当前位置:文档之家› 不等式的证明分析法与综合法习题(可编辑修改word版)

不等式的证明分析法与综合法习题(可编辑修改word版)

不等式的证明分析法与综合法习题(可编辑修改word版)
不等式的证明分析法与综合法习题(可编辑修改word版)

2.3 不等式的证明(2)——分析法与综合法习题

知能目标锁定

1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;

2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;

重点难点透视

1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.

方法指导

1.分析法

⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.

⑵分析法证明的逻辑关系是:结论 B ?B

1 ?B

2

? ?B

n

?A

⑶用分析法证题一定要注意书写格式,并保证步步可逆.

(A 已确认).

⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法.

2.综合法

⑴ 综合法的特点是 :由因导果 .其逻辑关系是 :已知条件

A ?B

1 ?B

2

? ?B

n

?B (结论),后一步是前一步的必要条件.

⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手, 将不等式变形,使其结构特点明显或转化为容易证明的不等式.

精题巧练

一.夯实双基

1.若a>2,b>2,则a b 与a+b 的大小关系是a b( )a+b

A.

= B. < C.> D.不能确定

2.设b >a > 0 ,则下列不等式中正确的是()

A.lg

a

> 0 B. >b -a C.

a

<

1 +a

D.

b

<

b + 1 b 1 +a 2 +a a a +1

b -a

2 xy

b + 2 a b

c x + y 3. 若 a ,b,c ∈ R + ,且 a+b+c=1,那么 1

a + 1 +

b 1

有最小值( ) c

A.6

B.9

C.4

D.3

4. 设a = 2, b = - 3, c = - ,那么 a ,b,c 的大小关系是( )

A .a > b > c

B .a > c > b

C .b > a > c

D .b > c > a 5. 若 x >y>1,则下列 4 个选项中最小的是( )

A. x + y

B.

2xy

C. D. 1 ( 1 + 1 )

2 二.循序厚积

x + y

2 x y

6. 已知两个变量 x,y 满足 x+y=4,则使不等式 1 +

4

≥ m 恒成立的实数m 的取值范

围是

;

7. 已知 a,b 为正数,且 a+b=1 则 x y

+ 的最大值为 ;

8. 若 a ,b,c ∈ R +

,且 a +b+c=1,则

+ + 的最大值是

;

9. 若 x y+yz+zx=1,则 x 2 + y 2 + z 2 与 1 的关系是

;

10. 10.

若a > b > 0, m = - b , n = ,则 m 与 n 的大小关系是

.

三、提升能力

11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd

12.设 x >0,y>0,求证:

≤ 2

13. 已知 a,b ∈ R + ,且 a+b=1,求证: (a + 1 )2 + (b + 1 )2

25

. a b

2

7 6 a + 2 a

a - b

x + y

2

14. 设 a,b,c 是不全相等的正数,

求证: lg a + b + lg b + c + lg a + c

> lg a + lg b + lg c .

2 2 2

15. 如果直角三角形的周长为 2,则它的最大面积是多少?

友情提示

易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ? q 为例, 这时的推理过程就是: q ? q 1 ? q 2 ? ? q n ? p .证明的结果是证明了逆命题”q ? p ”.而正确的推证过程是: q ? q 1 ? q 2 ? ? q n ? p . 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

应用多元统计分析习题解答_因子分析

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++++ ++ 1,2, ,i p = 因子载荷阵为11 12121 22212 1 2 (,, ,)m m m p p pm a a a a a a A A A a a a ????? ?==???????? A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

综合法与分析法(公开课教案)

