当前位置:文档之家› 一起220kV断路器操作箱B相跳位灯异常的分析和处理

一起220kV断路器操作箱B相跳位灯异常的分析和处理

一起220kV断路器操作箱B相跳位灯异常的分析和处理
一起220kV断路器操作箱B相跳位灯异常的分析和处理

一起220kV断路器操作箱B相跳位灯异常的分析和处理

摘要:本文主要介绍了一起220kV断路器操作箱B相跳位灯异常缺陷的发现、

分析和处理。通过对引起该缺陷的原因进行分析,能够让我们在同一类缺陷中能

迅速判断出故障原因和范围,保证保护功能可靠。

关键词:断路器;辅助开关

A 220kV circuit breaker operation box lamp abnormal analysis and processing

Su Xiaonan

Kunming Power Supply Bureau,Yunnan power Gird Co.,Ltd.,Kunming 650000,China

Abstract:This paper mainly introduces the discovery,analysis and treatment of the abnormal defect of the jump position relay lamp of 220kV circuit breaker B。By analyzing the causes of this defect,we can quickly judge the cause and scope of the fault in the same kind of defect,and guarantee the reliability of the protection function.

Key words:circuit breaker;Auxiliary switch

1 引言

本文主要以一起220kV断路器操作箱B相跳位灯异常缺陷的发现、分析、判

断为主线,简要阐述了对于同一类原因引起的缺陷的查找和处理方法。

2 基本情况

2.1背景介绍

某天凌晨,某巡维中心接集中监控中心通知,“220kV某线路发线路主二保护

运行异常,断路器非全相运行动作,重合闸动作报文,断路器位置监控台无变化”。

该220kV线路配备2套线路保护(主一型号为:PSL603GCM、主二型号为:PSL603U),一套断路器保护(型号为:PSL-631A),一个分相操作箱(型号为:FCX-12HP)。

2.2 后台检查信息

后台机发“220kV某线断路器B相跳位继异常动作、三相不一致异常动作、重

合闸出口动作”信号。后台机的重合闸动作光字牌燃亮,断路器位置未闪烁且无控制回路断线及弹簧储能信号。后台机在一段时间内多次发“跳位继异常动作、三相不一致异常动作、重合闸出口动作”信号。

2.3 现场检查信息

现场对一次设备的端子箱、机构箱及断路器本体进行检查,断路器处于合闸

位置,本体三相不一致连接片可靠投入,弹簧机构储能正常,箱体内无明显异味。对比上次断路器动作计数器数值发现数值无变化

现场对二次设备的相关装置进行检查,发现线路主一、主二保护装置发:重

合闸出口,跳位继电器异常信号;断路器保护发:三相不一致异常信号;断路器

操作箱跳位B指示灯,合位A、B、C指示灯均亮,跳位A、C指示灯熄灭,与一

次状态不符。

3 异常问题分析与判断

查看历史记录,当时断路器的负荷电流约为14.2A,二次折算后约为45.3mA,负荷电流很小,有效值小余100mA,查看保护定值单后,电流满足重合闸动作条件。同时,从后台机报文中可以看出B相跳位继发生多次“跳位继电器异常动作、返回”信号,最后一次跳位继电器异常动作后未返回导致:主二保护在2:09:52:157ms 启动重合闸,在2:09:53:157ms 重合闸出口;主一保护在2:09:55:

220kV线路保护操作箱与断路器的配合_图文(精)

万方数据 中低压电器 时,放大后的信号也小,闩锁电路⑦脚输出低电平,此时断路器仍然不动作;当漏电流稍大于动作电流时,放大后的信号较大,闩锁电路⑦脚输出高电平并对C2充电,同时触发SCR,一旦SCR导通,整流桥(D1~D4上下联通,此时的整流桥就成为电子开关,即两桥臂之间相当于开关,将220V 的交流电压加到KM线圈的两端,线圈中的电流剧增并产生足够大的电磁吸合力,迫使KM触头分断,完成保护动作。R3和C7构成吸收电路,吸收断电时KM线圈上的自感电动势。 漏电断路器在使用中要做定期试验。试验时只需按下按钮SB,通过R4形成一个合适的漏电流,使断路器的保护动作。 图3NLl8型漏电断路器的印刷电路图 3动作电流的调整

