当前位置:文档之家› 单极性正弦波脉宽调制电路

单极性正弦波脉宽调制电路

单极性正弦波脉宽调制电路
单极性正弦波脉宽调制电路

测控电路实验报告

一、实验目的

1、学习Multisim 绘制电路图并进行仿真的方法。

2、学习脉宽调制的方法,并用Multisim 实现单极性正弦波的脉宽调制。

3、了解H 形双极式PWM 控制电路的原理。

二、实验器材

Multisim 软件

三、实验原理

1、脉宽调制控制电路的原理

图9-8 PWM 控制电路原理

运算放大器N 在开环状态,可将连续电压信号变成脉冲电压信号。二极管VD 在V 断开时为感性负载RL 提供释放电感储能形成续流回路。N 的反相端输入三个信号:一个是三角波调制信号up ,其频率是主电路所需的开关调制频率;另一个是控制电压uc,其极性与大小随时间可变;再一个是负偏置电压uo,其作用是在uc=0时通过Rp 的调节使比较器的输出电压ub 为宽度相等的正负方波,如图a 所示。当控制电压uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波,如图b 所示。当uc<0时锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。

图9-9 锯齿波脉宽调制波形图 式中 u km ——控制信号u k 的最大值 ???

? ??-=km k 121u u T τ

图9-10 PWM控制负载的波形图

2、脉宽调制电路

脉宽(脉冲宽度)调制器是一个自动的电压-脉宽变换器(亦称V/W电路)。对它的基本要求是死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。

在设计脉宽调制器的实际电路时,应使其简单、可靠,且不受外界干扰。比较器的灵敏度与系统的控制模式、实际控制系统的具体要求等有关,应综合考虑,否则在整个系统的线路处理上会带来一定困难。同时还需考虑与功率转换电路的耦合问题。

3、PWM功率转换电路

根据调制脉冲的极性可分为单极式和双极式调制两种;

根据载波信号和基准信号的频率之间的关系,又可分为同步式和异步式两种。

4、H形控制电路

H型控制电路在控制方式上分双极式、单极式和受限单极式三种

图9-17 H型双极式PWM控制电路及其波形

a)电路原理图b)电压电流波形

图示的H形双极式PWM控制电路由4个大功率晶体管和四个续流二极管组成。4个大功率管分为两组V1、V4为一组,V2和V3为一组。在基极驱动信号ub1=ub4,ub2=ub3=-ub1的作用下,同一组的两个晶体管同时导通或同时关断,两组晶体管自己交替导通和截止。

在[0, τ)期间,V1、V4饱和导通,V2和V3截止,E加在电枢AB两端,uAB=+E;在[τ,T)期间,V1,V4截止,但V3,V3不能立即导通,电枢电流ia沿回路经VD2,VD3续流,uAB=-E。在t>T时ub1,ub4变正,但由于电枢反电动势的作用,V1,V4不能立即导通,ia沿回路经VD4,VD1续流反向电流ia降至零后,VD4,VD1切断,V1,V4,导通。

5、同步式与异步式脉宽调制控制电路

定义:调制控制中,若载波信号为等腰三角波,基准信号采用正弦波,则称为正弦波脉宽调制,简称SPWM。

图9-19 单极性正弦波脉宽调制

若载波信号为等腰三角形,基准信号采用正弦波,则可形成SPWM控制。所谓单极性是指载波信号与基准信号始终保持同极性的关系,即正弦波处于正半周时,载波信号在正值范围内变化,产生正的调制脉冲序列。而正弦波处于富伴周时,产生负的调制脉冲序列。图中,正弦波信号uc的正半波经整流电路输出,与三角波信号up比较产生正脉冲使功率晶体管V1、V4工作,使电源E通过V1、V4在电动机AB两端形成正的电压脉冲UAB;而正弦波信号uc的负半波经倒相形成正半波,再经整流后与三角波比较产生正脉冲使V2、

