当前位置:文档之家› 相变储热材料研究进展

相变储热材料研究进展

相变储热材料研究进展
相变储热材料研究进展

相变材料的储热

相变材料的储热 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料; 引言:相变材料(PCM)在其本身发生相变的过程中,可以吸收环境的热(冷)量,并在需要时向环境放出热(冷)量,从而达到控制周围环境温度的目的。相变储能技术通过相变材料相变时吸收或放出大量热量以达到能量存储的目的,是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式。 正文 一、相变储热材料应用的意义 当今社会能源短缺及环境污染成为我们所面临的重要难题。开发利用可再生能源对节能和环保具有重要的现实意义。发展热能存储技术尤为重要,热能存储就是把通过一定的方式把占时应用不到应用不完的多余的热和废热存储起来,适时还可以另作他用。该技术在太阳能的利用、电力的“移峰填谷”、气废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。 二、相变储能材料分类及材料的选择 1、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机相变材料和有机相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。 但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)从蓄热过程中材料相态的变化方式来看,分为固-液相变、固-固相变、固-气相变和液-气相变四类。由于后两种相变方式在相变过程中伴随着大量气体的产生,是材料的体

相变材料

相变材料 夏红芳环境工程一班 2220083741 摘要:由于全球能源和环境问题的日益加剧,能源节约和环境的改善已成为当今迫切解决的问题,相变节能材料受到很大重视和广泛研究。本文主要介绍了相变材料的概念、特点、恒温机理及分类,然后讨论了它在各领域的主要运用,并展望了其良好前景和未来研究的方向。 关键词:相变材料节能恒温建筑采暖 1 前言 近年来,随着全球能源危机的日益加剧,节约能源、有效利用能源逐渐成为人们追求的目标。相变材料的节能应用很早就受到重视,许多发达国家对此进行了大量的研究和开发[1]。我国的科研机构亦对此课题进行大量的研究并发表了许多论文。但由于生产材料的成本过高和稳定性等原因,其应用受到限制。近年来由于材料的研究取得重大进展,相变材料的成本大大降低,稳定性也已达到上万个相变周期而不改变其特性,这使得应用相变材料节能达到了实用阶段[2]。从可持续发展战略出发,研究如何在满足当前经济飞快发展的需求,尽可能地提高对能源的有效利用率,对于当前的能源形势具有重大的意义[1]。 2 相变材料 相变材料PCMs( Phase Change Materials)是指在一定狭窄明确的温度范围,即通常所说的相变范围内可以改变物理状态,如从固态转变为液态或从液态变为固态的材料[3]。在相变过程中,体积变化很小,热焓高,因此以潜热形式从周围环境吸收或释放大量热量,热的吸收量或释放量比一般加热和冷却过程要大得多,而此时PCMs的温度保持不变或恒定。因此它是一种利用相变潜热来贮能和放能的化学材料。