漏电断路器在出厂时已经设定了动作电流,有的漏电断路器上带有调整旋钮(或开关,但NLl8型漏电断路器就没有。由于在不同的环境下需要的动作电流不同,因 此需要重新调整动作电流。 决定动作电流大小的元件为ZTA的负载电阻R。(如图4所示,动作电流与R..成反比。调整的方法是:第l步,切断电源,拆开断路器的电路板,用一个2kfl的电位器取代RL,并把阻值调到最小,重新装好断路器并把电位器置于外部;第2步,选一个适当(要考虑发热功率的电阻R。(尺,=L,/J,,式中,【,为电源电压;J。为设定动作电流跨接在ZTA两端的火线和零线上,使之产生人为的漏电流;第3步,接通电源,并使漏电断路器处于工作状态,将电位器的阻值由小到大慢慢调整,直到断路器动作为止;第4步,断开电源,取下电位器并测出调整后的阻值,选一个阻值相当(稍微偏大的固定电 阻焊接上;第5步,选一个阻值与R。相当(稍微偏小的固定电阻替换R。即可。 图4NLl8型漏电断路器的元件分布图 调整动作电流时要注意:(1操作过程中谨防触电;(2电位器用20cm以上的软导线连接;(3R。可在断路器的进线端和出线端分别连接火线和零线。 (编辑马燕玲 (上接第52页 执行跳闸命令的方式上,RC孓923A沟通的是R跳闸端,即不起动重合闸的三跳,而机构自带的非同期保护在进行跳闸后将无法对保护的重合闸进行放电,会导致保护误发合闸令而造成误动;最后,在跳闸时间的配合上,RCS-923A的整定范围为 0.01~10s,机构自带的非同期保护则是在0.2~o.5s间,不及前者精确,在与相关保护的配合上也存在缺陷。因此,一般情况下解除LWl5-252型SF。断路器自带的非全相运行保护的功能,而采用断路器辅助保护装置RCS-923A 的三相不一致保护。 4操作继电器装置与断路器机构配合中对防跃功能的设置

浅谈断路器防跳回路原理及与保护操作箱防跳回路的配合

浅谈断路器防跳回路原理及与保护操作箱防跳回路的配合 发表时间:2016-12-07T16:17:39.137Z 来源:《电力设备》2016年第19期作者:郭健谢致进肖毅涛[导读] 防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用。 (华北电力科学研究院(西安)有限公司陕西西安 710065)摘要:防跳回路分为操作箱中防跳回路和断路器中防跳回路,操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。一般我们通过跳、合闸回路二次接线的改动来实现操作箱中防跳回路和断路器中的防跳回路之间的选择。保护操作箱的防跳设置与断路器本体的防跳设置如何正确合理的选择;如何避免故障发生 时,如何把控制回路和防跳回路很好地结合起来, 是技术人员关心的。本文对目前比较流行的防跳回路接线和原理给予介绍,并浅谈断路器内防跳回路和微机保护防跳回路两者共存的方式。 关键词:断路器操作箱防跳 1 防跳回路的作用 1断路器防跳回路的作用是防止接点粘连的情况下,跳、合闸命令同时施加到断路器得跳、合闸线圈上,造成断路器反复跳闸、合闸,损坏断路器。防跳回路的设计使断路器出现跳跃时,将断路器闭锁在跳闸位置。 2 对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。这种现象对于保护操作箱来说是不可容忍的, 而这一点却常被人们忽视。 2防跳回路的典型接线 常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路等。国产断路器多采用串联式防跳回路。其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是应用保护操作箱不可缺少的技术条件。其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。 2.1 串联式防跳回路 所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。电压保持线圈与断路器的合闸线圈并联。当合闸到故障线路或设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。串联式防跳回路,如图1 所示。 2.2并联式防跳回路 所谓并联式防跳, 即防跳继电器KO 的电压线圈并联在断路器的合闸回路上(如图2 所示)。例如一个持久的合闸命令存在时, 合闸整流桥输出经Y3, S2, S3, S1, KO (2—1) 接通。断路器合闸后, 并联在合闸回路的辅助接点S3′闭合, 启动防跳继电器KO , KO 接点即由2—1 位置切换到4—1 位置, 断开合闸回路并保持。若此时线路或设备故障, 继电保护动作跳闸。但由于合闸回路已可靠断开, 从而防止了开关跳跃。 2.3 弹簧储能式防跳回路 如图3, 当一个持久合闸命令到来时, 合闸电流经SK 或HJ 通过S3, K1, K1, S2, S1, YA 1 接通开关合闸。合闸后弹簧机构开始储能, 并联在合闸回路的弹簧储能辅助开关S3 常闭点接通防跳继电器K1, K1 的常开点自保, 常闭点断开合闸回路。若此时线路或设备故障, 继电保护动作跳闸, 由于合闸回路已可靠断开, 有效地防止了开关跳跃。

继电保护原理2—操作箱.