V3管工作,则在电动机AB两端形成负的电压脉冲UAB。

根据正弦波半周内载波信号的频率,可以确定产生调制脉冲的数目,同时也决定了控制各晶体管的通断次数。采用正弦波调制后的输出电压脉冲UAB具有以下特点:在半个周期内,两边的脉冲宽度小,中间的脉冲宽度大,各脉冲的宽度基本按正弦分布。它比单极性直流脉宽调制的输出电压波形更接近与正弦。

四、实验电路及部分电路功能

该电路运用运放及二极管实现对输入的三角波信号进行处理得到单极性的三角波,即up

该部分电路对正弦波信号进行半波整流,得到uc

该部分电路对反相后的正弦波进行整流,得到-uc。

up与uc通过比较器输入后得到的波形

up与-uc通过比较器输入后得到的波形

该电路是个比较器,通过比较up和uc,up和-uc,产生正弦脉冲,来控制晶体管工作。

正弦波经整流输出与三角波信号up比较产生正脉冲使功率晶体管V1,V2工作,使电源E通过V1,V4,在AB两端形成正的电压脉冲UAB;而正弦波uc的负半波经倒相成正半波再经整流后与三角波比较产生正脉冲使V2、V3管工作,则在AB两端形成负的电压脉冲UBA 2、最终的实验结果

最后的波形:

五、实验遇到的问题及结果分析

通过看书和对电路相关原理的了解,最后把全部电路画了出来,在仿真软件上运行,在未接负载的情况下,结果和预期的结果有些差别;在接了很小的负载的情况下,结果和预期的结果差别就有点大了;通过对每部分电路结果的分析,我认为造成这样结果的的原因有:1、三角波在时间刻度很小时是直线,而且由于比较器采用的是过零比较器,所以在三角波信号和整流过的正弦波信号进入比较器后,输出的结果就有些差别;2、实验中一些电阻和电容的数值也会影响结果的正确性;3、电路中前后电路的相互影响也有可能会影响结果的正确性。处理方法:采用电路产生精度很高的三角波,采用其他类型的比较器,查询相关资料来

修改元件参数使其达到预期的目的。

脉宽调制(PWM)集成电路SG3525原理及应用

麻省理工大学 集成电路应用课程论文 论文题目:脉宽调制(PWM)集成电路SG3525 原理及应用 学院、系:电信学院电气系 专业班级:电气11 学生姓名:葉晓龍 任课教师:*** 2014 年 6 月8日

脉宽调制(PWM)集成电路SG3525的工作原理及应用 摘要:随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率MOSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级。下面就SG3525的工作原理、管脚排列、主要特点以及应用领域等进行介绍。 关键词:PWM控制器MOSFET SG3525 开关变换器 一、概述 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 二、管教排列及定义 SG3525芯片引脚排列如下图所示: 引脚的功能及含义如下: 引脚1:误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。 引脚2:误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信

号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 引脚3:振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 引脚4:振荡器输出端。 引脚5:振荡器定时电容接入端。 引脚6:振荡器定时电阻接入端。 引脚7:振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 引脚8:软启动电容接入端。该端通常接一只5 的软启动电容。 引脚9:PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 引脚10:外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 引脚11:输出端A。引脚11和引脚14是两路互补输出端。 引脚12:信号地。 引脚13:输出级偏置电压接入端。 引脚14:输出端B。引脚14和引脚11是两路互补输出端。 引脚15:偏置电源接入端。 引脚16:基准电源输出端。该端可输出一温度稳定性极好的基准电压。 三、主要特点及应用领域 主要特点 (1)外围电路简单,使用方便 (2)保护功能齐全 (3)软启动特性 (4)死区可调 应用领域 (1)开关电源电路 (2)随动系统直流电机调速电路

