当前位置:文档之家› 等差数列典型例题及详细解答

等差数列典型例题及详细解答

等差数列典型例题及详细解答
等差数列典型例题及详细解答

1.等差数列的定义

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式

如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =

a +b

2

,那么A 叫做a 与b 的等差中项.

4.等差数列的常用性质

(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *

).

(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *

),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.

(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *

)是公差为md 的等差数列. 5.等差数列的前n 项和公式

设等差数列{a n }的公差为d ,其前n 项和S n =n ?a 1+a n ?

2

或S n =na 1+

n ?n -1?

2

d .

6.等差数列的前n 项和公式与函数的关系

S n =d 2

n 2+? ??

??a 1-d 2n .

数列{a n }是等差数列?S n =An 2

+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值

在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )

(2)数列{a n }为等差数列的充要条件是对任意n ∈N *

,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )

(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )

(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数

列.( √ )

1.(2015·重庆)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B

解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.

2.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案 C

解析 由题意知a 1=2,由S 3=3a 1+3×2

2×d =12,

解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.

3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B

解析 S 11=11?a 1+a 11?2=11?a 4+a 8?

2

=88.

4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C

解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.

5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8

解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.

题型一 等差数列基本量的运算

例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *

有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10

(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100

B .210

C .380

D .400

答案 (1)C (2)B

解析 (1)由2a n +1=1+2a n 得a n +1-a n =1

2,

所以数列{a n }是首项为-2,公差为1

2的等差数列,

所以S 10=10×(-2)+10×?10-1?2×12=5

2.

(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+1

2

×10×9×4=210.

思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,

a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.

(1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( ) A .5 B .7 C .9 D .11

(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2

2=1,则数列{a n }的公差是( )

B .1

C .2

D .3 答案 (1)A (2)C

解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5?a 1+a 5?2=5a 3=5.故选A.

(2)∵S n =n ?a 1+a n ?

2,∴S n n =

a 1+a n 2,又S 33-S 2

2

=1,

a 1+a 32

a 1+a 2

2

=1,即a 3-a 2=2,

∴数列{a n }的公差为2.

题型二 等差数列的判定与证明

例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *

).

(1)求证:数列{b n }是等差数列;

(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-

1

a n -1

(n ≥2,n ∈N *

),

b n =1

a n -1

(n ∈N *

),

所以b n +1-b n =1a n +1-1-1

a n -1

1?2-1

a n

?-1

-1a n -1=a n a n -1-1a n -1

=1. 又b 1=

1a 1-1=-52

. 所以数列{b n }是以-5

2为首项,1为公差的等差数列.

(2)解 由(1)知b n =n -7

2,

则a n =1+1b n =1+2

2n -7.

设f (x )=1+2

2x -7

则f (x )在区间(-∞,72)和(7

2

,+∞)上为减函数.

所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究

例2中,若条件变为a 1=3

5,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.

解 由已知可得a n +1n +1=a n

n

+1, 即

a n +1n +1-a n n =1,又a 1=3

5

, ∴????

??a n n 是以a 11=3

5为首项,1为公差的等差数列,

∴a n n =35+(n -1)·1=n -2

5

, ∴a n =n 2

-25

n .

思维升华 等差数列的四个判定方法

(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.

(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-

a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.

(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.

(4)前n 项和公式法:得出S n =An 2

+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.

(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列

D .公差为9的等差数列

(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *

),则该数列的通项为( )

A .a n =1

n

B .a n =

2n +1

C .a n =

2

n +2

D .a n =3

n

答案 (1)C (2)A

解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,

∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2

a n +1=1a n +1a n +2

可得

1

a n +1-1a n =1a n +2-1a n +1

,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n

=n ,

即a n =1

n

.

题型三 等差数列的性质及应用

命题点1 等差数列的性质

例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60

解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.

(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值

例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 解 ∵a 1=20,S 10=S 15,

∴10×20+10×92d =15×20+15×14

2d ,

∴d =-5

3

.

方法一 由a n =20+(n -1)×? ????-53=-53n +653. 得a 13=0.

即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,

且最大值为S 12=S 13=12×20+12×112×? ????

-53=130.

方法二 S n =20n +n ?n -1?2

·? ??

??

-53

=-56n 2+125

6n

=-56? ????n -2522+3 12524

.

∵n ∈N *

,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.

∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究

例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,

并求出最小值.

解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13?a 1+a 13?