第二章操作箱

第一节概述 1.断路器操作机构 1.1断路器操作机构及控制回路 操作机构是断路器本身附带的跳合闸传动装置,目前常用的机构有电磁操作机构、液压操作机构、弹簧操作机构、电动操作机构、气压操作机构等。其中应用最为广泛的是电磁操作机构和液压操作机构。 断路器操作机构箱内电气控制回路包括:合闸和分闸操作回路,电气防跳回路,操作机构压力低闭锁回路,灭弧介质压力低闭锁回路,电机控制回路,加热回路,重合闸闭锁回路。 1.2断路器操作机构压力低的闭锁方式 液压操作机构以高压油推动活塞实现合闸与分闸,其压力闭锁由高到低一般设有“重合闸闭锁”、“合闸闭锁”、“分闸闭锁”3级。 气动操作机构的分闸操作靠压缩空气来完成,而合闸操作则靠在分闸操作时储能的合闸弹簧来完成,其压力闭锁一般设有“重合闸闭锁”和“操作闭锁”2级。 弹簧操作机构设有“弹簧未储能”1级闭锁。 2.操作箱的组成 2.1 操作箱内继电器组成 2.1.1 监视断路器合闸回路的合闸位置继电器及监视断路器跳闸位置继电器。 2.1.2 防止断路器跳跃继电器。 2.1.3 手动合闸继电器。 2.1.4 压力监察或闭锁继电器。 2.1.5 手动跳闸继电器及保护相跳闸继电器。 2.1.6 一次重合闸脉冲回路。 2.1.7 辅助中间继电器。 2.1.8 跳闸信号继电器及备用信号继电器。 2.2 操作箱除了完成跳、合闸操作功能外,其输出触点还应完成的功能 2.2.1 用于发出断路器位置不一致或非全相运行状态信号 2.2.2 用于发出控制回路断线信号。 2.2.3 用于发出气(液)压力降低不允许跳闸信号。 2.2.4 用于发出气(液)压力降低到不允许重合闸信号。

断路器的操作与维护

断路器的操作与维护 断路器的操作 一.操作时携带的用品及使用的安全工器具 (1)按调度指令编写经过预演合格的倒闸操作票。 (2)现场操作防误装置专用工具(钥匙)(就地操作)。 (3)现场操作录音装置。 (4)安全帽。 二.就地操作步骤及标准 (1)应事先检查液压、气压、弹簧机构储能等均应正常,操作电源已投入。 (2)监护人宣读操作项目,操作人核对开关设备的名称、标示牌进行复诵。 (3)核对无误后,监护人发出“对,可以操作”的执行令,操作人进行解锁。 (4)操作人将远、近控钥匙切至相应操作位置。 (5) 按分(合)闸按钮进行操作或操作人手握开关把手,按正确操作方向进行操作,将开关把手从分(合)后位置切至预合(分)位置,绿(红)灯不变(或闪光),再将开关把手切至合(分)闸位置,待绿(红)灯灭红(绿)灯亮后将开关把手返回合(分)后位置,才可放手。 (6)操作中操作人要检查灯光与表计是否正确。 (7)操作结束,操作人手离开关把手,回答“执行完毕”。 (8)操作后现场检查开关实际位置及指示灯指示正确。 (9)检查操作正确后操作人将远、近控钥匙切至遥控位置。 (10)盥护人核对操作无误后,根据需要盖上闭锁帽或挂牌。 三、就地操作危险点控制措施 (1)检查断路器位置要结合表计、机械位置指示、拉杆状态、灯光、弹簧拐臂等综合判断,严禁仅凭一种现象判断开关位置。 (2)小车开关柜断路器就地分(合)闸操作前严禁打开柜门,在确认断路器已在分(合)位后,方可打开柜门进行下步操作。 (3)严防走错问隔,造成误拉合运行断路器。 (4)正常情况下严禁使用万用钥匙操作。 四、遥控操作操作步骤及标准 (1)将监控机画面切换至要遥控的断路器所在变电站系统接线图。 (2)遥控操作开关前检查监控系统、遥信信息、遥测信息正确。 (3)监护人宣读操作项目、操作人员手指微机窗口内的断路器符号与编号进行复诵。 (4)核对无误后,监护人发出“对,可以操作”的执行令。 (5)操作人进行解锁或解密(再次确定所要遥控操作的断路器名称及编号,输入操作人、监护人密码),等待返校成功后,按正确顺序进行操作。 (6)操作结束,操作人回答“执行完毕”。 (7)监护人核对无误后,退出操作界面。 (8)检查开关位置要结合监控机信息窗口文字或系统图断路器变位指示及表计等情况 确定。 (9)具备条件的现场检查断路器位置要结合机械位置指示、拉杆状态、弹簧拐臂等情况综合判断。 五、危险点控制措施 (1)认真核对监控系统中要遥控设备的名称及编号,防止误拉合其他开关。