脉宽调制控制电路

脉宽调制控制电路 学生姓名:胡真 学号:20085042054 工业现场控制当中,经常要用到一些可变的直流电压,而一般的直流电源其值是固定不变的,为了得到可变的直流电压,我们一般采用脉宽调制控制电路,也就是我们通常所说的PWM 控制电路。该电路是利用半导体功率晶体管或晶闸管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期达到变压目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频的目的的一种变换电路,多用在开关稳压电源、不间断电源(UPS)以及交直流电机调速等控制电路中。 1. 脉宽调制控制电路的工作原理 图1 PWM 控制电路原理 基本的脉宽调制控制电路包括电压-脉宽变换器和开关式功率放大器两部分,如图1所示。运算放大器N 工作在开环状态,实现把连续电压信号变成脉冲电压信号。二极管VD 在V1关断时为感性负载RL 提供释放电感储能形成续流回路。N 的反相端输入三个信号:一个是锯齿波或三角波调制信号up ,其频率是主电路所需的开关调制频率,一般为1~4kHz ;另一个是控制电压uk ,其极性与大 U u 0 u c D

小随时可变; 再一个是负偏置电压u0,其作用是在Uc =0时通过Rp 的调节使比较器的输出电压Ub 为宽度相等的正负方波。当Uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波。当Uc<0时,锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。 图2 PWM 控制负载的波形图 PWM 信号加到主控电路的开关管V 的基极时,负载RL 两端电压uL 的波形如图2所示。显然,通过PWM 控制改变开关管在一个开关周期T 内的导通时间τ的长短,就可实现对RL 两端平均电压UL 大小的控制。 2. 典型脉宽调制电路 2.1. 对脉宽调制器的基本要求 (1)死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。 (2)在设计实际电路时,应使其简单、可靠,且不受外界干扰。 (3)考虑与功率转换电路的耦合问题。 t t 2T 2T T T T +τ T +τ τ τ O O u u U U E E

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

脉宽调制(PWM)的基本原理及其应用实例

脉宽调制(PWM)的基本原理及其应用实例 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 模拟电路 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 数字控制 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM 输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。 图2是一个可以使用PWM进行驱动的简单电路。图中使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并象连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%,调制频率为10Hz。 大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz。设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开……。占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭。要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短。要想取得调光灯(但保持点亮)的效果,必须提高调制频率。在其他PWM应用场合也有同样的要求。通常调制频率为1kHz到200kHz之间。

调制电路

调制电路与解调电路 一。调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。 调幅电路分为二极管调幅电路和晶体管基极调幅。发射极调幅及集电极调幅电路等。 通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。1.基极调幅电路 图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。 2.发射极调幅电路 图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。 3.集电极调幅电路 图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。 采用图4的集电极。发射极双重调幅电路也可以改善调制特性。注意变压器的同名端,在调制信号正半波时,虽然集电极电源电压提高,但同时基极偏压也随之变正,这就防止了进入欠压工作状态;在调制信号负半波时,虽然集电极电压降低,但基极度偏压也随之变负,不致进入强过压区,从而保持在临界。弱过压状 态下工作。图一。基极调幅电路

正弦波振荡电路设计

课程设计任务书 学生姓名:专业班级: 指导老师:刘辛工作单位:武汉理工大学理学院 题目:正弦波振荡电路设计 初始条件:直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具体要求)1、技术要求: 设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以模拟器件电路为主,设计一个正弦波振荡电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路逻辑图和装配图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排: 课程设计时间:17周-18周 17周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 18周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。 指导教师签名:年月日 系主任(或负责老师)签名:年月日