我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。当温度高于0°C时水由固态变为液态(溶解)。在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。冰的数量(体积)越大,溶解过程需要的时间越长[3]。这是相变材料的一个最典型的例子。从以上的例子可看出,相变材料实际上可作为能量存储器。这种特性在节能,温度控制等领域有着极大的意义。因此,相变材料及其应用成为广泛的研究课题。 3 相变材料的分类 相变材料并不是科学家发明的一种新型材料,而是以各种形式存在于自然界中。迄今为止,已有超过500 种的天然和合成相变材料被人们掌握和了解[4]。按相变材料的科学属性划分,相变材料一般可以分为:无机水合盐相变材料、有机相变蓄能材料、复合相变蓄能材料。 3.1 无机类 无机类相变材料主要有结晶水合盐类、熔融盐类等其中最典型的是结晶水合盐类,它们有较大的熔解热和固定的熔点(实际上是脱出结晶水的温度变化: 脱出的结晶水使盐溶解而吸热,降温是其发生逆过程,吸收结晶水而放热)。通常 是中、低温相变蓄能材料。具有代表性的有:Na 2SO 4 ·10H 2 O , MgCl 2 ·6H 2 O 等 水合盐类。无机类相变材料通常具有使用范围广、导热系数大(与有机类相变材料相比)、溶解热较大、密度大(单位体积的储热密度大) 、一般成中性、价格较便宜等优点。但是,这类材料通常存在过冷现象、相分离两个问题[4]。 3.2 有机类 有机相变蓄能材料是利用晶体之间的转变来吸热或放热,典型的有石蜡、酯酸类和高分子化合物。有机类相变材料具有的优点有: 在固体状态时成型性较好,一般不容易出现过冷现象和相分离。而缺点是: 导热系数小,单位体积的储能能力较小,熔点较低,不适于高温场合中应用[4]。 3.3 复合类 复合相变材料主要指性质相似的二元或多元化合物的一般混合体系或低共熔体系,形状稳定的固液相变材料,无机有机复合相变材料等[5][14]。复合相变蓄热材料一般有分为两种,一种利用无机物作为网络状基质以维持材料的形状、力学性能,而有机物作为相变材料嵌在无机网络结构里面,这样通过有机物的相变来吸收和释放能量;另一种纤维复合蓄热材料,它是将导热纤维制成蓬松团置入金属容器或模腔中,并加入相变蓄热材料的复合材料。复合相变材料既能有效克服单一的无机物或有机物相变储热材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。但是混合相变材料也可能会带来相变潜热下降,或在长期的相变过程中容易变性等缺点。 此外,还有一些其他分类方法,按相变温度的范围,将相变材料分为三类: 高温、中温和低温相变材料。按相变材料的组成成份将相变材料分为两类: 有机类和无机类。按相变的方式,将相变材料分为四类:固——固相变、固——液相变、固——气相变、及液——气相变材料。由于后两种相变方式在相变过程中,伴随有大量气体的存在,使材料体积变化较大。因此,尽管它们相变焓较大,但在实际中很少应用[4]。常用的就是固——固相变和固——液相变材料。 4 相变材料蓄能机理 相变材料具有在一定温度范围内改变其物理状态,发生吸热和放热的反应。当环境温度高于某相变温度时,材料吸收并储存能量,以降低环境

相变储热材料的制备与应用

相变储热材料的制备与应用 摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。气化、化学反应等方式实现。它是一种平衡热能供需和使用的手段。热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。 关键词:相变;储热;复合材料 一、相变材料在国内外的发展状况 国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。 相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。 二、相变储热材料的分类 (1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。但石蜡类相变储能材料热导率较低,也限制了其应用范围。为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。同时它的导热能力较有机物有较大的改善。 (2)根据使用的温度不同又可以分为高、中、低温相变储热材料。一般使用温度高于100℃的相变储热材料称为高温相变储热材料。以熔融盐、氧化物和金属及其合金为主。使用温度低于100℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液-气相变型的,如液氮、氦。 (3)从蓄热过程中材料相态的变化方式来看,可分为固液、固气、液气、固固四种相变。由于固气和液气两种方式相变是有大量气体产生,使材料的体积变的很大,所以实际中很少采用这两种方式。 三、相变材料的分类选择因素 (1)合适相变温度; (2)较大的相变潜热; (3)合适的导热性能;

相变储能材料在建筑节能中的应用

相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。 关键词:建筑节能,相变,蓄能,建筑材料 Phase Change Materials and Its Application in the Construction of Energy-efficient Ji yongyu (Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. The materials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paper describes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials, analysis of phase change materials for applications in buildings, citing the phase change material in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects. Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言 近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题 在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。相变储能材料的英文全称为Phase Change Material, 简称为PCM。相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。 1 相变储能材料介绍

高温相变材料的研究进展和应用

高温相变材料的研究进展和应用 摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。 关键词:相变材料;储热材料;相变 1引言 物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“移峰填谷”、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。 2相变储热技术

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。 3高温相变储热材料 3.1高温固—液相变材料 固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