分相操作箱的小知识

分相操作箱的小知识 1、KKJ(合后继电器) 1.1 KKJ的由来 几乎所有类型的操作回路都会有KKJ继电器。它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。该把手有“预分-分-分后、预合-合-合后”6个状态。其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。从“预合”打到头即“合”。开关合上后,在复位弹簧作用下,KK把手返回自动进入“合后”位置并固定在这个位置。分闸操作同此过程类似,只是分闸后,KK把手进入“分后” 位置。KK把手的纵轴上可以加装一节节的接点。当KK把手处于“合后” 位置时,其“合后位置” 接点闭合。 KK把手的“合后位置” “分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置” 接点闭合代表开关是人为分开的。“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。这两个作用都是通过位置不对应来实现的。所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ(跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。开关人为合上后,“合后位置”接点会一直闭合。保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。不 对应回路断开,事故音响停止,掉牌复归。 因为传统二次回路主要是考虑就地操作。当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。因为当时设备自动化水平的限制,“无人值守”实现的途径是通过在传统二次回路基础上,增加具备“四遥”(遥控/遥调/遥测/遥信)功能的集中式RTU来实现,也即我们常说的老站改造(单纯保护配集中式RTU)模式。遥控是通过RTU遥控输出接点并在手动接点上实现,当开关遥控分闸时,因为KK把手依旧不能自动变位,会因为位置不对应启动重合闸和事故音响。无人值守站不可能靠人去手动对位,同时也不可能在KK把手上加装电机,遥控时同时驱动电机让KK把手变位,成本太高也不可靠。对此问题,当时普遍采取的解决办法是遥控输出2付接点,一付跳开关,一付给重合闸放电(当时的重合闸功能是通过在一定条件下,对储能电容储能。重合闸动作时由该电容对合闸线圈放电实现。RCS96XX系列线路保护的重合闸充电过程就是模拟的对电容充电的过程)。对于误发事故总信号,没有什么太好的办法解决,考虑到改造的目的是实现无人值守,所以一般是采取直接取消不对应启动事总回路的办法。 目前阶段,变电站综合自动化的实现方式发生了很大的变化。传统的灯光音响、信号回路已