正弦波振荡电路 1.技术指标 1.1初始条件 直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、 镊子等必备工具。 1.2技术要求 设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。 1.3正弦波振荡电路原理 正弦波振荡电路是一个没有输入信号,依靠自激振荡产生正弦波输出信号的电路。正弦波振荡电路也称为正弦波振荡器,其实质是放大器引正反馈的结果。正弦波振荡电路一般由放大电路、选频网络、正反馈电路、稳幅环节四部分组成。选频网络通常不是独立存在,有时和正反馈网络合二为一,有时和放大电路合二为一。其基本原理如下:在直流电源闭合的瞬间,频率丰富的干扰信号串入振荡电路的输入端,经过放大后出现在电路的输出端,但是由于幅值很小而频率又杂,不是所要求的信号。此信号再经过选频及正反馈网络把某一频率信号筛选出来(而其他信号被抑制),再送回放大电路的输入端,整个电路的回路增益应略大于1,这样不断循环放大,得到失真的输出信号,最后经稳幅环节可输出一个频率固定、幅值稳定的正弦波信号。 总的来说,正弦波振荡电路大致作用过程如图1所示: 图1 正弦波振荡电路作用过程 2.设计方案及其比较 正弦波振荡电路的类型根据选频网络的组成元件可大致分为RC正弦波振荡电路、LC

调制解调电路

第六章 频谱变换电路 ?? ?非线性:调频、限幅 频 线性:调幅、混频、倍 6.1概述 频谱变换电路:频谱搬移,使之适合于传输. 具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。 6.2乘法器 变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。 变跨导式模拟乘法器(恒流源式差分放大器) 双入双出 () () EQ T EQ T b b be i be c o I U I U r r u r R u ββ β+≈++=?- ='111

() 21I U T β+= ∴I u U R u i T C o ??- ≈12 若I u i ∞2成正比,则21i i o u u u ?∞ e i e BE i e R u R u u I I 23 2≈-= = ∴21212i i e i i T C o U U R R u u U R u ??=? ?- = 跨导 222121 i e I T T T EQ m u R U U U I U I g ∞?=== ∴称为变跨导乘法器. 6.3调幅波 一、幅度调制(AM ) ()t u Ω-低频 ()t u c -高频 定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制 称()t u Ω为调制信号,()t u c 为载波信号. 1、 调幅特性. 令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则 )()t w t M U t u c a cm AM cos cos 1?Ω+= 其中cm m a U U k M Ω? =称为调制指数.(k 由电路决定的一个常数) ()t w t M U t w U t u c a cm c cm AM cos cos cos ?Ω??+?= ()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+??+ ?=cos cos 2 1cos ∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

正弦波信号发生器设计(课设)

课程设计I(论文)说明书 (正弦波信号发生器设计) 2010年1月19日

摘要 正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。 本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。以op07和555定时器构成正弦波和方波的发生系统。Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。正弦波方波可以通过示波器检验所产生的信号。测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。 关键词:正弦波方波 op07 555定时器

目录 引言 (2) 1 发生器系统设计 (2) 1.1系统设计目标 (2) 1.2 总体设计 (2) 1.3具体参数设计 (4) 2 发生器系统的仿真论证 (4) 3 系统硬件的制作 (4) 4 系统调试 (5) 5 结论 (5) 参考文献 (6) 附录 (7) 1

引言 正弦波和方波是在教学中经常遇到的两种波形。本文简单介绍正弦波和方波产生的一种方式。在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。 1、发生器系统的设计 1.1发生器系统的设计目标 设计正弦波和方波发生器,性能指标要求如下: 1)频率范围100Hz-1KHz ; 2)输出电压p p V ->1V ; 3)波形特性:非线性失真~γ<5%。 1.2总体设计 (1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网 络组成。

2 图1.1 正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1; φa+φb=±2nπ;A=X。/Xid; F=Xf/X。;正弦波振荡电路必须有基本放大电路, 本设计以op07芯片作为其基本放大电路。 基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。反馈网络中 两个反向二极管起到稳压的作用。振荡电路的振荡频率f0是由相位平衡条件决 定的。一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含 一个具有选频特性的选频网络。f0=1/2πRC。要实现频率可调,在电容C不变的 情况下电阻R可调就可以实现频率f0的变化。 (2)方波设计:方波可以把正弦波通过斯密特触发器整形后产生。基于555定时器接成的斯密特触发器。 设斯密特触发器输出波形为V1,V2且V1>V2。 输入正弦波v1从0逐渐升高的过程:v1<1/3Vcc时,输出v0=V1; 当1/3Vcc2/3Vcc时,v0=V2; 输入正弦波v1从高于2/3Vcc开始下降的过程:当1/3Vcc