2=-130.

思维升华 (1)等差数列的性质:

①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ?a m -a n

m -n

=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. ②和的性质:在等差数列{a n }中,S n 为其前n 项和,则

a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);

b .S 2n -1=(2n -1)a n .

(2)求等差数列前n 项和S n 最值的两种方法:

①函数法:利用等差数列前n 项和的函数表达式S n =an 2

+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:

a .当a 1>0,d <0时,满足???

?? a m ≥0,

a m +1≤0的项数m 使得S n 取得最大值S m ;

b .当a 1<0,d >0时,满足?

??

??

a m ≤0,

a m +1≥0的项数m 使得S n 取得最小值S m .

(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( )

A .5

B .6

C .7

D .8

(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,

n 的值为( )

A .5

B .6

C .5或6

D .11

(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)B (2)C (3)110

解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.

(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C.

(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,

S n =na 1+n ?n -1?2

d =20n -n ?n -1?

2

×2

=-n 2

+21n =-?

????n -2122+? ????2122,

又因为n ∈N *

,所以n =10或n =11时,S n 取得最大值,最大值为110.

6.等差数列的前n 项和及其最值

典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75

D .90

(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.

(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) A .S 4 B .S 5 C .S 6 D .S 7

思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;

(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9,

所以S 10=10?a 1+a 10?2=10?a 3+a 8?2=10×9

2=45.

(2)方法一 设数列{a n }的公差为d ,首项为a 1, 则?????

10a 1+10×9

2d =100,100a 1

+100×99

2

d =10,解得?????

a 1

=1 099

100,d =-11

50.

所以S 110=110a 1+110×109

2

d =-110.

方法二 因为S 100-S 10=?a 11+a 100?×90

2=-90,

所以a 11+a 100=-2, 所以S 110=?a 1+a 110?×110

2

?a 11+a 100?×110

2

=-110.

(3)因为?

??

??

a 4+a 7=a 5+a 6<0,

a 5>0,所以?

??

??

a 5>0,

a 6<0,

所以S n 的最大值为S 5. 答案 (1)A (2)-110 (3)B

温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *

; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.

[方法与技巧]

1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.

2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.

3.等差数列性质灵活使用,可以大大减少运算量.

4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]

1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.

A 组 专项基础训练 (时间:35分钟)

1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B

解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.

2.(2015·北京)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0

答案 C

解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于

d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1

+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若00,

d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2

>0,

所以a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2

≤0,故选项D 错.

3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6

答案 C

解析 ∵数列{a n }为等差数列,且前n 项和为S n , ∴数列??????

S n n 也为等差数列.

S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3

m +1

=0, 解得m =5,经检验为原方程的解,故选C.

4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *

),若b 3=-2,b 10=12,则

a 8等于( )

A .0

B .3

C .8

D .11

答案 B

解析 设{b n }的公差为d ,

∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d

=7×(-6)+21×2=0.

又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.故选B.

5.已知数列{a n }满足a n +1=a n -5

7,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值

的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9 答案 C

解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-5

7(n -1)=

40-5n

7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8,故选C. 6.已知数列{a n }中,a 1=1且1

a n +1=1a n +13

(n ∈N *

),则a 10=________. 答案 14

解析 由已知得1

a 10=1a 1+(10-1)×1

3

=1+3=4, 故a 10=1

4

.

7.已知递增的等差数列{a n }满足a 1=1,a 3=a 2

2-4,则a n =________. 答案 2n -1

解析 设等差数列的公差为d , ∵a 3=a 2

2-4,∴1+2d =(1+d )2

-4, 解得d 2=4,即d =±2.

由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.

8.设数列{a n }的通项公式为a n =2n -10(n ∈N *

),则|a 1|+|a 2|+…+|a 15|=________. 答案 130

解析 由a n =2n -10(n ∈N *

)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+

a 4)+(a 5+a 6+…+a 15)=20+110=130.

9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=1

2

.

(1)求证:????

??

1S n 成等差数列;

(2)求数列{a n }的通项公式.

(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1

S n -1

=2,

又1S 1=1

a 1=2,故????

??

1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n

.

当n ≥2时,

a n =S n -S n -1=12n -12?n -1?=n -1-n 2n ?n -1?=-1

2n ?n -1?.

当n =1时,a 1=1

2不适合上式.

故a n

=?????

12,n =1,-1

2n ?n -1?,n ≥2.