关于分相操作箱与三相联动断路器配合问题的分析

关于分相操作箱与三相联动断路器配合问题的分析 【摘要】分析了分相操作箱与三相联动断路器在配合时合闸保持继电器不能正确动作的问题与解决方法 【关键词】分相操作箱;三相联动断路器;合闸保持继电器;保持电流 笔者在进行一次保护技改中发现现有的分相操作箱与三相联动断路器可能存在配合上的问题,本次保护改造使用的是南瑞继保出产的CZX-12G型分相操作箱,改造间隔的断路器为三相联动的220kV断路器,设计图纸中将三相跳合闸回路并接在一起分别接入断路器的跳合闸线圈,大致的原理图如图1,出于简化篇幅的目的,原理图将与A相回路相同的B、C两相用简化图框表示。 在进行带开关整组试验的时候,发现操作箱的合闸保持继电器SHJa、b、c 不动作,断路器能正常合闸。所以认为是回路的电流达不到跳合闸继电器的保持电路造成的,断路器的合闸线圈线圈的直流电阻在236Ω左右,换算为线圈的保持电流为0.98A,根据厂家提供的操作箱说明书,将操作箱内的保持电流跳线均整定为1A(值得说明的是在配分流电阻时已考虑了2倍的动作裕度)。如果按2倍裕度,则跳合闸保持继电器的动作电流为0.5A左右,实际测试合闸保持继电器的动作电流为0.43A,但根据图纸三相合闸回路是并联接至断路器的合闸线圈,理想状态下,由于操作箱三相操作回路电气参数相同,流过断路器跳合闸线圈的电流被分为3份,即每相大约0.33安,显然不满足要求,所以合闸保持继电器不动作。 对于这种情况,设计人员提出了更改意见,将B、C两相的跳合闸回路解除,只保留A相的合闸回路,但更改完回路后,跳合闸保持继电器能正确动作了,但新的问题又出现了,在两组操作电源都正常的情况下,测控屏上的红灯不亮,后台的控制回路断线信号出现。经过对位置信号灯及控制回路断线信号二次回路的分析,由于B、C相的合位继电器HWJ未接入断路器线圈,其常闭接点一直处于闭合状态,控制回路断线的二次回路中,在断路器合闸状态下,跳位继电器TWJ失电,常闭接点闭合,由于其后串接A、B、C两组三相HWJ的常闭接点,即使A相HWJ由于接入断路器线圈而接点打开,正电源也可以通过B、C相的HWJ常闭接点发出控制回路断线的信号。测控屏红灯回路是通过A、B、C三相HWJ的常开接点串联组成的,由于B、C相HWJ不动作,造成红灯回路不同,所以合闸后测控屏的红灯不亮。 由此可见,操作箱单相跳合闸回路接入断路器跳合闸线圈的方法也存在问题,所以,笔者对原回路进行了小改动,改动后的图纸如图3,把A、B、C三相的合闸位置继电器HWJ和跳闸位置继电器TWJ回路单独并联后与A相的跳合闸回路连接后接入断路器的跳合闸线圈。这样更改后,在断路器合分闸时,三相的跳合闸位置继电器会同时动作,避免了控制回路断线信号的误发和位置信号灯的问题,同时,由于只接入了A相的跳合闸保持继电器,操作箱的跳合闸保持继电器的保持电流也可以按照断路器跳合闸线圈的阻值来整定,不会出现由于

操作箱回路原理说明

1、从某种意义上讲,电力系统是一门较“传统”的技术。发展到现在,其原理本身并没有象通讯领域那样不断有“天翻地覆”的变化和发展。变电站保护和监控等二次领域也不例外,只是随着微电子和计算机及通信等基础领域技术的发展,实现的方法和方式发生了变化。比如保护从最早的电磁式到分立元件到集成电路直到现在的微机保护;变电站监控也从原先的仪表光字牌信号到集中式RTU直到现在的综合自动化。原理都基本上没有大的改变。我们在综自调试工程现场碰到的很多信号(比如事故总,控制回路断线等)的概念都是从原先传统电磁式的变电站二次控制系统/中央信号系统延伸过来的,同时在现场调试碰到的很多问题都跟开关等二次控制回路有关。操作回路看似简单,似乎没有多少技术含量。但是我们只有了解了有关基本概念的由来,同时熟练掌握我们产品操作回路的特点和应用,才能在调试工作中灵活处理有关问题。(合后继电器) 1.1 KKJ的由来包括RCS和LFP系列在内几乎所有类型的操作回路都会有KKJ继电器。它是从电力系统KK操作把手的合后位置接点延伸出来的,所以叫KKJ。传统的二次控制回路对开关的手合手分是采用一种俗称KK开关的操作把手。该把手有“预分-分-分后、预合-合-合后”6个状态。其中“分、合”是瞬动的两个位置,其余4个位置都是可固定住的。当用户合闸操作时,先把把手从“分后”打到“预合”,这时一副预合接点会接通闪光小母线,提醒用户注意确认开关是否正确。从“预合”打到头即“合”。开关合上后,在复位弹簧作用下,KK把手返回自动进入“合后”位置并固定在这个位置。分闸操作同此过程类似,只是分闸后,KK把手进入“分后” 位置。KK 把手的纵轴上可以加装一节节的接点。当KK把手处于“合后” 位置时,其“合后位置”接点闭合。KK把手的“合后位置” “分后位置”接点的含义就是用来判断该开关是人为操作合上或分开的。“合后位置”接点闭合代表开关是人为合上的;同样的“分后位置” 接点闭合代表开关是人为分开的。“合后位置”接点在传统二次控制回路里主要有两个作用:一是启动事故总音响和光字牌告警;二是启动保护重合闸。这两个作用都是通过位置不对应来实现的。所谓位置不对应,就是KK把手位置和开关实际位置对应不起来,开关的TWJ (跳闸位置)接点同“合后位置”接点串联就构成了不对应回路。开关人为合上后,“合后位置”接点会一直闭合。保护跳闸或开关偷跳,KK把手位置不会有任何变化,自然“合后位置”接点也不会变化,当开关跳开TWJ接点闭合,位置不对应回路导通,启动重合闸和接通事故总音响和光字牌回路。事故发生后,需要值班员去复归对位,即把KK把手扳到“分后位置”。不对应回路断开,事故音响停止,掉牌复归。因为传统二次回路主要是考虑就地操作。当90年代初电力系统进行“无人值守”改造时,碰到的一个很棘手的问题就是遥控如何和上述传统二次回路配合。因为当时设备自动化水平的限制,“无人值守”实现的途径是通过在传统二次回路基础上,增加具备“四遥”(遥控/遥调/遥测/遥信)功能的集中式RTU来实现,也即我们常说的老站改造(单纯保护配集中式RTU)模式。遥控是通过RTU遥控输出接点并在手动接点上实现,当开关遥控分闸时,因为KK把手依旧不能自动变位,会因为位置不对应启动重合闸和事故音响。无人值守站不可能靠人去手动对位,同时也不可能在KK把手上加装电机,遥控时同时驱动电机让KK把手变位,成本太高也不可靠。对此问题,当时普遍采取的解决办法是遥控输出2付接点,一付跳开关,一付