肥东锦弘中学高中部公开课教案设计 2. 2 .1 综合法与分析法 授课时间:2013.4.16下午第一节 地点:高二(15)班 授课人:赵尚平 一.教材分析 《直接证明与间接证明》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子. 二.教学目标 1.知识与技能目标 (1)了解直接证明的两种基本方法:综合法和分析法. (2)了解综合法和分析法的思维过程和特点. 2.过程与方法目标 (1)通过对实例的分析、归纳与总结,增强学生的理性思维能力. (2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力. 3.情感、态度及价值观 通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生 活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力. 三.教学重难点 重点:综合法和分析法的思维过程及特点. 难点:综合法和分析法的应用. 四.教具准备:多媒体. 五.教法与学法:师生合作探究 六.教学过程: (一)创设情境 引入新课 证明对我们来说并不陌生,我们在上一节学习的合情推理,所得的结论的正确性就是要证明的,并且我们在以前的学习中,积累了较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节我们将通过熟悉的数学实例,对证明数学问题的方法形成较完整的认识. (二) 新 课 讲 授 合情推理分为归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法——直接证明与间接证明. 思考:已知a ,b >0,求证2222 ()()4a b c b c a abc +++≥ 设计意图:引导学生应用不等式证明以上问题,引出综合法的定义. 证明:因为222,0b c bc a +≥>, 所以22()2a b c abc +≥, 因为222,0c a ac b +≥>, 所以22()2b c a abc +≥. 因此, 2222()()4a b c b c a abc +++≥.

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

(完整版)SPSS因子分析法-例子解释

因子分析的基本概念和步骤 一、因子分析的意义 在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在: 计算量的问题 由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。 变量间的相关性问题 收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。 因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点: ↓因子个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓因子能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓因子之间的线性关系并不显著 由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。 ↓因子具有命名解释性 通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

山东省郯城三中高二数学《2.2.1综合法和分析法》教案一

郯城三中个人备课 课 题 : 高二 年级 数学 备课组 主备人 王春生 课型 新授课 验收结果: 合格/需完善 时间 2012年 月 日 分管领导 课时 1 第 周 第 课时 总第 课时 教学目标:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法 的思考过程、特点. 重点:会用综合法证明问题;了解综合法的思考过程. 难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教 学 过 程 教师活动 学生活动 一、复习准备: 1. 已知 “若12,a a R + ∈,且121a a +=,则 12 11 4a a +≥”,试请此结论推广猜想. 2. 已知,,a b c R +∈,1a b c ++=, 求证:111 9a b c ++≥. 先完成证明 → 讨论:证明过程有什么特点? 生分组讨论后回答: 若12,.......n a a a R +∈,且12....1n a a a +++=,则 12111 ....n a a a +++≥ 2n

二、讲授新课: 1. 教学例题: ① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc . 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点 ② 提出综合法:. ③ 练习:已知a ,b ,c 是全不相等的正实数,求证 3b c a a c b a b c a b c +-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形. 分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点. 2. 练习: ① ,A B 为 锐 角 , 且 tan tan 3tan tan 3A B A B ++=,求证: 利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示: 要 点:顺推证法;由因导果. 文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

《综合法和分析法》参考教案

第一课时 2.2.1 综合法和分析法(一) 教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法的思考过程. 教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程: 一、准备: 1. 已知“若12a a +∈R , ,且121a a +=,则12 11 4a a +≥”,试请此结论推广猜想. (答案:若12n a a a +∈R , ,,,且121n a a a +++=,则 212 111 n n a a a +++ ≥) 2.已知a b c +∈R , ,,1a b c ++=,求证:1 119a b c ++≥. 先完成证明 → 讨论:证明过程有什么特点? 二、讲授新课: 1. 教学例题: ①出示例1:已知a b c ,,是不全相等的正数,求证: 222222()()()6a b c b c a c a b abc +++++>. 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理)→ 讨论:证明形式的特点 ② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立. 框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a b c ,,是全不相等的正实数,求证3b c a a c b a b c a b c +-+-+-++>. ④ 例题讲解: P37例1:△ABC 在平面α外,AB ∩α=P ,BC ∩α=Q ,AC ∩α=R ,求证:PQR 三点共线.

