电荷电场:2r Q k E =,(Q 为场源电荷);方向:正电荷:背离正电荷;负电荷:指向负电荷 24. 匀强电场d U E = (d :沿电场线方向的距离) 25. 电场线切线方向表示E 的方向,电场线疏密程度表示E 的大小,沿电场线方向电势降低,电场线方向是电势降低最快的方向,电场线与等势线垂直。 26. 电场力做功:W AB =U AB q ,(注意三个量的+/-);W 电=E p1-E p2(W 电做正功,E p 减少;W 电 做负功,E p 增加) 27. 一般规定无穷远处或接地电势为0,正电荷附近电势为+,负电荷附近电势为-。 28. 电势能:q E p ?=,(注意三个量的+/-)(电势越高,+电荷的电势能越大,-电荷的电势能越小;电势越低,+电荷的电势能越小,-电荷的电势能越大) 29. 电容:表示电容器容纳电荷的本领,定义式U Q C =,(Q :单板电荷量;U :两板间电势差);平行板电容器电容决定式kd 4S C πε=(S :极板正对面积,d :板间距,ε:板间电介质介电常数)

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理学业水平测试物理知识点归纳

高中物理学业水平测试物理考前必读 1.质点 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 2.参考系 在描述一个物体的运动时,用来做参考的物体称为参考系。 3.路程和位移 路程是质点运动轨迹的长度,路程是标量。 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 在物体做单向直线运动时,位移的大小等于路程。 4.速度 平均速度和瞬时速度 速度是描述物体运动快慢的物理,v =Δx /Δt ,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程)的速度。 瞬时速度:运动物体某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向。 5.匀速直线运动 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。匀速直线运动又叫速度不变的运动。 6.加速度 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是=Δv /Δt =(v t -v 0)/Δt ,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器)测速度 电磁打点计时器使用交流电源,工作电压在10V 以下。电火花计时器使用交流电源,工作电压220V 。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 t x v ??= 若t ?越短,平均速度就越接近该点的瞬时速度

8.用电火花计时器(或电磁打点计时器)探究匀变速直线运动的速度随时间的变化规律 t x v v t = =2 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速度 9.匀变速直线运动规律 B 速度公式:at v v +=0 位移公式:202 1at t v x + = 位移速度公式:ax v v 2202=- 平均速度公式:t x v v v =+=20 10.匀变速直线运动规律的速度时间图像 纵坐标表示物体运动的速度,横坐标表示时间 图像意义:表示物体速度随时间的变化规律 ①表示物体做 匀速直线运动 ; ②表示物体做 匀加速直线运动 ; ③表示物体做 匀减速直线运动 ; ①②③交点的纵坐标表示三个运动物体的速度相等; 图中阴影部分面积表示0~t 1时间内②的位移 11.匀速直线运动规律的位移时间图像 纵坐标表示物体运动的位移,横坐标表示时间 图像意义:表示物体位移随时间的变化规律 ①表示物体做 静止 ; ②表示物体做 匀速直线运动 ; ③表示物体做 匀速直线运动 ; ①②③交点的纵坐标表示三个运动物体相遇时的位移相同。 12.自由落体运动 (1)概念:物体只在重力作用下从静止开始下落的运动,叫做自由落体运动