CJX 系列操作箱

ZL_CZXL0107.0708
CJX 系 列 操 作 箱
技术说明书

南瑞继保电气有限公司版权所有 本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是否相 符。 更多产品信息,请访问互联网:https://www.doczj.com/doc/e45969100.html,



1. 装置的应用范围及特点.......................................................................................................1 2. 装置的技术数据 .................................................................................................................1 3. 装置的构成与原理..............................................................................................................2 3.1 操作回路插件................................................................................................................3 3.2 电流保持插件................................................................................................................4 3.3 电压切换插件................................................................................................................5 3.3.1 带保持的电压切换插件 ...........................................................................................5 3.3.2 不保持的电压切换插件 ...........................................................................................6 3.4 LOCKOUT 插件.............................................................................................................6 3.4.1 LOCKOUT-A 插件...................................................................................................6 3.4.2 LOCKOUT-B 插件...................................................................................................9 3.5 重动继电器插件 ..........................................................................................................10 3.6 双跳圈操作回路插件 ................................................................................................... 11 3.7 电压并列插件..............................................................................................................14 4. 装置的配置与结构............................................................................................................15 4.1 装置配置.....................................................................................................................15 4.1.1 CJX-01 操作箱配置...............................................................................................15 4.1.2 CJX-02 操作箱配置...............................................................................................16 4.1.3 CJX-03 操作箱配置...............................................................................................17 4.1.4 CJX-04 操作箱配置...............................................................................................17 4.1.5 CJX-11 操作箱配置 ...............................................................................................18 4.1.6 CJX-21 操作箱配置...............................................................................................19 4.2 结构与安装 .................................................................................................................20

继电保护--操作箱合闸、跳闸及防跳回路

继电保护--操作箱合闸、跳闸及防跳回路 一、控制回路 断路器控制回路,即是控制断路器分合的回路,电源为直流,一般为±110V多见。现场实际中控制回路主要包括两个方面,继电保护操作箱中的控制回路与断路器本体的控制回路,两者经设计单位整合设计接线才能构成完整的断路器控制回路。 二、操作箱合闸回路(CZX-11G)