相变储热材料的制备与应用

摘要:热能储存可以通过蓄热材料地冷却、加热、熔化、凝固.气化、化学反应等方式实现.它是一种平衡热能供需和使用地手段.热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热. 关键词:相变;储热;复合材料 相变材料在国内外地发展状况 国外对相变储能材料地研究工作始于世纪年代.最早是以节能为目地,从太阳能和风能地利用及废热回收,经过不断地发展,逐渐扩展到化工、航天、电子等领域.近年来最主要地研究和应用集中在建筑物地集中空调、采暖及被动式太阳房等领域.国外研究机构和科研人员对蓄热材料地理论研究工作,尤其是对蓄热材料地组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细地研究,在实际应用上也取得了很大进展. 相对于已经进入实用阶段地发达国家,我国在世纪年代末年代初才开始对蓄热材料进行研究,所以国内相变储能材料地理论和应用研究还比较薄弱.上世纪年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料地研究开发.资料个人收集整理,勿做商业用途 相变储热材料地分类 ()从材料地化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解地是有机类相变材料.无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物.与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点.其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料地研究使用中受到广泛地重视.但石蜡类相变储能材料热导率较低,也限制了其应用范围.为有效克服石蜡类有机化合物相变储能材料地缺点,同时改善相变材料地应用效果及拓展其应用范围,复合相变储能材料应运而生 .复合相变材料由较稳定地有机化合物和具有较高导热系数地无机物颗粒制备而得,因而复合相变材料具有稳定地化学性质,无毒无腐蚀性或毒性和腐蚀性小.同时它地导热能力较有机物有较大地改善.资料个人收集整理,勿做商业用途 ()根据使用地温度不同又可以分为高、中、低温相变储热材料.一般使用温度高于℃地相变储热材料称为高温相变储热材料.以熔融盐、氧化物和金属及其合金为主.使用温度低于℃为中、低温相变储热材料,这类相变材料以水合盐、石蜡类、脂酸类为主,在低温类中也有利用液气相变型地,如液氮、氦.资料个人收集整理,勿做商业用途 ()从蓄热过程中材料相态地变化方式来看,可分为固液、固气、液气、固固四种相变.由于固气和液气两种方式相变是有大量气体产生,使材料地体积变地很大,所以实际中很少采用这两种方式.资料个人收集整理,勿做商业用途 三、相变材料地分类选择因素 ()合适相变温度; ()较大地相变潜热; ()合适地导热性能; ()性能稳定,可反复使用而不发生熔析和副反应; ()相变地可逆性,过冷度要尽量小; ()符合绿色化学要求:无毒、无腐蚀、无污染; ()使用安全、不易燃.易爆或氧化; ()蒸汽压要低使之不易挥发损失; ()材料密度较大,从而确保单位体积储热密度较大; ()体积膨胀较小; ()成本低廉,原料易得. 实用型地相变储热材料需要满足以上各项基本原则,但选用时也可以结合实际地应用情况,

相变材料

相变材料的种类 摘要:相变储能材料对于能源的开发与应用具有重要意义。综述了相变储能材料的分类、相变特性、并展望其今后的发展方向。 关键字:无机相变材料;有机相变材料;储能;进展; 前言 相变材料是指随温度变化而改变形态并能提供潜热的物质。相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。相变材料可分为有机和无机相变材料。亦可分为水合相变材料和蜡质相变材料。相变材料具有在一定温度范围内改变其物理状态的能力。相变材料的分类相变材料主要包括无机PCM 、有机PCM 和复合PCM 三类。根据相变的方式不同,又可分为固—固相变,固液相变, 固气相变,液气相变.由于后两种相变方式在相变过程中伴随有大量气体存在,使材料体积变化较大,因此尽管它们有很大的相变热,但实际应用较少。根据使用的温度不同又可分为低温,中温,高温三种。 无机相变材料 固 -液相变材料是指在温度高于相变点时 ,物固相变为液相吸收热量 ,当温度下降时物相又由液相变为固相放出热量的一类相变材料。目前 , 固 -液无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度 ,从几百摄氏度至几千摄氏度 ,因而相变潜热较大。固 -固相变储能材料是利用材料的状态改变来储、放热的材料。目前 ,此类无机盐高温相变储能材料已研究过的有SCN NH 4,2KHF 等物质。2KHF 的熔化温度为 196 ℃,熔化热为 142 kJ/kg;SCN NH 4从室温加热到 150 ℃发生相变时 ,没有液相生成 ,相转变焓较高 ,相转变温度范围宽 ,过冷程度轻 ,稳定性好 ,不腐蚀 ,是一种很有发展前途的储能材料。 无机盐高温相变复合储能材料近年来 ,高温复合相变储能材料应运而生 ,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点 ,又可以改善相变材料的应用效果以及拓展其应用范围。因此 ,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。目前,已研究的无机盐高温复合相变材料