物理合格考知识点总结

人教版高中物理必修1教案 第一章运动的描述 1、2节 一、物体和质点 1.只有质量,没有形状和大小的点叫做质点。 2.质点是一种科学抽象,一一种理想化的模型,这种忽略次要因素、突出主要因素(质量)的处理方法是一种非常重要的科学研究方法。 3.一个物体能否看成质点,取决于它的形状和大小在所研究问题中是否可以忽略不计,而跟自身体积的大小、质量的多少和运动速度的大小无关。 4.一个物体能否被看成质点,取决于所研究的问题的性质,同一个物体在不同的问题中,有的能被看作质点,有的却不能被看成质点。 学生讨论:1、是不是只有很小的物体才能看作质点?(错) 2、地球的自转和转动的车轮能否被看作质点?(地球的自转可看作质点,转动的车轮不可看作质点。 二、参考系 1.参考系是参照物的科学名称,是假定不动的物体。 2.运动和静止都是相对的。 3.参考系的选择是任意的,一般选择地面或相对地面静止的物体。 三、坐标系 1.为了定量描述物体的位置随时间的变化规律,我们可以在参考系上建立适当的坐标系,这个坐标系应该包含原点、正方向和单位长度。 2.对于质点的直线运动,一般选取质点的运动轨迹为坐标轴,质点运动的方向为坐标轴的正方向,选取计时起点为坐标轴的原点。单位长度的选定要根据具体情况。 3.位置的表示方法,例:x=5m。 四、时间和时间间隔 时刻为一点,时间为一段 五、路程和位移

1.路程是物体运动轨迹的长度 2.位移是描述物体位置变化的物理量,用从初位置到末位置的有向线段表示,即物体位移的大小由初末位置决定,方向由初位置指向末位置。 问题:物体的位移大小有没有等于路程的情况? 答:在单向直线运动中位移的大小等于路程。 3、矢量和标量 象位移这样既有大小又有方向的物理量叫做矢量,象路程这样只有大小,没有方向的物理量叫做标量。 问题:回忆初中所学过的物理量,说明它们是标量还是矢量。 答:温度、时间、质量、密度等是标量,速度是矢量。 问题:我们知道,如果一个口袋中原来有20kg大米,再放入10kg大米,口袋里共有30kg大米。那么如果一个物体第一次的位移大小为20m,第二次的位移大小为10m,则物体的总位移是不是30m呢? 矢量的运算要用平行四边形定则。 四、直线运动的位置和位移 问题准确描述物体的位置变化用位移。 路程是运动轨迹的长度。 小结:物理中矢量的正负不表示大小,只表示方向,当规定了正方向后,正值表示与正方向同向,负值表示与正方向反向。反之亦然。 第三节运动快慢的描述—速度 一.速度 1.定义:位移x ?跟发生这段位移所用时间t?的比值,用v表示. 2.物理意义:速度是表示运动快慢的物理量, 2.定义式: x v t ? = ? . 3.单位:国际单位:m/s(或m·s-1) 常用单位:km/h(或km·h-1)、cm/s(或cm·s-1). 4.方向:与物体运动方向相同. 说明:速度有大小和方向,是矢量 二.平均速度和瞬时速度 1.平均速度 1)定义:在变速直线运动中,运动物体的位移和所用时间的比值,叫做这段时间(或这段位移)的平均速度,用v表示. 2)说明: a.平均速度只能粗略表示其快慢程度。表示的是物体在t时间内的平均快慢程度。这实际上是把变速直线运动粗略地看成是匀速运动来处理. b.这是物理学中的重要研究方法——等效方法,即用已知运动研究未知运动,用简单运动研究复杂运动的一种研究方法. 问题:百米赛跑运动员的这个v=10m/s代表这100米内(或10秒内)的平均速度,是否是说明他在前50米的平均速度或后50米内或其他某段的平均速度也一定是10m/s?(否)

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

高中物理知识点总结

高中物理知识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

?? ? ???? ? ??,仍不发生加光强,增加照射时率可以于射光频率增加效应发生子逸出射光强度大压越大能大电射光频率大生光电间2.增发生截止频大入1.光电不能饱和光电流大→多光电→光子数目多→2.入遏止电→子的最大初动光→光子能量大→1.入效应能发 (Ra) 和镭(Po)钋n H E )(E 101 10 10位素、发现正电子、放射性同居里夫妇) 发现中子(粒子轰击铍核查德威克)发现质子(粒子轰击氮核卢瑟福原子核具有复杂结构 天然放射现象发现贝克勒尔谱 解释了氢原子的线状光)跃迁假设()定态假设(能量不连续)轨道假设(轨道不连续氢原子结构玻尔原子的核式结构 荷原子内部有集中的正电少数大角度偏转原子内大部分是空的大部分直线穿过粒子散射(金箔)卢瑟福电荷是量子化的 与质量 测出了电子电量油滴实验密立根测出了电子比荷结构 原子是可以再分有复杂发现电子阴极射线汤姆孙实物粒子波动性德布罗意光电效应光子说爱因斯坦解释黑体辐射能量量子化普朗克→→→→→→→? ??? ??? ??? ????==?→??? ???→→→?? ?→?? ? ??→= →→→-=→→→→-ααλναλνhc h e e p h W h k ?? ? ??用只跟临近核子有核力作核力是短程力强相互作用的一种表现 核力