4QD7-1SHJ手合接点闭合(ZHJ重合闸接点)-SHJA-4CD14-4CD12(或-1TBUJA-2TBUJA常闭接点)-开关辅助常闭接点-合闸线圈-负电4QD51。 跳位监视:如图1所示,4QD1-1HJA-1TWJA-2TWJA-3TWJA-4CD11-开关辅助接点-4QD51,在开关分位时导通,1HJA为发光二级管,当其点亮时表明开关合闸回路是通的,1TWJA、2TWJA、3TWJA为跳位监视继电器,开关分位时,该继电器是动作的,即常开接点闭合,常闭接点断开,注意1HJA点亮只代表跳位监视回路是通的,若4CD11、4CD12短接可代表4CD12后面的合闸回路是通的。 三、操作箱跳闸回路(CZX-11G) 以A相跳闸回路为例,说明跳闸回路过程,虚线框内为断路器机构内简化操作回路。4QD1、4QD7位操作正电源+110V,4QD51为操作负电源-110V。 跳闸过程:断路器为合位时,机构内断路器常开辅助接点(虚线框内)呈闭合状态,操作电源负电经合闸线圈、开关常闭辅助接点导通至4CD1、4CD2,手动及保护跳闸导通过程:正电4QD7-STJA手跳接点(或经TJQ、TJR、TJF一般为母差保护跳闸启动继电器接点;4QD19前一般是线路保护跳闸接点过来并经跳闸压板)-11TBIJA-12TBIJA-4CD2-开关辅助常开接点-分闸线圈-负电4QD51。 合位监视:如图2所示,4QD1-11HWJA-12HWJA-13HWJA-4CD1-4CD2-开关辅助接点-4QD51,在开

PCS-222B智能操作箱说明书

PCS-222B 智能操作箱
技术和使用说明书

南京南瑞继保电气有限公司版权所有 本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是 否相符。 更多产品信息,请访问互联网:https://www.doczj.com/doc/e45969100.html,



1 概述......................................................................................................................................................... 1 1.1 应用范围......................................................................................................................................... 1 1.2 功能配置......................................................................................................................................... 1 1.3 装置特点......................................................................................................................................... 1 2 技术参数................................................................................................................................................. 3 2.1 机械及环境参数.............................................................................................................................. 3 2.2 额定电气参数................................................................................................................................. 3 2.3 主要技术指标................................................................................................................................. 3 3 软件工作原理......................................................................................................................................... 5 3.1 跳闸逻辑......................................................................................................................................... 5 3.2 合闸逻辑......................................................................................................................................... 6 3.3 跳合闸回路完好性监视................................................................................................................. 7 3.4 压力监视及闭锁............................................................................................................................. 9 3.5 闭锁重合闸..................................................................................................................................... 9 3.6 其它合成信号............................................................................................................................... 10 4 硬件构成............................................................................................................................................... 12 4.1 装置硬件结构............................................................................................................................... 12 4.2 面板布置图................................................................................................................................... 12 4.3 背板布置图................................................................................................................................... 13 4.4 输入输出定义............................................................................................................................... 13 4.5 各插件简要说明........................................................................................................................... 14 4.6 机械结构与安装........................................................................................................................... 20 5 使用说明............................................................................................................................................... 21 5.1 指示灯说明................................................................................................................................... 21 5.1 报警信息....................................................................................................................................... 21 5.3 安装注意事项............................................................................................................................... 21

断路器的控制基础学习知识原理

断路器的控制原理 在发电厂和变电站中对断路器的跳、合闸控制是通过断路器的控制回路以及操动机构来实现的。控制回路是连接一次设备和二次设备的桥梁,通过控制回路,可以实现二次设备对一次设备的操控。通过控制回路,实现了低压设备对高压设备的控制。 一、控制信号传送过程 (一)常规变电站控制信号传输过程 某线路高压开关控制信号传递过程 由上图可以看出,断路器的控制操作,有下列几种情况: 1主控制室远方操作:通过控制屏操作把手将操作命令传递到保护屏操作插件,再由保护屏操作插件传递到开关机构箱,驱动跳、合闸线圈。 2就地操作:通过机构箱上的操作按钮进行就地操作。 3遥控操作:调度端发遥控命令,通过通信设备、远动设备将操作信号传递至变电站远动屏,远动屏将空接点信号传递到保护屏,实现断路器的操作。 4开关本身保护设备、重合闸设备动作,发跳、合闸命令至操作插件,引起开关进行跳、合闸操作。 5母差、低频减载等其他保护设备及自动装置动作,引起断路器跳闸。

