当前位置:文档之家› 2D四杆桁架结构的有限元分析实例学习资料

2D四杆桁架结构的有限元分析实例学习资料

2D四杆桁架结构的有限元分析实例学习资料
2D四杆桁架结构的有限元分析实例学习资料

2D四杆桁架结构的有限元分析实例

实例:2D四杆桁架结构的有限元分析

学习有限元方法的一个最佳途径,就是在充分掌握基本概念的基础上亲自编写有限元分析程序,这就需要一个良好的编程环境或平台。MATLAB软件就是这样一个平台,它以功能强大、编程逻辑直观、使用方便见长。将提供有限元分析中主要单元完整的MATLAB程序,并给出详细的说明。

1D杆单元的有限元分析MATLAB程序(Bar1D2Node)

最简单的线性杆单元的程序应该包括单元刚度矩阵、单元组装、单元应力等几个基本计算程序。下面给出编写的线性杆单元的四个MATLAB函数。

Bar1D2Node _Stiffness(E,A,L)

该函数计算单元的刚度矩阵,输入弹性模量E,横截面积A和长度L,输出单元刚度矩阵k(2×2)。

Bar1D2Node _Assembly(KK,k,i,j)

该函数进行单元刚度矩阵的组装,输入单元刚度矩阵k,单元的节点编号i、j,输出整体刚度矩阵KK。

Bar1D2Node _Stress(k,u,A)

该函数计算单元的应力,输入单元刚度矩阵k、单元的位移列阵u(2×1)以及横截面积A计算单元应力矢量,输出单元应力stress。

Bar1D2Node_Force(k,u)

收集于网络,如有侵权请联系管理员删除

该函数计算单元节点力矢量,输入单元刚度矩阵k和单元的位移列阵u(2×1),输出2×1的单元节点力矢量forces。

基于1D杆单元的有限元分析的基本公式,写出具体实现以上每个函数的MATLAB程序如下。

%%%%%%%%%%% Bar1D2Node %% begin %%%%%%%%%

function k=Bar1D2Node_Stiffness(E, A, L)

%该函数计算单元的刚度矩阵

%输入弹性模量E,横截面积A和长度L

%输出单元刚度矩阵k(2×2)

%---------------------------------------

k=[E*A/L -E*A/L; -E*A/L E*A/L];

%%%%%%%%%%%%%%%%%%%%%%%%%%

function z=Bar1D2Node_Assembly(KK,k,i,j)

%该函数进行单元刚度矩阵的组装

%输入单元刚度矩阵k,单元的节点编号i、j

%输出整体刚度矩阵KK

%-----------------------------------

DOF(1)=i;

DOF(2)=j;

for n1=1:2

for n2=1:2

收集于网络,如有侵权请联系管理员删除

KK(DOF(n1), DOF(n2))= KK(DOF(n1), DOF(n2))+k(n1, n2);

end

end

z=KK;

%------------------------------------------------------------

function stress=Bar1D2Node_Stress(k, u, A)

%该函数计算单元的应力

%输入单元刚度矩阵k, 单元的位移列阵u(2×1)

%输入横截面积A计算单元应力矢量

%输出单元应力stress

%-----------------------------------

stress=k*u/A;

%-----------------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%%%%%

function forces=Bar1D2Node_Force(k, u)

%该函数计算单元节点力矢量

%输入单元刚度矩阵k和单元的位移列阵u(2×1)

%输出2×1的单元节点力分量forces

%-----------------------------------------

forces=k*u;

%%%%%%%%%%% Bar1D2Node %% end %%%%%%%%%

收集于网络,如有侵权请联系管理员删除

【四杆桁架结构的有限元分析—数学推导】

如图所示的结构,各杆的弹性模量和横截面积都为E=29.54×10N/mm2,A=100mm 2,试求解该结构的节点位移、单元应力以及支反力。

图1 四杆桁架结构

解答:对该问题进行有限元分析的过程如下。

(1)结构的离散化与编号

收集于网络,如有侵权请联系管理员删除

对该结构进行自然离散,节点编号和单元编号如图1 所示,有关节点和单元的信息见表1—表3。

表1 节点及坐标表2 单元编号及对应节点表3 各单元的长度及轴线方向余弦

节点x y 单元节点1 节点2 单元l x n y n

1 0 0 ① 1

2 ①400 1 0

2 400 0 ②

3 2 ②300 0 -1

3 400 300 ③ 1 3 ③500 0.8 0.6

4 0 300 ④ 4 3 ④400 1 0

(2)各个单元的矩阵描述

由于所分析的结构包括有斜杆,所以必须在总体坐标下对节点位移进行表达,所推导的单元刚度矩阵也要进行变换,各单元经坐标变换后的刚度矩阵如下。

收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除

(3)建立整体刚度方程

将所得到的各个单元刚度矩阵按节点编号进行组装,可以形成整体刚度矩阵,同时将所有节点载荷也进行组装。

刚度矩阵: K = K (1) +K (2)+K (3)+K (4) 节点位移:q = [u 1 v 1 u 2 v 2 u 3 v 3 u 4 v 4]T

节点力: P=R+F=[ R x 1 R y 1 2×104 R y 2 0 2.5×104 R x 4 R y 4]T

其中(R x 1 , R y 1)为节点1处沿x 和y 方向的支反力,R y 2为节点2处y 方向的支反力,(R x 4 , R y 4) 为节点4处沿x 和y 方向的支反力。 整体刚度方程为

收集于网络,如有侵权请联系管理员删除

(4) 边界条件的处理及刚度方程求解

边界条件BC(u )为:u 1=v 1=v 2=u 4=

v 4=0,代入整体刚度方程中,经化简后有

对该方程进行求解,有

则所有的节点位移为

(5) 各单元应力的计算

其中T为坐标转换矩阵;同理,可求出其它单元的应力。

(6) 支反力的计算

将节点位移的结果代入整体刚度方程中,可求出

收集于网络,如有侵权请联系管理员删除

2D杆单元的有限元分析程序(Bar2D2Node)