调制电路与解调电路详解

调制电路与解调电路详解 一、调幅电路 调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。 调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。 通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。 在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。 1、基极调幅电路 图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。 2、发射极调幅电路 图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。 3、集电极调幅电路 图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。 采用图4的集电极、发射极双重调幅电路也可以改善调制特性。注意变压器的同名端,在调制信号正半波时,虽然集电极电源电压提高,但同时基极偏压也随之变正,这就防止了进入欠压工作状态;在调制信号负半波时,虽然集电极电压降低,但基极度偏压也随之变负,不致进入强过压区,从而保持在临界、弱过压状态下工作。 图一、基极调幅电路 图二、发射极调幅电路

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

脉宽调制电路

脉宽调制电路 通电后IC的7脚由电阻分压产生8.25V的直流电压,刚通电时6脚电位低于7脚,比较器(LM339)1脚输出高电位,R3的正反馈作用,使得比较器迅速饱和,随着时间的推移,电容逐渐充电,6脚的电位逐渐升高,当高于7脚的电位时(8.25V),比较器突然翻转,1脚输出低电位,同样正反馈的作用使得该过程更强烈,此时电容通过R4和二极管D1向LM339的1脚放电。当电容上的电压低于IC7脚的电压(这时可能不是8.25V了,因为1脚的低电位会影响到7脚电压)时,电路再次翻转,重复前面的过程,从而在电容两端形成了8000Hz 的锯齿波电压。该锯齿波电压直接施加于比较器的4脚,又和控制电压进行比较,当电容两端电压高于控制电压时,比较器输出低电位,低于控制电压时输出高电位,相当于把锯齿的上半部分切掉了,因此控制电压越高,锯齿切掉的越少,输出的脉宽就越宽。稳压二极管在这里起削波的作用,实现脉出的整形。这个电路设计的非常经典,是非常好的脉宽调制电路。

图1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双 电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚

电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q 1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。

角度调制与解调电路范文

1.某超外差接收机的中频为465kHz,当接收931kHz的信号时,还收到1kHz的干扰信号,此干扰为( A )A.干扰哨声B.中频干扰 C.镜像干扰D.交调干扰 2.MC1596集成模拟乘法器不可以用作(C )A.振幅调制B.调幅波的解调C.频率调制D.混频 3.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩcosΩt,则调频波的表达式为(A )A.u FM(t)=U C cos(ωC t+m f sinΩt)B.u FM(t)=U C cos(ωC t+m p cosΩt)C.u FM(t)=U C(1+m p cosΩt)cosωC t D.u FM(t)=kUΩU C cosωC tcosΩt 4.单频调制时,调相波的最大相偏Δφm正比于( A )A.UΩB.uΩ(t)C.Ω 5.某超外差接收机的中频f I=465kHz,输入信号载频fc=810kHz,则镜像干扰频率为 (C)A.465kHz B.2085kHz C.1740kHz 6.调频收音机中频信号频率为( A )A.465kHz B.10.7MHz C.38MHz D.不能确定 7.直接调频与间接调频相比,以下说法正确的是(C)A.直接调频频偏较大,中心频率稳定B.间接调频频偏较大,中心频率不稳定C.直接调频频偏较大,中心频率不稳定D.间接调频频偏较大,中心频率稳定8.鉴频特性曲线的调整内容不包括(B)A.零点调整B.频偏调整 C.线性范围调整D.对称性调整 9.某超外差接收机接收930kHz的信号时,可收到690kHz和810kHz信号,但不能单独收到其中一个台的信号,此干扰为(D)A.干扰哨声B.互调干扰 C.镜像干扰D.交调干扰 10.调频信号u AM(t)=U C cos(ωC t+m f sinΩt)经过倍频器后,以下说法正确的是(C)A.该调频波的中心频率、最大频偏及Ω均得到扩展,但m f不变 B.该调频波的中心频率、m f及Ω均得到扩展,但最大频偏不变 C.该调频波的中心频率、最大频偏及m f均得到扩展,但Ω不变 D.该调频波最大频偏、Ω及m f均得到扩展,但中心频率不变 11.关于间接调频方法的描述,正确的是(B)A.先对调制信号微分,再加到调相器对载波信号调相,从而完成调频 B.先对调制信号积分,再加到调相器对载波信号调相,从而完成调频 C.先对载波信号微分,再加到调相器对调制信号调相,从而完成调频 D.先对载波信号积分,再加到调相器对调制信号调相,从而完成调频 12、变频器的工作过程是进行频率变换,在变换频率的过程中,只改变_____A_____频率,而______C_____的规律不变。 (A)载波(B)本振(C)调制信号(D)中频 13、调频系数与___B__、A___有关,当调制信号频率增加时,调频系数____E____,当调制信号幅度增加时,调频系数___D_______。 A)UΩm B) ΩC)Ucm D)增大E)减小F)不变