10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大 解 方法一 由S 3=S 11得

3a 1+3×22d =11a 1+11×102d ,则d =-2

13

a 1.

从而S n =d 2n 2+?

????a 1-d 2n =-a 113(n -7)2

+4913a 1,

又a 1>0,所以-a 1

13

<0.故当n =7时,S n 最大. 方法二 由于S n =an 2

+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2

+bn 的图象关于n =

3+112=7对称.由方法一可知a =-a 1

13

<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.

要使S n 最大,则有???

?

?

a n ≥0,a n +1≤0,

即???

??

a 1

+?n -1?? ??

??-213a 1

≥0,a 1

+n ? ??

??-213a 1

≤0,

解得≤n ≤,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,

故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大.

B 组 专项能力提升 (时间:20分钟)

11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *

).若a 8

a 7

<-1,则( )

A .S n 的最大值是S 8

B .S n 的最小值是S 8

C .S n 的最大值是S 7

D .S n 的最小值是S 7

答案 D

解析 由条件得S n n <

S n +1n +1,即n ?a 1+a n ?2n <?n +1??a 1+a n +1?

2?n +1?,所以a n <a n +1,所以等差数列{a n }

为递增数列.又a 8a 7

<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.

12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=3

2,S k =-12,则正整数k =________.

答案 13

解析 S k +1=S k +a k +1=-12+32=-21

2,

又S k +1=?k +1??a 1+a k +1?

2

=?k +1??

????-3+322

=-212,

解得k =13.

13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则

a 9

b 5+b 7

a 3

b 8+b 4

的值为________.

答案

1941

解析 ∵{a n },{b n }为等差数列, ∴a 9

b 5+b 7+

a 3

b 8+b 4

a 92

b 6+a 32b 6=a 9+a 32b 6=a 6

b 6

. ∵

S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=19

41

, ∴a 6b 6=1941

. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n

,若对任意的n ∈N *

,都有b n ≥b 8

成立,则实数a 的取值范围为________. 答案 (-8,-7)

解析 依题意得b n =1+1a n

,对任意的n ∈N *

,都有b n ≥b 8,即数列{b n }的最小项是第8项,于

是有1a n ≥1

a 8.又数列{a n }是公差为1的等差数列,因此有?

??

??

a 8<0,

a 9>0,

即?

??

??

a +7<0,a +8>0,由此解得-8<a <-7,

即实数a 的取值范围是(-8,-7).

15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;

(3)若数列{b n }是等差数列,且b n =

S n

n +c

,求非零常数c .

解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2

-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,

所以?

??

??

a 1+2d =9,a 1+3d =13,所以?

??

??

a 1=1,

d =4.

所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+

n ?n -1?

2

×d =2n 2

-n =2? ????n -142-18

.

所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2

-n , 所以b n =S n

n +c =2n 2

-n

n +c

所以b 1=11+c ,b 2=62+c ,b 3=15

3+c .

因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即

62+c ×2=11+c +153+c

, 所以2c 2

+c =0,

所以c =-1

2或c =0(舍去),

经验证c =-1

2时,{b n }是等差数列,

故c =-1

2

.

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

第四章 数列 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2; (2) 1+4+…+(3n -5)是该数列的前n -1项的和. [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12 ++=n n S n 求数列{}n a 的通项公式。 正解: ①当1=n 时,1 11==S a 当2≥n 时,3 4)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3 11==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。 正解:由题意:??? ????=?+=?+70 2293030102 9101011d a d a 得152,521= =d a 代入得S 40 =120402 39 40401=??+ d a 。 [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和; 正解: ??? ????≥+--≤-6,502)5)(520(5,2 ) 545(n n n n n n [例6]已知一个等差数列的前10项的和是310,前20项的和是1220, 由此可以确定求其前n 项和的公式吗? [例7]已知:n n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为

等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11 A.25 B.24 C.20 D.19 A.5B.3C.﹣1 D.1 A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D. A.﹣1 B.1C.3D.7

14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于() A.B.C.D. 15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为() A.6B.7C.8D.9 16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为() A.30 B.35 C.36 D.24 17.(2012?营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是A.5B.6C.5或6 D.6或7 A.58 B.88 C.143 D.176 A.﹣1 B.0C.1D.2 2 A.6B.7C.8D.9 2 A.4或5 B.5或6 C.4D.5 A.12 B.10 C.8D.4 A.230 B.140 C.115 D.95 A.5B.25 C.50 D.100 25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于() A.1B.2C.3D.4 A.第10项B.第11项C.第10项或11项D.第12项 二.填空题(共4小题)