可以看出,前三项为人为操作,后两项为自动操作,因此断路器的操作据此可分为人为操作和自动操作。 根据操作时相对断路器距离的远近,可分为就地操作、远方操作、遥控操作。就地通过开关机构箱本身操作按钮进行的操作为就地操作,有些开关的保护设备装在开关柜上,相应的操作回路也在就地,这样通过保护设备上操作回路进行的操作也是就地操作,保护设备在主控室,在主控室进行的操作为远方操作,通过调度端进行的操作为遥控操作。 (二)综自站控制信号传输过程 某线路高压开关控制信号传递过程 操作方式与常规变电站相比,仅在远方操作和遥控操作时不同。 在主控室内进行远方操作,一般是通过后台机进行,操作命令传达到测控装置,启动测控装置跳、合闸继电器,跳、合闸信号传递到保护装置操作插件,启动操作插件手跳、手合继电器,手跳、手合继电器触点接通跳、合闸回路,启动断路器跳、合闸。当后台机死机或其它原因不能操作时,可以在测控屏进行操作。 遥控操作由调度端(或集控站端)发送操作命令,经通讯设备至站内远动通讯屏,远动通讯屏将命令转发至站内保护通讯屏,然后保护通讯屏将命令传输至测控屏,逐级向下传输。 需要指出,有些老站遥控命令是通过后台机进行传输的,如虚线图所示,但由于后台机死机

断路器操作箱的功能要求

操作箱和断路器操作机构的功能要求 一.《线路保护及辅助装置标准化设计规范》对操作箱的要求 4.2.6对操作箱的相关要求 a)两组操作电源的直流空气开关应设在操作箱所在屏(柜)内,不设置两组操作电源切换回路,操作箱应设有断路器合闸位置、跳闸位置和电源指示灯。操作箱的防跳功能应方便取消,跳闸位置监视与合闸回路的连接应便于断开,端子按跳闸位置监视与合闸回路依次排列; b)为防止保护装置先上电而操作箱后上电时断路器位置不对应误启动重合闸,宜由操作箱对保护装置提供“闭锁重合闸”接点方式,不采用“断路器合后”接点的开入方式。 (注:保护装置先上电,TWJ跳位未开入,满足充电条件,保护装置的重合闸充电,操作箱后上电时,TWJ跳位闭合,断路器位置不对应误启动重合闸,为防止误起动重合闸,采用操作箱对保护装置提供的“闭锁重合闸”接点,与停用重合闸压板共用一个开入。 在操作箱后上电,TWJ跳位闭合时,“闭锁重合闸”接点也同时开入保护装置,保证了保护装置不误重合闸。 操作箱在手动跳闸或远跳以后,用双位置继电器KKJ(HHJ)置于跳后位置,起动中间继电器,输出并保持“闭锁重合闸”接点闭合、在手动合闸以后,双位置继电器KKJ(HHJ)置于合后位置,“闭锁重合闸”接点断开。 保护单相或三相跳闸,“闭锁重合闸”接点也处于断开位置,可以重合一次,如重合成功,保护装置可以再充电,如重合不成功再跳闸,断路器处于跳闸位置,TWJ跳位开入,保护装置的重合闸则不具备充电条件。但此时双位置继电器KKJ (HHJ)仍为合后位置,需手动跳闸以后,KKJ(HHJ)处于跳后位置,才能重新闭锁重合闸。 重合闸充电在保护装置正常运行未起动时进行,重合闸控制字和把手投入、无TWJ、无压力低闭重、闭锁重合闸输入,经15秒后充电完成。 如采用“断路器合后”接点作为充电条件,手动跳闸闭锁重合闸仍然不能减少。

低压电气配电柜、操作台、操作箱使用说明书

低压电气配电柜、操作台、操作箱 使用说明书 中冶南方()自动化

二。一六年四月

概述 ............................................ .3 ................ 供货围的产品介绍 ............................... :3 ............. 低压配电柜的运行维护 ................................. .16 低压配电柜检修维护保养方案 ............................ .-.18- ??-安全注意事项 ....................................... 18 .......... 结束语 ........................................... 20 .............

一、概述: 本说明适用于中冶南方()白动化给日照酸再生供货的MCC柜、PLC 柜、操作台、操作箱。 二、供货围的产品介绍: 主要产品包括: PLC柜 MCC配电柜 变频调速柜 电气操作台箱 小型动力配电柜 配电箱 2.1、PLC柜 1. 产品概述:我公司依托于强大的研发、设计能力,根据用户需求,量身设计非 标PLC控制柜,完成多行业的生产线全功能白动化控制。配合HMI、控制台、箱等多种电气成套设备,具备报警、系统诊断、紧急停车等控制功能,并实现 与其他设备的联动,满足各行业的智能化控制管理需求。PLC控制柜具有过载、短路、缺相保护等保护功能。它具有结构紧凑、工作稳定、功能齐全。可以根 据实际控制规摸大小,进行组合,既可以实现单柜白动控制,也可以实现多柜

相关主题
文本预览
相关文档 最新文档