RC正弦波振荡器电路设计与仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 图 1 在multisim软件上做的仿真电路图如图1。 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f /R i >=2 其中R f =R w +R 2 +R 3 /R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号 1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了 下来,刚开始时A v =1+R f /R i >3。 平衡时 A v =3,F v =1/3(w=w =1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

AM调制与解调电路设计

AM 调制与解调电路设计 一.设计要求:设计AM 调制和解调电路 调制信号为:()1S 3cos 272103cos164t V tV ππ=?+=???? 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=??+=???? 二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法; 调幅电路采用丙类功放电路,集电极调制; 检波电路采用改进后的二极管峰值包络检波器。 1.AM 调幅电路设计: (1).参数计算: ()6cos1640c u t tV π=载波为, ()3cos164t tV πΩ=调制信号为u 则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+ 其中调幅指数 0.5a M = 最终调幅信号为 am U 6[10.5cos164]cos1640t t ππ=+ 为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为 21 LC c ω= c 1640ωπ= L 200H,C 188F 1BB V μμ===另U (2).调幅电路如下图所示:

调幅波形如下: 可知调幅信号与包络线基本匹配 2.检波电路设计: 参数计算: 取10L R k =Ω 1.电容 C 对载频信号近似短路,故应有1 c RC ω ,取 ()510/10/0.00194c c RC ωω== 2.为避免惰性失真,有m a x /0.00336 a RC M Ω= ,取0.0022,1RC R k C F μ==Ω=,则

3.设 11212250.2,,330, 1.6566 R R R R R R R k R ====Ω=Ω则。因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min 1 c L C R Ω ,取 4.7c C F μ= 3.调制解调电路如下图所示: o am U U 与波形为: o L U U 与解调信号的波形为:

RC正弦波振荡电路设计

题目:RC正弦波振荡电路的设计校名:福州大学至诚学院 年级班级: 姓名: 学号:210992 指导教师:

目录 一、RC正弦波振荡电路原理 (1) 二、设计指导要求 (2) 三、RC正弦振荡电路图 (2) 四、参数计算 (3) 五、安装调试 (4) 六、设计结论 (5) 七、心得体会 (6) 八、参考文献 (6)

一、RC正弦波振荡电路原理 采用RC选频网络构成的振荡电路称为RC振荡电路,它使用于低 频振荡,一般用于产生1HZ~1MH的低频信号。常用的RC振荡电路有 RC桥式振荡电路和RC移相式振荡电路。 RC桥式振荡电路 RC桥式振荡电路如图所示 , RC串并联网络接在运算放大器的输出端和同相端构成了带有选频作用的正