释放能量 质量亏损比结合能变大小的核(聚变)较轻的核结合成中等大小的核(裂变)较重的核分解成中等大质量亏损会释放能量它的核子质量之和原子核的质量小于组成质量亏损最大 平均每个核子质量亏损最大中等大小的核比结合能定 比结合能越大的核越稳核子数 结合能 )比结合能(平均结合能能越大核子越多的原子核结合子所需的能量把原子核分解成自由核结合能→→??? →→→→=→→波粒二象性 实验基础 表现 光的波动性 干涉和衍射 ①光是一种概率波,即光子在空间各点出现的可能性大小(概率)可用波动规律来描述 ②大量的光子在传播时,表现出波的性质 光的粒子性 光电效应、康普顿效应 ①当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质 ②少量或个别光子清楚地显示出光的粒子性 波动性和 粒子性的 对立、统一 ①大量光子易显示出波动性,而少量光子易显示出粒子性 ②波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强 光电效应规律 图像名称 图线形状 由图线直接(间接)得到的物理量 光电效应实验原理图 ①光照的一端为阴极 ②阴极接外电源负极时为正向电源 ③光电子逸出向阳极运动,构成闭合回路,出现光电流,说明发生了光电效应。电流为电子运动反方向。 规律: 1.频率高的光发生光电效应,频率低的不一定发生。 2.改变电压,电流不一定变化。 3.改变电源极性,电流不一定消失。 4.光电效应瞬间产生。 最大初动能E k 与入射光频率ν的关系图线 ①(截止)极限频率:图线与ν轴交点的横坐标νc ②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E ③逸出功与(截止)极限频率νc 的关系是W 0=hνc ④普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系 ①遏止电压U c :图线与横轴的交点 ②饱和光电流I m :电流的最大值 ③最大初动能:E km =eU c 颜色不同时,同金属板的光电效应,光电流与电压的关系 ①遏止电压U c1>U c2 ②饱和光电流 ③最大初动能E k1=eU c1,E k2=eU c2 ④U c 越大照射光频率越高

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物 体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。

高中物理学业水平测试要求及知识点总结.(良心出品必属精品)

学业水平测试要求及知识点总结(必修 1.质点 A 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 2.参考系 A 在描述一个物体的运动时,用来做参考的物体称为参考系。 3.路程和位移 A 路程是质点运动轨迹的长度,路程是标量。 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 在物体做单向直线运动时,位移的大小等于路程。 4.速度平均速度和瞬时速度 A 速度是描述物体运动快慢的物理,v=Δx/Δt,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程的速度。 瞬时速度:运动物体某一时刻(或某一位置的速度,方向沿轨迹上质点所在点的切线方向。

5.匀速直线运动 A 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。匀速直线运动又叫速度不变的运动。 6.加速度 A 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是a=Δv/Δt=(v t-v0/Δt,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器测速度 A 电磁打点计时器使用交流电源,工作电压在10V以下。电火花计时器使用交流电源,工作电压220V。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 t x v ??= 若t ?越短,平均速度就越接近该点的瞬时速度 8.用电火花计时器(或电磁打点计时器探究匀变速直线运动的速度随时间的变化规律 A t x v v t = =2 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速度 9.匀变速直线运动规律 B 速度公式:at v v +=0 位移公式:202 1at t v x +

相关主题
文本预览
相关文档 最新文档