复合定形蓄能相变材料研究进展 修改

复合定形蓄能相变材料的研究进展 仝仓, 李祥立 (大连理工大学建设工程学部, 辽宁啊,大连116024) 摘要:简述了复合定形蓄能相变材料的分类,着重讨论了熔融共混法、物理吸附法、压制烧结法、接枝共聚法、微胶囊化法、原位插层法、溶胶—凝胶法等七种主要制备复合定形蓄能相变材料方法,分析了各种方法的优势和存在的问题,并指出各种方法适用于制备的相变材料类型。此外提出了复合定形相变材料的发展方向,可作为研究和工程应用的参考。 关键词:定形相变材料制备方法 1.引言: 蓄能技术的发展解决了热能供需时间和空间失配的矛盾,提高了能源利用率。相变蓄能材料从上个世纪70年代在工业和新能源领域受到重视后发展到现在,新型材料和制备方法不断涌现,其中高温相变蓄能材料已经在航空航天、热机、磁流体发电、太阳能等领域得到了应用;而中低温相变蓄能材料应用于绿色建筑、余热回收、太阳能热储存、空?、保暖服装、电子设备等领域。蓄能技术按工作介质所处状态分为显热蓄能技术、潜热蓄能技术和热化学蓄能技术[1],其中以相变蓄能材料(PCMs:phase change materials)为支撑的潜热蓄能技术,具有储能密度大,温度恒定,体积小,性能稳定等优点,是当前国内外学者研究热点之一。相变材料按相变方式可分为固—固PCMs、固—液PCMs、固—气PCMs、液—气PCMs。后两者在相变过程中体积变化较大,且有气体产生,不符合实际工程要求;前两者则包括熔融盐,金属合金,结晶水合盐,多元醇,脂肪酸,石蜡等,但其中大部分材料都有一个共同的缺陷:相变过程中有液相产生,会造成原材料的泄漏,腐蚀容器,污染工作环境,从而导致储热效率,安全系数大幅降低等一系列问题。通过研发合适的复合定形储能材料,既可以解决液相泄漏的问题,又在一定程度上调节材料的相变温度,提高其热传导率,使其更好的满足工程需要。 2.复合定形蓄能材料的主要制备方法 复合定形蓄能材料是指在固—固/固—液相变材料的基础上通过各种方法把有机物与有机物/无机物结合后制备的定形材料,一般包括工作质和载体。复合定形相变材料按照相变方式分为固—固相变蓄能材料和形状稳定的固—液相变蓄能材料[2],按载体材料可分为聚合物基定形相变材料、无机多孔基定形相变材料、微胶囊定形相变材料、有机/无机纳米级定形相变材料等,其制备方法主要有以下几种:熔融共混法、物理吸附法、压制烧结法、接枝共聚

浅论基于复合相变材料储热单元的储热特性

浅论基于复合相变材料储热单元的储热 特性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 储热技术,特别是相变储热技术是合理有效利用现有能源、优化使用可再生能源和提高能源利用效率的重要技术。相变储热技术利用材料的相变潜热来实现能量的储存和利用,是缓解能量供求双方在时间、强度及地点上不匹配的有效方式。为了使相变储热技术得到更进一步的发展,需要克服包括从储热材料到储热系统等的一系列问题。对于储热材料,需要克服其热导率低和与封装材料不可兼容等缺点;对于储热单元和储热系统,需要克服界面热阻高、使用寿命周期短和储/放热速率不可控等缺点。 1数学模型 物理模型 复合材料被制备成实心圆柱体和空心圆柱体两种形状分别放置于单管单元体和同心管单元体中。为了对比研究两种单元体的储热性能,保持置放于单元体中的复合材料体积一致。对于单管储热单元,复合材料直径为60mm,厚度为15mm。单元筒体长度为

300mm,筒体外径为68mm,壁厚为3mm;对于同心管储热单元,复合材料外径为62mm,内径为,单元体外管直径为70mm,内管直径为,壁厚为3mm,筒体长度同为300mm。 数学模型 复合材料和传热流体的控制方程 由于复合材料在热能的存储过程中,超微多孔通道产生的毛细张力能保持熔盐在陶瓷基体内不流出,能保持材料整体结构的稳定性。在复合材料的制备过程中,陶瓷基体被烧结形成致密的多孔介质,熔盐和热导率提高材料填充在其产生的空隙中。因此,对于这种复合材料内部的传热过程,可以认为是一种微孔介质中的传热。但是这种多微孔介质内部的传热是一种十分复杂的物理过程,往往伴随有颗粒间的热传导、微孔间的自然对流及热辐射。然而,由于微孔所占材料体积比较小,在本文的计算中,发生在微孔里面的自然对流和热辐射可以忽略,仅仅只考虑颗粒间的热传导,因此,复合材料和传热流体区域可以简化成二维模型进行计算。同时为了进一步简化数值模型,对模型也做如下假设:①相变熔盐只有一个熔点;②传热流体的热物理参数为常数且被认为是牛顿流体;③传热流体的入口速度和入口温度均匀且为常数;④储热