杜邦分析法例题

杜邦财务分析案例 案例问题及资料 A公司为了确保在未来市场逐渐扩展的同时,使经济效益稳步上升,维持行业排头兵的位置,拟对公司近两年的财务状况和经济效益情况,运用杜邦财务分析方法进行全面分析,以便找出公司在这方面取得的成绩和存在的问题,并针对问题提出改进措施,扬长避短,以利再战,实现公司的自我完善。 A公司近三年的资产负债表和损益表资料如下: 资产负债表 金额单位:千元

损益表金额单位:千元

三、案例分析要求(资产类用平均值计算) 1.计算该公司上年和本年的权益净利润,并确定本年较上年的总差异 2.对权益净利率的总差异进行总资产净利率和权益乘数的两因素分析,并确定各因素变动对总差异影响的份额。 3.对总资产净利率的总差异进行销售净利率和总资产周转率的两因素分析,确定各因素变动对总资产净利率的总差异影响的份额。 4.运用上述分析的结果,归纳影响该公司权益净利率变动的有利因素和不利因素,找出产生不利因素的主要问题和原因,并针对问题提出相应的改进意见,使这些改进建议付诸实施,能促使该公司的生产经营管理更加完善,竞争力更加提高。 杜邦财务分析案例参考答案 (一)计算该公司上年和本年的权益净利率并确定本年较上年的总差异1.上年权益净利率 = 206430 / [(320910 + 1629100)/ 2 ]= 206430 / 975005 = 21.17% 2.本年权益净利率 = 224700 / [(1629100 + 1843200 )/ 2 ]= 224700 / 1736150= 12.94% 3.权益净利率本年较上年总差异 = 12.94% — 21.17% = -8.23% 计算结果表明本年较上年权益净利率下降了8.23%

分小学数学分析法 综合法

十、分析法和综合法 分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。 1. 分析法和综合法的概念。 分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。 2. 分析法和综合法的重要意义。 大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。这样分析了数量关系和解题思路后,再利用综合法根据已知条件列式解答。再如在学习概率统计时对各种统计数据需要经过整理和描述,并进行分析和综合,做出合理的判断和预测。虽然新课标并没有明确提出逻辑思维能力的培养,但在推理能力方面仍然提出了“能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。”这其中就包含了对学生逻辑思维、分析和综合能力的要求。分析能力不仅是逻辑思维能力的重要方面之一,也是其他一些思维能力的基础。分析法和综合法是培养学生分析问题、解决问题和推理等能力的重要的思想方法。因此,分析法和综合法在课标时代仍然是培养逻辑思维能力和解决问题能力的重要的思想方法。 3. 分析法和综合法的具体应用。 如上所述,分析法和综合法作为数学的思想方法,在小学数学的各个方面都有重要的应用。首先,在四大领域的内容中,无论是低年级的数和计算、图形的认识,还是中高年级的方程和比例、统计与概率,分析法和综合法都有较多应用。如数的计算法则的学习,就是一个先分析再综合概括的过程,先一步一步地学习法则的不同方面,再综合概括成一个完整的法则。其次,在贯穿整个数学学习过程中

综合法和分析法

《综合法和分析法(1)》导学案 编写人:马培文 审核人:杜运铎 编写时间:2016-02-24 【学习目标】 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。 【重点难点】 1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2. 会用综合法证明问题;了解综合法的思考过程。 3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。 【学法指导】 ① 课前阅读课文(预习教材P 85~P 89,找出疑惑之处)② 思考导学案中的探究 问题,并提出你的观点。 【知识链接】 复习1 两类基本的证明方法: 和 。 复习2 直接证明的两中方法: 和 。 知识点一 综合法的应用 问题 已知,0a b >, 求证 2222()()4a b c b c a abc +++≥。 新知 一般地,利用 ,经过一系列的推理论 证,最后导出所要证明的结论成立,这种证明方法叫综合法。 反思 框图表示 要点 顺推证法;由因导果。 【典型例题】 例1 已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥ 变式 已知,,a b c R +∈,1a b c ++=,求证 111(1)(1)(1)8a b c ---≥。

小结 用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应 用的条件和等号成立的条件,这是一种由因索果的证明。 例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等 差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形。 变式 设在四面体P ABC -中,90,,ABC PA PB PC ∠=?==D 是AC 的中点. 求证 PD 垂直于ABC ?所在的平面。 小结 解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或 把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明 确表示出来。 【基础达标】 A1. 求证 对于任意角θ,44cos sin cos 2θθθ-=。 B2. ,A B 为锐角,且tan tan tan A B A B +=, 求证 60A B += . (提示:算tan()A B +)。