编写平面桁架单元的单元刚度矩阵、单元组装、单元应力的计算程序。编写的平面桁架单元的四个MATLAB 函数如下。

Bar2D2Node_Stiffness(E,A,x1,y1,x2,y2,alpha)

该函数计算单元的刚度矩阵,输入弹性模量E,横截面积A,第一个节点坐标(x1,y1),第二个节点坐标

收集于网络,如有侵权请联系管理员删除

(x2,y2)和角度alpha(单位是度),输出单元刚度矩阵k(4×4)。

Bar2D2Node_Assembly(KK,k,i,j)

该函数进行单元刚度矩阵的组装,输入单元刚度矩阵k,单元的节点编号i、j,输出整体刚度矩阵KK。

Bar2D2Node_Stress(E,x1,y1,x2,y2,alpha,u)

该函数计算单元的应力,输入弹性模量E,第一个节点坐标(x1,y1),第二个节点坐标(x2,y2),角度alpha (单位是度)和单位节点位移矢量u,返回单元应力标量。

Bar2D2Node_Forces(E,A,x1,y1,x2,y2,alpha,u)

该函数计算单元的应力,输入弹性模量E,横截面积A,第一个节点坐标(x1,y1),第二个节点坐标(x2,y2),角度alpha(单位是度)和单元节点位移矢量u,返回单元节点力。

基于2D杆单元的基本公式,可以编写出具体实现以上每个函数的MATLAB程序如下。

%%%%%%%%%%% Bar2D2Node %% begin %%%%%%%%%%%%%%

function k=Bar2D2Node_Stiffness(E, A, x1,y1, x2, y2, alpha)

%该函数计算单元的刚度矩阵

%输入弹性模量E,横截面积A

%输入第一个节点坐标(x1, y1),第二个节点坐标(x2, y2),角度alpha(单位是度)

%输出单元刚度矩阵k(4×4)

%-------------------------------------------------

收集于网络,如有侵权请联系管理员删除

L=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

x=alpha*pi/180;

C=cos(x);

S=sin(x);

k=E*A/L*[C*C C*S -C*C -C*S;

C*S S*S -C*S -S*S;

-C*C -C*S C*C C*S;

-C*S -S*S C*S S*S]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = Bar2D2Node_Assembly(KK, k, i, j)

%该函数进行单元刚度矩阵的组装

%输入单元刚度矩阵k,单元的节点编号i、j

%输出整体刚度矩阵KK

%--------------------------------------------------------

DOF(1)=2*i-1;

DOF(2)=2*i;

DOF(3)=2*j-1;

DOF(4)=2*j;

for n1=1:4

for n2=1:4

KK(DOF(n1), DOF(n2))= KK(DOF(n1), DOF(n2))+k(n1, n2);

end

end

z=KK;

收集于网络,如有侵权请联系管理员删除

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%--

function stress= Bar2D2Node_Stress(E,x1,y1,x2,y2,alpha,u)

%该函数计算单元的应力

%输入弹性模量E,第一个节点坐标(x1,y1),第二个节点坐标(x2,y2)

%输入角度alpha(单位是度)和单位节点位移矢量u

%返回单元应力标量stress

%------------------------------------------------

L=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

x=alpha*pi/180;

C=cos(x);

S=sin(x);

stress=E/L*[-C -S C S]*u; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function forces= Bar2D2Node_Forces(E,A,x1,y1,x2,y2,alpha,u)

%该函数计算单元的应力

%输入弹性模量E,横截面积A

%输入第一个节点坐标(x1,y1),第二个节点坐标(x2,y2),角度alpha(单位是度)%输入单元节点位移矢量u

%返回单元节点力forces

%-------------------------------------------------------------

L=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

x=alpha*pi/180;

收集于网络,如有侵权请联系管理员删除

C=cos(x);

S=sin(x);

forces= E*A/L*[-C -S C S]*u;

%%%%%%%%%%% Bar2D2Node %% end %%%%%%%%%%%%%%

【四杆桁架结构的有限元分析—MATLAB— (Bar2D2Node)】

仍就图1所示结构,基于MATLAB平台求解该结构的节点位移、单元应力以及支反力。

解答:对该问题进行有限元分析的过程如下。

(1)结构的离散化与编号

对该结构进行自然离散,节点编号和单元编号如图所示,有关节点和单元的信息见表1—表3。

(2)计算各单元的刚度矩阵(基于国际标准单位)

建立一个工作目录,将所编制的用于平面桁架单元分析的四个MATLAB函数放置于该工作目录中,分别以各自函数的名称给出文件名,即:

Bar2D2Node_Stiffness,

Bar2D2Node_Assembly,

Bar2D2Node_Stress,

Bar2D2Node_Forces。

然后启动MATLAB,将工作目录设置到已建立的目录中,在MATLAB环境中,输入弹性模量E、横截面积A,

收集于网络,如有侵权请联系管理员删除

各点坐标x1,y1,x2,y2,x3,y3,x4,y4,角度alpha 1, alpha 2和alpha 3,然后分别针对单元1,2,3和4,调用四次

Bar2D2Node_Stiffness,就可以得到单元的刚度矩阵。相关的计算流程如下。

E=2.95e11;

A=0.0001;

x1=0;

y1=0;

x2=0.4;

y2=0;

x3=0.4;

y3=0.3;

x4=0;

y4=0.3;

alpha1=0;

alpha2=90;

alpha3=atan(0.75)*180/pi;

k1=Bar2D2Node_Stiffness (E, A, x1, y1, x2, y2, alpha1)

k2=Bar2D2Node_Stiffness (E, A, x2, y2, x3, y3, alpha2)

k3=Bar2D2Node_Stiffness (E, A, x1, y1, x3, y3, alpha3)

k4=Bar2D2Node_Stiffness (E, A, x4, y4, x3, y3, alpha1)