复合相变材料及其设备制作方法与相关技术

图片简介: 本技术涉及相变材料技术领域,尤其涉及一种复合相变材料及其制备方法。本技术介绍了一种复合相变材料,该复合相变材料将相变材料作为内核,透明高分子材料具有良好的机械强度和织性模量,凝胶聚合物作为壳层将相变材料限域保护起来,可以阻止其泄露,还能增加相变材料的换热面积,使其便于储存和运输;透明高分子材料具有高的透光度,胆甾相液晶的颜色的温敏变化可以显示出来,液晶颜色的变化温度与相变材料的相转化温度范围匹配,实现相变材料的“可视化”;一维导热材料具有很好导热能力,其位于壳层与核层之间径向排列的阵列纳米结构,阵列的纳米结构能使热量沿着导热材料传输,能够很好的提升相变材料的充放热速度,减少了热量的损失。 技术要求 1.一种复合相变材料,其特征在于,所述复合相变材料呈核壳结构; 所述核壳结构中的壳层为含有胆甾相液晶的凝胶聚合物,核层为相变材料,所述壳层与所述核层之间径向负载有一维导热材料; 所述凝胶聚合物由透明高分子材料制得。 2.根据权利要求1所述的复合相变材料,其特征在于,所述核层的粒径为90-150μm,壳层的厚度为10~30μm,一维导热材料的厚度为20-30μm。

3.根据权利要求1所述的复合相变材料,其特征在于,所述相变材料为石蜡型相变材料; 所述一维导热材料选自铜纳米线、碳纤维或碳纳米管; 所述胆甾相液晶包括向列相液晶和手性掺杂剂。 4.根据权利要求3所述的复合相变材料,其特征在于,所述向列相液晶为BHR-59001,所述手性掺杂剂为S-811。 5.根据权利要求3所述的复合相变材料,其特征在于,所述石蜡型相变材料为十四烷、十八烷或二十烷。 6.根据权利要求5所述的复合相变材料,其特征在于,所述透明高分子材料为明胶和/或阿拉伯胶。 7.权利要求1至6任意一项所述的复合相变材料的制备方法,其特征在于,包括以下步骤: 步骤1:利用Stober法将相变材料、十六烷基三甲基溴化氨在水和醇的混合溶剂中,加入硅源进行反应,得到二氧化硅包覆的相变材料; 步骤2:将所述二氧化硅包覆的相变材料浸入一维导热材料分散液中,搅拌、干燥,得到一维导热材料/二氧化硅/相变材料; 步骤3:将所述一维导热材料/二氧化硅/相变材料浸泡于氢氟酸中,得到一维导热材料/相变材料; 步骤4:将透明高分子材料、所述一维导热材料/相变材料、胆甾相液晶和水进行混合,冷冻干燥,得到复合相变材料。 8.根据权利要求7所述的制备方法,其特征在于,所述相变材料与所述硅源的质量比为(30~50):1; 所述一维导热材料与所述相变材料的质量比为1~3:4。 9.根据权利要求7所述的制备方法,其特征在于,所述透明高分子材料、所述一维导热材料/相变材料、所述胆甾相液晶和所述水的用量比为8g:(25~35)g:5g:95mL。 10.根据权利要求7所述的制备方法,其特征在于,所述胆甾相液晶包括向列相液晶和手性掺杂剂; 所述向列相液晶与所述手性掺杂剂的质量比为5:(0.5~1.5)。 技术说明书 一种复合相变材料及其制备方法