综合法与分析法

综合法与分析法 学习目标: 1. 理解综合法和分析法的概念及区别 2. 熟练的运用综合法分析法证题 学习重难点: 综合法和分析法的概念及区别 自主学习: 一:知识回顾 1. 合情推理:前提为真,结论可能为真的推理。它包括归纳推理与类比推理。 2. 演绎推理:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理叫演绎推理 二:课题探究 1. 直接证明: 从命题的条件或结论出发,根据已知的定义,公理,定理直接推证结论的真实性. 2. 综合法:从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所 求证的命题.综合法是一种由因所果的证明方法. 3. 分析法: 一般地,从要证明的结论出发,追溯导致结论成立的条件,逐步上溯,直到使 结论成立的条件和已知条件或已知事实吻合为止,这种证明的方法叫做分析 法.分析法是一种执果索因的证明方法. 4.综合法的证明步骤用符号表示: 0P (已知) 1n P P ???L (结论) 5.分析法的证明“若A 成立,则B 成立”的思路与步骤; 要正(或为了证明)B 成立, 只需证明1A 成立(1A 是B 成立的充分条件). 要证1A 成立, 只需证明2A 成立(2A 是1A 成立的充分条件). … , 要证k A 成立, 只需证明A 成立(A 是k A 成立的充分条件).. Q A 成立, ∴B 成立. 三: 例题解析 例1: 已知a>0,b>0,求证a(b 2+c 2)+b(c 2+a 2)≥4abc 证明: 因为b 2+c 2 ≥2bc,a>0 所以a(b 2+c 2)≥2abc. 又因为c 2+b 2 ≥2bc,b>0 所以b(c 2+a 2)≥ 2abc.因此a(b 2+c 2)+b(c 2+a 2)≥4abc. 例2: 已知:a,b,c 三数成等比数列,且x,y 分别为a,b 和b,c 的等差中项.

综合法和分析法(1)

综合法和分析法(1) 【学习目标】 1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2. 会用综合法证明问题;了解综合法的思考过程. 3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 【重点难点】 重点:会用综合法证明问题;了解综合法的思考过程. 难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 【知识链接】 〔预习教材P45~ P47,找出疑惑之处〕 复习1:两类基本的证明方法: 和. 复习2:直接证明的两中方法: 和. 【学习过程】 ※学习探究 探究任务一:综合法的应用 问题:,0 a b>, 求证:2222 ()()4 +++≥. a b c b c a abc 新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法. 反思: 框图表示:要点:顺推证法;由因导果. ※典型例题 例1,, ∈,1 a b c R+ a b c ++=,求证:1119 ++≥ a b c 变式:,, a b c R+ ∈,1 ++=,求证: a b c

小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明. 例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、 B 、 C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形. 变式:设在四面体P ABC -中, 90,,ABC PA PB PC ∠=?==D 是AC 的中点.求证:PD 垂直于ABC ?所在的平面. 小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来. ※ 动手试试 练1. 求证:对于任意角θ,44cos sin cos2θθθ-= 练2. ,A B 为锐角, 且 tan tan tan A B A B +, 求证:60A B +=o . 〔提示:算tan()A B +〕 【学习反思】 ※ 学习小结 综合法是从的P 出发,得到一系列的结论12,,Q Q ???,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题. ※ 知识拓展 综合法是中学数学证明中最常用的方法,它是从到未知,从题设到结论的逻辑推理方法,即从题设中的条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法. 【基础达标】 ※ 自我评价 你完成本节导学案的情况为〔 〕. A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测〔时量:5分钟 总分值:10分〕计分: 1. 22,,"1""1"x y R xy x y ∈≤+≤则是的〔 〕 A.充分不必要条件 B.必要不充分条件