(3)建立整体刚度方程

由于该结构共有4个节点,因此,设置结构总的刚度矩阵为KK(8×8),先对KK清零,然后四次调用函数Bar2D2Node _Assembly进行刚度矩阵的组装。相关的计算流程如下。

收集于网络,如有侵权请联系管理员删除

KK=zeros(8,8);

KK=Bar2D2Node_Assembly (KK, k1, 1, 2);

KK=Bar2D2Node_Assembly (KK, k2, 2, 3);

KK=Bar2D2Node_Assembly (KK, k3, 1, 3);

KK=Bar2D2Node_Assembly (KK, k4, 4, 3)

(4)边界条件的处理及刚度方程求解

由图可以看出,节点1的位移将为零,即u1=0, v1=0,节点2的位移v2=0,节点4的u4=0, v4=0。节点载荷F3=10N。采用高斯消去法进行求解,注意:MATLAB中的反斜线符号“\”就是采用高斯消去法。

该结构的节点位移为:

而节点力为:

k=KK([3,5,6],[3,5,6])

p=[20000;0;-25000];

u=k\p

结果与前面通过数学推导得到的相同

(5)支反力的计算

在得到整个结构的节点位移后,由原整体刚度方程就可以计算出对应的支反力。将整体的位移列阵q(采用国

收集于网络,如有侵权请联系管理员删除

际标准单位)代回原整体刚度方程,计算出所有的节点力P,按上面的对应关系就可以找到对应的支反力。相关的计算流程如下。

q=[0 0 0.0002712 0 0.0000565 -0.0002225 0 0]'

P=KK*q

(6)各单元的应力计算

先从整体位移列阵q中提取出单元的位移列阵,然后,调用计算单元应力的函数Bar2D2Node_Stress,就可以得到各个单元的应力分量。当然也可以调用上面的Bar2D2Node_Forces(E,A,x1,y1,x2,y2,alpha,u)函数来计算单元的集中力,然后除以面积求得单元应力。相关的计算流程如下。

u1=[q(1);q(2);q(3);q(4)]

stress1=Bar2D2Node_Stress(E,x1,y1,x2,y2,alpha1,u1)

u2=[q(3);q(4);q(5);q(6)]

stress2=Bar2D2Node_Stress(E,x2,y2,x3,y3,alpha2,u2)

u3=[q(1);q(2);q(5);q(6)]

stress3=Bar2D2Node_Stress(E,x1,y1,x3,y3,alpha3,u3)

u4=[q(7);q(8);q(5);q(6)]

stress4=Bar2D2Node_Stress(E,x4,y4,x3,y3,alpha1,u4)

计算结果与前面通过数学推导得到的结果相同

收集于网络,如有侵权请联系管理员删除

【四杆桁架结构的有限元分析—ANSYS】

ANSYS是大型的通用有限元分析系统, ANSYS操作流程,包括基于图形界面的操作以及基于命令流的操作。这样将使得以基于详细推导的典型例题与基于MATLAB的编程实现、以及与基于ANSYS的分析都完整地结合起来,可以更好的理解和使用有限元方法这一工具。

1 基于ANSYS图形界面(GUI, graphic user interface)的菜单操作流程

2完整的命令流

以下为命令流语句;注意:以“!”打头的文字为注释内容,其后的文字和符号不起运行作用。

!%%%%%%%% %%%% begin %%%%%%

/ PREP7 !进入前处理

/PLOPTS,DATE,0 !设置不显示日期和时间

!=====设置单元、材料,生成节点及单元

ET,1,LINK1 !选择单元类型

UIMP,1,EX, , ,2.95e11, !给出材料的弹性模量

R,1,1e-4, !给出实常数(横截面积)

N,1,0,0,0, !生成1号节点,坐标(0,0,0)

N,2,0.4,0,0, !生成2号节点,坐标(0.4,0,0)

N,3,0.4,0.3,0, !生成3号节点,坐标(0.4,0.3,0)

N,4,0,0.3,0, !生成4号节点,坐标(0,0.3,0)

收集于网络,如有侵权请联系管理员删除

E,1,2 !生成1号单元(连接1号节点和2号节点)

E,2,3 !生成2号单元(连接2号节点和3号节点)

E,1,3 !生成3号单元(连接1号节点和3号节点)

E,4,3 !生成4号单元(连接4号节点和3号节点)

FINISH !前处理结束

!=====在求解模块中,施加位移约束、外力,进行求解

/SOLU !进入求解状态(在该状态可以施加约束及外力)

D,1,ALL !将1号节点的位移全部固定

D,2,UY, !将2号节点的y方向位移固定

D,4,ALL !将4号节点的位移全部固定

F,2,FX,20000, !在2号节点处施加x方向的力(20000)

F,3,FY,-25000, !在3号节点处施加y方向的力(-25000)

SOLVE !进行求解

FINISH !结束求解状态

!=====进入一般的后处理模块

/POST1 !进入后处理

PLDISP,1 !显示变形状况

FINISH !结束后处理

!%%%%%%%% %%%% end %%%%%%

收集于网络,如有侵权请联系管理员删除

ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析

————————————————————————————————作者:————————————————————————————————日期:

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

四杆桁架结构的有限元分析命令流

四杆桁架结构的有限元分析 在ANSYS 平台上,完成相应的力学分析。即如图1所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E =?, 2 100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图1四杆桁架结构 完整的命令流 !直接生成有限元模型 / PREP7 !进入前处理 /PLOPTS,DA TE,0 !设置不显示日期和时间 !设置单元、材料,生成节点及单元 ET,1,LINK1 !选择单元类型 UIMP,1,EX, , ,2.95e11, !给出材料的弹性模量 R,1,1e-4, !给出实常数(横截面积) N,1,0,0,0, !生成1号节点,坐标(0,0,0) N,2,0.4,0,0, !生成2号节点,坐标(0.4,0,0) N,3,0.4,0.3,0, !生成3号节点,坐标(0.4,0.3,0) N,4,0,0.3,0, !生成4号节点,坐标(0,0.3,0) E,1,2 !生成1号单元(连接1号节点和2号节点) E,2,3 !生成2号单元(连接2号节点和3号节点) E,1,3 !生成3号单元(连接1号节点和3号节点) E,4,3 !生成4号单元(连接4号节点和3号节点) FINISH !前处理结束 !在求解模块中,施加位移约束、外力,进行求解 /SOLU !进入求解状态(在该状态可以施加约束及外力) ANTYPE,0 !定义分析类型为静力分析 D,1,ALL !将1号节点的位移全部固定 D,2,UY , !将2号节点的Y 方向位移固定 D,4,ALL !将4号节点的位移全部固定 F,2,FX,20000, !在2号节点处施加X 方向的力(20000)

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

ansys三根杆桁架优化问题命令流

问题描述: 一个由三根杆组成的桁架承受纵向和横向载荷,桁架的重量在最大应力不超过400PSI最小化(因此重量为目标函数)。三根梁的横截面面积和基本尺寸B在指定范围内变化。 结构的重量初始设计为109.10磅。 缺省允差(由程序计算)为初始重量的1%(11磅)。 分析中使用如下材料特性: E=2.1E6psi RHO=2.85E-41b/in3 (比重) 最大许用应力=400psi 分析中使用如下几何特性: 横截面面积变化范围=1到1000in2(初始值为1000) 基本尺寸B变化范围=400到1000in(初始值为1000) 命令流如下: /filnam,truss /title, optimization of a three-bar truss !初始化设计变量参数 B=1000 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ! !进入PREP7并建模

/prep et,1,link1 !二维单元 r,1,A1 !以参数形式的实参 r,2,A2 r,3,A3 mp,ex,1,2.1E6 !杨氏模量 n,1,-B,0,0 n,2,0,0,0 n,3,B,0,0 n,4,0,-1000,0 e,1,4 real,2 e,2,4 real,3 e,3,4 finish ! !进入求解器,定义载荷和求解 /solu d,1,all,0,,3 f,4,fx,200000 f,4,fy,-20000 solve finish ! !进入POST1并读出状态变量数值 /post1 set,last etable,evol,volu !将每个单元的体积放入ETABLE ssum !将单元表格内数据求和 *get,vtot,ssum,,item,evol !VTOT=总体积 rho=2.85e-4 wt=tho*vtot !计算总体积 etable,sig,ls,1 !将轴向应力放入ETABLE ! *get,sig,elem,1,etab,sig !SIG1=第一个单元的轴向应力*get,sig,elem,2,etab,sig !SIG2=二单元的轴向应力 *get,sig,elem,3,etab,sig !SIG3=三单元的轴向应力 ! sig1=abs(sig1) !计算轴向应力的绝值 sig2=abs(sig2) sig3=abs(sig3) ! /eshape,2 !以实体单元模式显示壳单元

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

浅谈工业建筑中桁架结构的优化设计

浅谈工业建筑中桁架结构的优化设计 发表时间:2019-02-28T15:08:35.403Z 来源:《基层建设》2018年第36期作者:张明[导读] 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。 河钢股份有限公司唐山分公司发展规划部河北省唐山市 063000 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。除厂房屋盖结构外,桁架结构还应用于带式输送机的栈桥、通道、塔架等。它具有重量轻、跨度大、材料消耗经济、标准化程度高等优点,各种形状以满足不同用途。本文主要探讨在带式输送机栈桥的桁架中如何布置构件,使桁架结构受力更合理,使用更经济的材料。通过比较分析桁架在不同构件布置方案下的受力性能,达到优化桁架结构设计的目的。 关键词:平面桁架结构;杆件布置;优化设计 1 桁架基本情况 1.1 桁架的特点与组成 桁架结构是在简支梁基础上发展而来的,简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布在中和轴处为零,截面上下边缘处的正应力最大,随着跨度的增大,梁高增加根据正应力的分布特点,在先形成工字型梁后,继续挖空成空腹形式,中间剩下几根截面很小的连杆时,就发展成为“桁架”。由此可见,桁架是从梁式结构发展产生出来的。桁架的实质是利用梁的截面几何特征的几何因素—构件截面的惯性矩Ⅰ增大的同时,截面面积反而可以减小,从而减轻结构自重,达到节省材料的目的。 桁架结构是由直杆在杆端相互连接而组成的以抗弯为主的格构式体系,一般由上弦、下弦、腹杆组成,多应用于受弯构件。简支桁架在外荷载的作用下整体所产生的弯矩图和剪力图都与简支梁的情况相似,但桁架构件的受力性能与梁完全不同。桁架的上弦杆受压、下弦杆受拉,由此形成力偶来平衡外荷载所产生的弯矩,由斜腹杆轴力中的竖向分量来平衡外荷载所产生的剪力。 1.2 桁架结构计算的基本假定条件 (1)杆件与杆件之间相连接的节点均为绝对光滑无摩擦的铰结点。(2)所有杆件的轴线均是直线且在同一平面内,并通过铰的中心。(3)荷载和支座反力均作用在节点上,并位于桁架的平面内。通过分析可以看出:从整体来看,整个桁架相当于一个受弯杆件,而从局部看,桁架的每个杆件只承受轴力、拉力或压力,没有弯矩和剪力。 2 桁架在实际工程中的应用分析 这里以位于甘肃平凉某骨料生产线项目为例,分析桁架结构杆件布置。此桁架为皮带机运输栈桥桁架,跨度 18 m,宽度 3.2 m,高度2.7 m,全封闭结构,角度0°。 2.1 桁架结构建模 采用 PKPM 软件进行建模分析,取单榀桁架,高度 2.7 m,立杆间距取 3 m,荷载取宽度的一半,所有杆件按柱布置,所有节点设为较结点,荷载直接输在节点上。经计算上弦单个节点恒载 0.5 kN、活载7.5 kN,下弦单个节点恒载 3.5 kN、活载 24 kN,通过设置不同的杆件连接形式进行结果分析,桁架均对称布置。 2.2 桁架结构的对比分析 文章共进行四种连接形式的计算,在杆件和荷载均相同的情况下进行结果分析。 (1)由于桁架各杆件只有轴力,我们先将四种桁架结构的轴力图进行对比,如图 1 所示。从图中对比可以看出,桁架采取不同的杆件布置,桁架杆件的内力是不均匀的,整体近似梁内力分布,上下弦杆内力是两端小而向中间逐渐增大,腹杆内力是两端大而向中间逐渐减小的。但是明显3、4 形式下桁架的支座处节点荷载远远大于 1、2 形式,由此可见桁架结构边跨处腹杆直接与支座连接时,桁架整体受力更加合理,图中的 1、2 形式连接相对于 3、4 连接更加合理。 图1 恒载轴力 (2)将 1、2 两种桁架结构的应力图进行对比,如图 2 所示。从图中对比可以看出桁架杆件在 1、2 形式布置下虽然整体轴力分布都比较均匀,但是应力计算结果显示不同的布置下杆件所受内力不同,在相同的条件下 2 形式中间的杆件长细比(187>150)已经超限,1 形式杆件全部满足。由此可见桁架四种形式下最终比较结果 1 形式结构受力更合理。