相变储热材料的发展概况及展望

相变储热材料的发展概况及展望 本文系统概括了相变储热材料的发展概况,介绍了相变储热材料的分类、性能和应用,并对其未来的发展进行了展望。 标签:相变材料相变储热能源 能源是人类赖以生存的基础。随着现代工业的迅速发展,人们对能源的需求量越来越大,迫切需要全球各国不断开发和利用新能源。在此过程中,虽然新能源在不断被开发,但是我们对能源的利用在许多情况下都未达到合理化,致使大量能源被浪费。因此,提高能源的利用率很有必要。储热技术可用于解决热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重要技术。储热技术主要包括显热、潜热和反应热3种储热方式。其中,以相变材料(Phase Change Material,PCM)的固-固、固-液相变潜热来储存热量的潜热型热能储存方式最为普遍,也最为重要。其优点为:储热密度大、储放热过程近似等温和过程容易控制等[1]。 固-固相变储热材料和固-液相变储热材料是目前应用较为广泛的相变储热材料。固-液相变材料存在过冷和相分离现象,从而导致储热性能恶化,具有腐蚀性等缺点。固-固相变材料在发生相变前后固体的晶格结构改变而放热吸热,与固-液相变储热材料相比,固-固相变储热材料具有稳定性好、腐蚀性小、装置简单等特点[2]。 一、相变储热材料分类及应用 1.相变储热材料分类 相变储热材料主要有固-固和固-液型两类,其中固-液相变储热材料根据使用温度范围,又可分为高温型和低温型储热材料,或者根据材料类型,又可分为有机型和无机型储热材料;固-固相变储热材料主要有3大类,分别是高分子类、多元醇类和层状钙钛矿类。 1.1固-固相变储热材料 高分子类相变储热材料主要是一些高分子的聚合物。如聚烯烃类、聚缩醛类等。目前最常见的是聚乙烯。这种材料一般不产生过冷或相分离现象,结晶度高,导热率高,物美价廉。 多元醇类相变储热材料主要有季戊四醇(PE)、2,2-二羟甲基-丙醇(PG)、新戊二醇(NPG)、三羟甲基乙烷(TMP)等。这类材料具有寿命长、焓变大、性能稳定等优点。多元醇的相变温度较高,在很大程度上限制了其应用[3],可通过混合多元醇,调节相变温度。

热适应复合相变材料的制备与热性能

热适应复合相变材料的制备与热性能 尹辉斌1,高学农1,丁静2,张正国1 (1华南理工大学传热强化与过程节能教育部重点实验室, 广东广州 510640; 2中山大学工学院, 广东广州 510006) 摘要:热适应复合材料是具有适合要求的热导率或热膨胀系数的一种复合材料。本文选取导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,制备出高导热系数和储热密度的热适应复合相变材料。采用扫描电镜(SEM)、比表面和孔径分布测定仪(BET)、差示扫描量热仪(DSC)、偏光显微镜(POM)和Hot Disk热常数分析仪等多种测试技术,对复合相变材料进行了分析研究,实验证明该复合相变材料具有形状稳定、导热率高、储热密度大等特点。通过储/放热实验和500次热循环实验研究了复合材料的传热性能和热稳定性,复合相变材料的储热时间和放热时间分别比纯石蜡缩短了76.8%和86.1%,并具有良好的热稳定性和使用寿命。 关键词:电子散热;热适应;相变材料;热性能 中图分类号:TK512. 4 文献标识码:A Preparation and thermal properties of thermal adaptation composite materials YIN Huibin1, GAO Xuenong1, DING Jing2, ZHANG Zhengguo1 (1 Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640,Guangdong,China; 2 School of Engineering, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China) Abstract:Thermal adaptation composite materials are composite materials with required thermal conductivity or coefficient of thermal expansion. A kind of thermal adaptation composite materials is prepared by using paraffin as the phase change material and porous expanded graphite of high thermal conductivity as the supporting material. The thermal properties of the composite materials are characterized by means of SEM, BET, DSC, POM and Hot Disk. It is shown that the composite materials have favorable heat capacity and high thermal conductivity. The heat transfer performance and thermal stability of the composite materials are then investigated by heat storage and release experiments and thermal cycle experiments of 500 times. Their heat storage period and heat release period are shortened 76.8%and 86.1%, respectively, compared with that of the paraffin. The composite materials also have excellent thermal stability and service life. Key words:electronic cooling; thermal adaptation; phase change material; thermal property 引言 随着电子及通讯技术的迅速发展,高性能芯片和大规模及超大规模集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,且大多电子芯片的待机发热量低而运行时发热量大,瞬间温升快。因此,抗热冲击和散热问题已成为芯片技术发展的瓶颈。 相变温控是利用相变材料的相变过程储存或释放热量,从而实现对物体的温度控制[1]。相变储热材料由于具有蓄能密度大、蓄放热过程近似等温、过程易控制等优点,备受研究者的关注,而提高其热性能更成为了研究热点[2-4]。热适应复合材料就是通过对复合材料进行组分与其含量的选择和排列取向的设计,而使之具有适合要求的热导率或热膨胀系数的一种复合材料[5]。近年来,应用热适应复合相变材料进行电子元件的散热技术在国外已受到广泛重视,并在航