因素分析法的计算例题多因素分析法研究

因素分析法的计算例题多因素分析法研究 多因素分析法研究 WTT为大家整理的相关的多因素分析法研究资料,供大家参考选择。 多因素分析 研究多个因素间关系及具有这些因素的个体之间的一系列统计分析方法称为多元(因素)分析。主要包括: 多元线性回归(multiple linear regression) 判别分析(disoriminant analysis) 聚类分析(cluster analysis) 主成分分析(principal ponent analysis) 因子分析(factor analysis) 典型相关(canonical correlation) logistic 回归(logistic regression) Cox 回归(COX regression) 1、多元回归分析(multiple linear regression) 回归分析是定量研究因变量对自变量的依赖程度、分析变量之间的关联性并进行预测、预报的基本方法。研究一个因变量对几个自变量的线性依存关系时,其模型称为多元线性回归。函数方程建立有四种方法:全模型法、向前选择法、向后选择法、逐步选择法。 全模型法其数学模型为:ebbbb++++=ppxxxyL22110 式中 y 为因变量, pxxxL21, 为p个自变量,0b为常数项,pbbbL21,为待定参数,

称为偏回归系数(partial regression coefficient)。pbbbL21,表示在其它自变量固定不变的情况下,自变量Xi 每改变一 个单位时,单独引起因变量Y的平均改变量。多因素分析法研究 e为随机误差,又称残差(residual), 它是在Y的变化中不能为自变量所解释的部分 例如:1、现有20名糖尿病病人的血糖(Lmmoly/,)、胰岛素(LmUx/,1)及生长素(Lgx/,2m)的数据,讨论血糖浓度与胰岛素、生长素的依存关系,建立其多元回归方程。 逐步回归分析(stepwise regression analysis) 在预先选定的几个自变量与一个因变量关系拟合的回归中,每个自变量对因变量变化所起的作用进行显著性检验的结果,可能有些有统计学意义,有些没有统计学意义。有些研究者对所要研究的指标仅具有初步知识,并不知道哪些指标会有显著性作用,只想从众多的变量中,挑选出对因变量有显著性意义的因素。 一个较理想的回归方程,应包括所有对因变量作用有统计学意义的自变量,而不包括作用无统计学意义的自变量。建立这样一个回归方程较理想的方法之一是逐步回归分析(stepwise regression analysis)

数学中的分析法与综合法

龙源期刊网 https://www.doczj.com/doc/e510067823.html, 数学中的分析法与综合法 作者:冯伟源 来源:《师道·教研》2012年第10期 做任何事情都要讲究方法.古往今来,人们十分重视方法论的研究,力图运用正确的方法来认识世界和改造世界,中学数学教学,要进一步提高教学质量,必须熟悉和灵活运用数学中的科学方法,其中分析与综合是中学数学中最常用的科学方法,在数学教学中,它有各种不同的表现形式,既是研究数学概念的方法,又是解答数学问题证明数学定理的方法.笔者就这两种方法作一阐述. 分析是在思想中把事物的整体分解为部分,把复杂事物分解为简单要素,把完整的过程分解到各个阶段,并加以研究的思维方法.在数学中,分析就是从结果追溯到产生这一结果的原因的一种思维方法.例如,为了求多边形的面积,我们可以把多边形分解为若干个三角形,分别进行研究, 又如,对于列方程解应用题这一完整过程,可以分解为设元、列方程、解方程、检验等四个阶段分别予以考察,在数学解题中,分析是首先且大量要用到的一种思维方法,因为对于求知的整体事物,要使学生深刻地认识它、理解它,首先就得恰当地分解它、简化它.具体地说,分析法是从数学题的特征结论或要求出发,一步一步地探索下去,最后达到题设的已知条件. 例1:如图,P是⊙O外一点,PQ切⊙O于Q,PAB和PCD是割线,∠PAC=∠BAD.求 证:PQ■=PA■+AC·AD. 证法(分析法):由于易知PQ■=PA·PB 要证:PQ■=PA■+AC·AD 只需证:PA·PB= PA■+AC·AD 即证AC·AD= PA■-PA·PB 即AC·AD= PA(PA-PB) 又因PA-PB=AB 只需证AC·AD=PA·AB 即AC/PA=AB/AD 这就将问题转化为证明△PAC与△ABD相似. 连接BD,因∠PAC是圆内接四边形ABCD的一个外角,故∠PCA=∠ABD.

相关主题
文本预览
相关文档 最新文档