桁架支撑的计算和构造

桁架支撑的计算和构造 如上所述,桁架支撑是垂直于桁架平面设置的支撑桁架,承受纵向和横向水平荷载,如风荷载、悬挂或桥式吊车的水平制动或振动荷载、地震荷载等,其杆件承受轴心拉力或轴心压力。由于水平荷载通常可为正或负方向,故多数支撑杆件的内力可能是受拉也可能是受压,应按压杆设计;只有限定只受拉力(受压时退出受力)的交叉柔性斜腹杆和柔性系杆按拉杆设计。 在一般屋架跨度和水平荷载不大的情况下,支撑杆件受力较小,常可不作内力计算,杆件截面由满足极限长细比条件λmax≤[λ]确定。规范GBJ17-88规定,屋盖支撑压杆[λ]=200,拉杆[λ]=400(有重级工作吊车的厂房中350)。 计算杆件λmax时,对双角钢组成的T形截面杆件,应考虑支撑桁架平面内(截面x轴)和平面外(y轴)方向。对交叉柔性单角钢斜拉杆也是如此,但因其平面外计算长度是平面内计算长度的一倍,故总是平面外y轴方向控制。对仅在两端连接的单角钢杆件或双角钢组成的十形截面杆件,则应按斜方向即截面最小回转半径i mim轴方向的λmax考虑。 当支撑桁架的跨度或荷载较大时,必要时应按桁架分析计算杆件内力,再按轴心受拉或受压验算截面的强度和稳定是否足够。 为了安装方便,屋盖支撑通常用M20C级螺栓与屋架相连(图1~3),支撑与天窗架的连接螺栓可考虑略减小至M16。每处连接螺栓一般至少用两个。在有较大起重量或重级工作吊车、或有较大振动设备的厂房,支撑与屋架下弦的连接宜用焊接,这时C级螺栓起安装定位作用。水平支撑的横杆和刚性系杆都受压力且长度相同,应尽量做成杆件本身以及连接构造和尺寸上互相统一。 图1 屋架上弦水平支撑 上弦横向水平支撑的交叉斜杆应做成角钢尖均向下,且连接处适当离开屋架

平面桁架结构的有限元分析

运用ANSYS进行平面刚架模拟建模及误差分析 摘要 有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值计算方法。由于它的通用性和有效性,受到工程技术界的高度重视。伴随着计算机科学和技术的快速发展,现已成为计算机辅助设计和计算机辅助制造的重要组成部分。ANSYS软件是目前世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换。本文主要分析平面刚架在均布荷载作用下模拟的有限元模型计算与手工计算之间的误差。 关键字:ANSYS软件有限元平面刚架 PIANE STEEL FRAME WITH ANSYS SIMULATION MODELING AND ERROR ANALYSIS ABSTRACT Finite element method (or finite element method) is the most widely used in modern engineering analysis of numerical calculation method. Because of its versatility and effectiveness, attaches great importance to by the engineering and technology. Along with the rapid development of computer science and technology, has now become a computer aided design and computer aided manufacturing is an important part .At present,the software of ANSY is the fastest growing computer aided engineering (CAE) software on the world, interfacing with the majority of computer aided design software, realizing the sharing and exchange of data. This paper mainly analyzes the model of planar frame software of ANSYS. KEYWARDS:software of ANSYS,finite element,planar frame