利用相变储能材料的热能储存技术及其应用

利用相变储能材料的热能储存技术及其应用 摘要: 由于相变储能材料具有储能密度高、储能放能近似等温、过程易控制等特点, 因此, 采用相变储能材料的热能储存技术是提高热能转化和回收利用效率的重要途径, 也是储存可再生能源的有效方式之一。鉴于可供选用的相变储能材料种类多、相变温度范围大, 使其在许多工程应用中具有较大的吸引力, 简要介绍了利用相变储能材料的热能储存技术及其在工程中的多种应用。 关键词: 相变储能材料; 热能储存技术; 工程应用 Applications of thermal energy storage techniques with phase change storage materials Abstract: Thermal energy storage technique with phase change storage materials is an important approach of enhancing the efficiency of thermal energy translation and recovery utilization, and one of the efficient ways of storing reproducible energy because of their characteristics such as higher energy storage capacity, isothermal energy storage or discharge and easier operation control. T here are many kinds o f phase chang e storage materials that melt and solidify at a w ide rang e of temperatures, which makes them attractive in a lot of engineering applications. T his article present s an overview of thermal energy storage techniques and their applications in engineering. Key words: phase change storage materials; thermal energy storage technique; engineering application 一.引言 近年来,当今社会能源短缺及环境污染成为我们所面临的重要难题。开发 利用可再生能源对节能和环保具有重要的现实意义。开发新能源提高能源利用 率已成为工业发展的重要课题。因此,相变储能材料(phase change material)成为国内外能源利用和材料科学方面的研究热点。相变储能技术可 以解决能量供求在时间和空间上不匹配矛盾,也就是可以在能量多时可以储 能,在需要时释放出来,从而提高能源利用率。一些发达国家在推广应用相对 比较成熟的储能技术和储能材料,以期待不断提高技术性、经济性和可靠性。 我国也在这方面进行了积极的研究[1-3]。

相变材料应具有以下几个特点

相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸汽压低。此外,相变材料还需与建筑材料相容,可被吸收。 3相变储能材料的特点 作为相变材料主要应满足的要求有:合乎需要的相变温度:足够大的相变潜热:性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀性。储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本:为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。而有机物相变材料则热导率较低。相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如:铜粉、铝粉或石墨等作为填充物以提高热导率。或采用翅片管换热器,依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。固一液相变材料主要优点是价格便宜,但是存在过冷和相分离现象,从而导致储能不理想:易产生泄露问题,污染环境;腐蚀性较大,封装容器价格高等缺点。 与固一液相变材料相比,固一固相变材料具有不少优点。可以直接加T成型,不需容器盛装:固一固相变材料膨胀系数较小,相变时体积变化较小:不存在过冷和相分离现象,不需要加入防过冷剂和防相分离剂;毒性很低,腐蚀性很小;无泄露问题,对环境不产生污染;组成稳定,相变可逆性好,使用寿命长:装置简单,使用方便。固一固相变材料主要缺点是相变潜热较低,价格较高。 4 应用展望 相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变蓄热材料主要应用在家庭采暖系统中,它与水合盐相比.具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年):把它们注入纺织物,可以制成保温性能好、重量轻的服装:可以用于制作保温时间比普通陶瓷杯长的保温杯:含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空和航天器材、军事侦察、日常生活用品等方面有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:(a)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义:(b)开发复合相变储热材料是克服单一无机或有机相变材料不足,提高其应用性能的有效途径;(c)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一:(d)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显著提高系统效率,并能维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义:(e)进一步关注高温储热和空调储冷。美国NASA Lewis研究中心利用高温相变材料成功的实现了世界上第一套空间太阳能热动力发电系统2kW 电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源 解决方案之一,必将极大地推动高温相变储热技术的发展。另外,低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段;(f)纳米复合材料领域的不断发展,为制备高性能复合相变储热材料提供了很好的机遇。利用纳米材料的特点制备新型高性能纳米复合

相关主题
文本预览
相关文档 最新文档