反馈电路,另外、Rf、R1接在运算放大器的输出端与反相端之间,与集成运放一起构成负反馈放大电路。 对于负反馈放大电路,输入信号由同相端输入,根据虚短,虚断可求

】、设计指导要求 要求:设计一个振荡频率f=500HZ 的RC 正弦波振荡电路。 内容要求:1、设计报告,元器件清单 2 、组装,调整RC 正弦振荡电路,使电路产生振荡输出。 3 、当输出波形稳定且不失真时,测出输出电压的频率和 幅值,检验电路是否满足设计指标。若不满足,调整设计参数。 4 、若要求输出500HZ 的方波,余姚增加哪些元件予以实 现? 1、RC 正弦振荡电路 得负反馈带你呀放大倍数 振幅起振条件: 4| = 1 + (%>3,即旳 > 2R Y

空C rr调零端 1L J I1L1L 四、参数计算 令R i=R2=R , C i=C2=C f 0=1 / 2 n RC 取R=16K , f 0=500HZ NLX741 集成运放

NE555PWM脉宽调制电路

NE555PWM脉宽调制电路 PWM称之为脉冲宽度调制信号,利用脉冲的宽度来调整亮度,也可用来控制DC马达。PWM脉冲宽度调制信号的基本频率至少约400HZ-10KHZ,当调整LED的明或暗时,这个基本的频率不可变动,而是改变这个频率上方波的宽度,宽度越宽则越亮、宽度越窄则越暗。PWM是控制LED的点亮时间,而不是改变输出的电压来控制亮度。 图1-5 PWM脉宽调制图片 以下为PWM工作原理: reset接脚被连接到+V,因此它对电路没有作用。 当电路通电时,Pin 2 (触发点)接脚是低电位,因为电容器C1开始放电。这开始振荡器的周期,造成第3接脚到高电位。当第3接脚到高电位时,电容器C1开始通过R1和对二极管D2充电。当在C1的电压到达+V的2/3时启动接脚6,造成输出接脚(Pin3)跟放电接脚(Pin7)成低电位。 当第3接脚到低电位,电容器C1起动通过R1和D1的放电。当在C1的电压下跌到+V的1/3以下,输出接脚(Pin3)和放电接脚(Pin7)接脚到高电位并使电路周期重复。 Pin 5并没有被外在电压作输入使用,因此它与0.01uF电容器相接。 电容器C1通过R1及二极管,二极管一边为放电一边为充电。充电和放电电阻总和是相同的,因此输出信号的周期是恒定的。工作区间仅随R1做变化。 PWM信号的整体频率在这电路上取决于R1和C1的数值。 公式:频率(Hz)= 1.44/(R1 * C1)

利用555定时器实现宽范围脉宽调制器(PWM) 脉宽调制器(PWM)常常用在开关电源(稳压)中,要使开关电源稳压范围宽(即输入电压范围大),可利用555定时器构成宽范围PWM。 仅需把一个二极管和电位计添加到异步模式运转的555定时器上,就产生了一个带有可调效率系数为1%到99%的脉宽调制器(图1)。它的应用包括高功率开关驱动的电动机速度控制。 图1:在555定时器电路中增加一个二极管和电位计可构成一个宽范围PWM。/TD> 这个电路的输出可以驱动MOSFET去控制通过电动机的电流,达到平滑控制电动机速度9 0%左右。这也应用于灯光的控制,灯光的强度可得以有效控制。 另一个应用是在开关式电源。PWM调整允许一个可变的输出电压。可通过555定时器(5个引脚)VC终端的反馈来调节电压。一个超过调节阈值限制的输出电压将提前结束基于周期循环的PWM信号,以维持输出电压的稳定。微处理器可以通过数字电位计直接调节PWM 去控制电动机速度、灯光强度或者电源输出电压。对于周期因子(DF): 其中, 而a是终端2和终端1之间电阻与终端3和终端1之间电阻的比值。选R3=R1,R2=100×R1,这时DF为1%至99%。如上所述,数字电位计可以代替R2。通过的电流有限是在该应用中使用数字电位计的主要约束。对于一个100kΩ的数字电位计,R1和R3可以达到1 kΩ,则峰值电流为5mA。

相关主题
文本预览
相关文档 最新文档