基于MATLAB的桁架结构优化设计

基于MAT LAB 的桁架结构优化设计 林 琳 张云波 (华侨大学土木系福建泉州 362011) 【摘 要】 介绍了基于BP 神经网络的全局性结构近似分析方法,解决了结构优化设计问题中变量的非线性映射问题。在此基础上,利用改进的遗传算法,对桁架结构在满足应力约束条件下进行结构最轻优化设计。利用 Matlab 的神经网络工具箱,编程求解了三杆桁架优化问题。 【关键词】 改进遗传算法;BP 神经网络;结构优化设计;满应力准则 【中图分类号】 T U20114 【文献标识码】 A 【文章编号】 100126864(2003)01-0034-03 TRUSS STRUCTURA L OPTIMIZATON BASE D ON MAT LAB LI N Lin ZH ANG Y unbo (Dept.of Civil Engineering ,Huaqiao University ,Quanzhou ,362011) Abstract :Optimal structural design method based on BP neural netw ork and m odified genetic alg orithm were proposed in this paper.The high parallelism and non -linear mapping of BP neural netw ork ,an approach to the global structural approximation analysis was introduced.It can s olve the mapping of design variables in structural optimization problems.C ombining with an im proved genetic alg orithm ,the truss structure is optimized to satis fy the full stress criteria.Under the condition of MAT LAB 5.3,an exam ple of truss structure has been s olved by this method. K ey w ords :G enetic alg orithm ;BP neural netw ork ;Structural optimization design ;Full stress principle 结构优化设计,就是在满足结构的使用和安全要求的基础上,降低工程造价,更好地发挥投资效益。传统的优化方法有工程法和数学规划法,其难以解决离散变量问题,对多峰问题容易陷入局部最优,且对目标函数要求有较好的连续性或可微性。而近年来提出的基于生物自然选择与遗传机理的随机搜索遗传算法对所解的优化问题没有太多的数学要求,可以处理任意形式的目标函数和约束,对离散设计变量的优化问题尤为有效。进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,能高效地寻找到全局最优点。但采用遗传算法时,进化的每一代种群成员必须要进行结构分析,因此所需的结构分析次数较多。 1 桁架结构优化设计问题的表述 在满足应力约束条件下的桁架重量最轻优化问题为: min w (A )=Σn i =1ρA i L i s.t 1 σi ≤[σi ] (i =1,2……n ) A min ≤A i ≤A max w (A )为结构总重量,ρ为材料密度,L i 为第i 杆的长度,A i 为第i 杆件面积,σi 为第i 杆的应力,[σi ]为第i 杆的许用 应力,A min 、A max 分别为杆件面积的下界与上界;n 为杆件总数。 2 神经网络结构近似分析方法 人工神经网络是由大量模拟生物神经元功能的简单处理单元相互连接而成的巨型复杂网络,它是一个具有高度非线 性的超大规模连续时间自适应信息处理系统,易处理复杂的非线性建模问题。文献[1]在K olm og orov 多层神经网络映射存在定理的基础上,针对近似结构分析问题提出的多层神经网络映射存在定理,确定了近似结构分析的神经网络的基本模型。从理论上证明一个三层神经网络可用来描述任一弹性结构的应力、位移等变量和结构设计变量之间的映射关系,为利用人工神经网络来进行结构近似分析提供理论基础。 211 BP 神经网络及其算法改进 BP 神经网络,即误差反向传播神经网络。其最主要的 特性就是具有非线性映射功能。1989年R obert Hecht -Niel 2 s on 证明了对于任何闭区间内的一个连续函数,都可用一个 隐含层的BP 网络来逼近。因而一个三层BP 网络可完成任意的n 维到m 维的映照,它由输入层、隐层和输出层构成。 传统的BP 网络存在着局部极小问题和收敛速度较慢的问题,因此本文采用了动量法和学习率自适应调整的策略,提高了学习速度并增加了算法的可靠性。 动量法考虑了以前时刻的梯度方向,降低了网络对误差曲面局部细节的敏感性,有效地抑制了网络陷于局部极小。 w (k +1)=w (k )+α[(1-η)D (k )+ηD (k -1)] α(k )=2λα(k -1)λ=stg n[D (k )D (k -1)] w (A )为权值向量,D (k )=- 5E 5w (k ) 为k 时刻的负梯度,D (k -1)为k -1时刻的负梯度,η为动量因子,α为学习率。 4 3 低 温 建 筑 技 术 2003年第1期(总第91期)

有限元三杆桁架优化分析

考试题目: 下图所示为一个有3根杆组成的桁架,承受纵向和横向载荷,试对该结构进行优化设计,使得桁架重量最少。 系学数K=班号(为5,6,7,8之一)×100+学号最后两位数,如7班同学,号最后两位为20号,那么K=720 已知桁架的材料特性为: 弹性模量E=0.5K×103MPa; 泊松比:0.5K×10-3; 密度ρ= K×10 kg/m3 许用应力:σ=0.5K×10-2MPa 几何属性如下所示: 横截面面积变化范围:0.6×10-3~0.645m2) 基本尺寸B变化范围:10~0.5K×10-1m 集中载荷为:Fx= 2K×103N, Fy= -2K×103N 要求:写出操作步骤和命令流,定义工作文件名和工作标题为你的姓名拼音+学号。

GUI操作方式 (1)定义工作文件名及工作标题1)定义工作文件名 2)定义工作标题 (2)定义参数和材料属性 定义参数的初始值 2)设置材料属性

(3)定义单元类型及属性1)定义单元类型 定义实常数 A2 A3同A1做法

(4)建立有限元模型 1)生成有限元节点(节点1 2 3 4做法雷同) 2)关闭坐标符号的显示 3)打开节点编号显示 4)生成第一个单元

5)改变第二个单元的属性 6)生成第二个单元 7)改变第三个单元的属性8)生成第三个单元

1)施加边界约束 2)施加集中载荷 3)保存数据 4)求解运算结果 如下: S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY. . . . . . . . . . . . .2-D DEGREES OF FREEDOM. . . . . . UX UY ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 NUMBER OF SUBSTEPS. . . . . . . . . . . . . . . 1

建筑力学分类题型计算桁架

1. 计算图4所示桁架的支座反力及1、2杆的轴力。 解: (1)求支座反力 由∑=0A M 得,09303404=?+?-?By F 即)(↓-=kN 5.37By F 由∑=0x F 得,)(kN 10←=Ax F 由∑=0y F 得,) (↑=+=kN 5.575.3720Ay F (2)求杆1、2的轴力 截面法 (压) (压) kN 5.370 930536 kN 500340512 02211-==?+?=-==?+? =∑∑N N B N N A F F M F F M 2. 计算图1所示静定桁架的支座反力及1、2杆的轴力。 图1 解: (1)求支座反力 由∑=0A M 得,0420820121016=?-?-?-?By F 即)(↑=kN 5.22By F 由 ∑=0x F 得,0=Ax F

由 ∑=0y F 得,) (↑=-=kN 5.275.2250Ay F (2)求杆1、2的轴力 截面法 (压) (压)kN 77.162 5150 kN 2044 200 1 -≈-==-=?-==∑∑N I NGE A F M F M 结点H kN 14.14210kN 10022-=?-=-==∑N y N y F F F (压) 3. 计算图1所示桁架的支座反力及1、2杆的轴力。 图1 解: (1)求支座反力 (4分) 由∑=0A M 得,012304=?+?By F 即)(↓-=kN 90By F 由 ∑=0x F 得,0=Ax F 由∑=0y F 得,) (↑=+=kN 1203090Ay F (2).求杆1、2的轴力 (6分) kN 901-=N F (压) kN 502-=N F (压) 4. 计算图所示桁架的支座反力及1、2杆的轴力。 解:

有限元分析(桁架结构)

有限元上机分析报告 学院:机械工程 专业及班级:机械设计及其自动化08级7班姓名:王浩煜 学号:20082798 题目编号: 2

1.题目概况 1.1 结构组成和基本数据 结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。 材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。 载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。 结构的整体状况如下图所示: 1.2 分析任务 该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。 2.模型建立 2.1 物理模型简化及其分析 由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发

生弯曲和扭转等变形。结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。 2.2单元选择及其分析 由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。就像铰接结构一样,不承受弯矩。输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。输出有:单元节点位移、节点的应力应变等等。由此可见,LINK180单元适用于该结构的分析。 3.3 模型建立及网格划分 (1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。 (2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”

桁架机器人关键部件结构优化设计

123中国 设备 工程Engineer ing hina C P l ant 中国设备工程 2018.09 (下)桁架机器人作为一种多自由度以及用于各种任 务中的自动化设备,不仅可以进行自动化控制、还 可以在空间XYZ 直角坐标系基础上进行反复编程。 在桁架式机器人中使传统的物流方式发生了根本性 的转变,使其工作运行环境得到了有效地改善,使 其机械零部件在生产过程中,实现数字化、信息化 以及无人化生产管理,不仅使产品的生产质量得以 有效保障,还大大提升了劳动生产率,将工人从繁 重的体力劳动中解放出来,使现代制造技术达到一 个崭新的水平。 1?桁架机器人整体结构设计 桁架机器人的整体框架为龙门式结构,框架包括 立柱、滑台、横梁和竖梁。具体构造如图1所示。在 桁架机器人的立柱下方有物料输送台,在位于立柱大 约70mm 的位置安装安全防护网。图1显示,在整个 桁架机器人中运行期间的主要力量支撑来源于立柱, 当横梁和Z 方向工作部件(滑台、竖梁及末端负载) 发生重力作用后,其中Z 方向工作部件的重心距离立 柱中心距离505mm。从理论力学知识可以知道,立 柱产生的变形不仅与力的大小有关,而且与力到立柱 中心的距离有关,此时横梁及Z 轴运动部件的质量会 对立柱造成偏心倾覆力矩,造成立柱的变形,而这种 变形会在末端执行器上产生放大作用,影响末端运动 精度及整机的稳定性。因此,为了使桁架机器人的整 体刚度得以提升,增加桁架机器人的刚度及稳定性, 需要从以下两方面进行。(1)缩短横梁上Z 轴运动部件与立柱中心线的距 离以减小偏心力矩的大小。 (2)为了提升横梁的坚韧度,通过降低横梁的弯 度变形量,减少横梁因为扭转时对尾部精确值的影响, 对机器人的横梁采取优化设计。图1 改进后桁架机器人整体布局示意图图2?桁架机器人整体布局示意图2?桁架机器人立柱的结构预改进设计立柱可以保证桁架机器人中构造的稳定,一般采 桁架机器人关键部件结构优化设计 于美森,杜银明 (青岛科捷机器人有限公司,山东?青岛?266100) 摘要:在桁架机器人中前六阶固有频率和伺服电机的激振频率分别是15.9~52.6Hz 和50Hz 以内,其结构构造受到工作运动过程中的影响,发生共振的机率非常大;受到桁架机器人末端执行器运动影响,桁架机器人的结构框架和立柱都会受到一定的变形影响,因此对桁架机器人的结构和立柱进行了优化设计,提高桁架机器人本体结构的固有频率及刚度,进而提升桁架机器人的工作性能及运动精度。? 关键词:桁架机器人;关键部件;结构设计 中图分类号:TP242 文献标识码:A 文章编号:1671-0711(2018)09(下)-0123-02

2D四杆桁架结构的有限元分析实例

实例:2D四杆桁架结构的有限元分析 学习有限元方法的一个最佳途径,就是在充分掌握基本概念的基础上亲自编写有限元分析程序,这就需要一个良好的编程环境或平台。MATLAB软件就是这样一个平台,它以功能强大、编程逻辑直观、使用方便见长。将提供有限元分析中主要单元完整的MATLAB程序,并给出详细的说明。 1D杆单元的有限元分析MATLAB程序(Bar1D2Node) 最简单的线性杆单元的程序应该包括单元刚度矩阵、单元组装、单元应力等几个基本计算程序。下面给出编写的线性杆单元的四个MATLAB函数。 Bar1D2Node _Stiffness(E,A,L) 该函数计算单元的刚度矩阵,输入弹性模量E,横截面积A和长度L,输出单元刚度矩阵k(2×2)。 Bar1D2Node _Assembly(KK,k,i,j) 该函数进行单元刚度矩阵的组装,输入单元刚度矩阵k,单元的节点编号i、j,输出整体刚度矩阵KK。 Bar1D2Node _Stress(k,u,A) 该函数计算单元的应力,输入单元刚度矩阵k、单元的位移列阵u(2×1)以及横截面积A计算单元应力矢量,输出单元应力stress。 Bar1D2Node_Force(k,u)

该函数计算单元节点力矢量,输入单元刚度矩阵k和单元的位移列阵u(2×1),输出2×1的单元节点力矢量forces。 基于1D杆单元的有限元分析的基本公式,写出具体实现以上每个函数的MATLAB程序如下。 %%%%%%%%%%% Bar1D2Node %% begin %%%%%%%%% function k=Bar1D2Node_Stiffness(E, A, L) %该函数计算单元的刚度矩阵 %输入弹性模量E,横截面积A和长度L %输出单元刚度矩阵k(2×2) %--------------------------------------- k=[E*A/L -E*A/L; -E*A/L E*A/L]; %%%%%%%%%%%%%%%%%%%%%%%%%% function z=Bar1D2Node_Assembly(KK,k,i,j) %该函数进行单元刚度矩阵的组装 %输入单元刚度矩阵k,单元的节点编号i、j %输出整体刚度矩阵KK %----------------------------------- DOF(1)=i; DOF(2)=j; for n1=1:2 for n2=1:2 KK(DOF(n1), DOF(n2))= KK(DOF(n1), DOF(n2))+k(n1, n2); end

十杆桁架结构优化设计

题目:十杆桁架结构优化设计日期:2013。09.16

目录 1 设计题目 (1) 2 设计过程 (2) 2.1 一、运用Abaqus求解各杆轴力应力 (2) 2.1。1 Abaqus计算流程 (2) 2。1。2 结果 (3) 2.2 二、利用材料力学知识求解 (4) 2.2.1 基本思路 (4) 2.2。2 解题过程 (4) 2。2。3 结果 (5) 2。3 三、编写有限元程序求解 (6) 2。3.1 程序基本步骤 (6) 2.3。2 Vs2012 中重要的程序段 (6) 2。3.3 程序输出文件 (9) 2.3.4 材料力学、有限元程序、Abaqus结果比较 (10) 2.4 四、装配应力计算 (11) 2。4。1 处理技巧 (11) 2.4。2 Abaqus处理技巧 (11) 2.4.3 不加外力(P1,P2,P3)时材力,Ansys与Abaqus结果 (12) 2.4.4 不加外力(P1,P2,P3)时材力,Ansys与Abaqus误差分析 (12) 2.4。5 加外力(P1,P2,P3)时 Ansys与Abaqus结果 (12) 2.5 五、优化设计 (14) 2。5。1 设计中变量的概念 (14) 2。5。2 优化步骤运用VS2012编写复合形法进行约束优化。 (14) 2.5。3 VS2012优化程序 (16) 2。5。4 优化结果 (20) 2.5.5 结果说明 (20) 3 设计感想 (20) 4 备注 (20) 4.1 参考书目 (20) 4。2 说明 (20)

十字桁架结构优化设计 现有十字桁架结构见图1,材料泊松比为0。3,E=2。1e11,密度为7.8×103kg/m3, 许用应力为160Mpa,P1=600k N ,P2=900k N ,P3=600k N,杆1-6面积为A1=0.03m2,杆7-10面积为A2=0。02m。 1、利用Abaqus计算各杆的应力; 2、利用材料力学的知识求解,并与1计算出的结果做比较; 3、编写有限元程序求解,与1和2计算结果进行比较; 4、若杆5制作时短了0.001m,试求各杆的应力; 5、若令2节点的位移小于0。005m,A1、A2为0。005~0.05m2,试对结构进行优化,使其重量最小。(同材料力学优化结果比较). 图1十杆桁架

桁架结构的有限元分析MATLAB

力09创新实践 桁架结构有限元分析 学号 20092715 班级力0901-2 姓名魏强 指导教师房学谦 完成日期 2012/6/26 桁架结构有限元分析 摘要

从系统物理概念和力学原理推导有限元计算格式的方法叫做直接刚度法。本文利用推导出得有限元计算格式,通过MATLAB软件进行矩阵运算,对5杆桁架结构进行了内力分析。利用对比的方法,对照多组荷载,分析其受力的情况,为实际问题提供参考。 关键词:有限元法、MATLAB、桁架结构、内力分析 一、引言 1.工程背景及重要性 桁架结构(Truss structure)中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 在建筑结构中,桁架结构是一种应用比较普遍的结构形式,在桥梁工程、大型建筑、船舶工程、港口机械等工程领域均有广泛应用。在我国桁架结构发展迅速且应用最为广泛,如屋架、网架结构等。为了增加建筑的表现力,近些年来管桁架结构得到了许多业主的青睐,在大量的屋面结构中采用。 2.目前问题的研究现状 目前在普遍刚桁架的结构设计中,工程中普遍采用的发放时按理想铰接模型进行计算,并很据计算出的杆件界面应力选择合适的杆件型号。计算桁架结构内力时,一般采用如下基本假定:(1)接单均为铰接;(2)杆件轴线平直相交于节点中心;(3)荷载作用线通过桁架的节点。对于平面桁架还要求所有杆件轴线及荷载作用线在同一平面内。 对于桁架结构的应力分析,在方法上,结构力学中有结点法和截面法,另外

相关主题
文本预览
相关文档 最新文档