等差数列典型例题 类型一:直接利用等差数列的定义、公式求解 例1.(1)求等差数列3,7,11,……的第11项. (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是, 说明理由. 思路点拨:(1)根据所给数列的前2项求得首项和公差,写出该数列的通项公式,从而求出所求项;(2)题中要想判断一数是否为某一数列的其中一项,关键是要看是否存在一正整数n 值,使得n a 等于这一数. 总结升华: 1.根据所给数列的前2项求得首项1a 和公差d ,写出通项公式n a . 2.要注意解题步骤的规范性与准确性. 举一反三: 【变式1】求等差数列8,5,2…的第21项 【变式2】-20是不是等差数列0,7 2 -,-7,……的项?如果是,是第几项?如果不是,说明理由. 【变式3】求集合* {|7,,100}M m m n n N m ==∈<的元素的个数,并求这些元素的和 类型二:根据公式列方程(组)求解 例2.已知等差数列{}n a 中,1533a =,45153a =,试问217是否为此数列的项?若是,说明是第几项?若不是,说明理由。 思路点拨:由于在条件中已知两项的值(两个等式),所以在求解方法上,可以考虑运用方程思想求解基本量首项1a 和公差d ,也可以利用性质求d ,再就是考虑运用等差数列的几何意义。 总结升华: 1. 等差数列的关键是首项1a 与公差d ;五个基本量1a 、n 、d 、n a 、n S 中,已知三个基本量便可求出其余两个量; 2.列方程(组)求等差数列的首项1a 和公差d ,再求出n a 、n S ,是数列中的基本方法. 举一反三: 【变式1】等差数列-10,-6,-2,2,…前多少项的和是54? 【变式2】等差数列{}n a 中, 4d =, 18n a =, 48n S =,求1a 的值. 【变式3】已知等差数列{}n a ,354a =,73 4 a =-,则15a = 。 类型三:等差数列的判断与证明 例3.已知数列{}n a 的前n 项和为2 43n S n n =+,求证:数列{}n a 为等差数列.

第四章 数列 §4.1等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相 同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:?? ?≥-==-). 2(),1(1 1 n S S n S a n n n 若a 1适合 a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n . 4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列. 5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为 n d a n d S n )2(212-+= ,若令A =2d ,B =a 1-2 d ,则n S =An 2+Bn.6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。 三、经典例题导讲 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.

1.等差数列的定义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项 如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式 设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系 S n =d 2 n 2+????a 1-d 2n . 数列{a n }是等差数列?S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值 在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.

一、等差数列选择题 1.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( ) A .24 B .23 C .17 D .16 2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12 C .14 D .21 3.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231 n n a n b n =+,则2121S T 的值为( ) A . 13 15 B . 2335 C . 1117 D . 49 5.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个 C .2个 D .1个 6.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29 B .38 C .40 D .58 7.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n n S a b n =---?+,*n N ∈,则 存在数列{}n b 和{}n c 使得( ) A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列 B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列 C .· n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .· n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36 C .48 D .64 9.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 10.已知数列{}n a 满足25111,,25 a a a ==且 *121 2 1 0,n n n n a a a ++-+=∈N ,则*n N ∈时,使

高考数学-等差数列典型例题 【例1】 在100以内有多少个能被7个整除的自然数? 解 ∵100以内能被7整除的自然数构成一个等差数列,其中a 1=7,d =7,a n =98. 代入a n =a 1+(n -1)d 中,有 98=7+(n -1)·7 解得n =14 答 100以内有14个能被7整除的自然数. 【例2】 在-1与7之间顺次插入三个数a ,b ,b 使这五个数成等差数列,求此数列. 解 设这五个数组成的等差数列为{a n } 由已知:a 1=-1,a 5=7 ∴7=-1+(5-1)d 解出d =2 所求数列为:-1,1,3,5,7. 【例3】 53122在等差数列-,-,-,-,…的相邻两项之间1 2 插入一个数,使之组成一个新的等差数列,求新数列的通项. 解 d =312 (5) d =d =3 4原数列的公差-=,所以新数列的公差′ ,期通项为 --3 21 2 a n n n n =-+-=--53413423 4 234 ()即 a =34n 【例4】 在[1000,2000]内能被3整除且被4除余1的整数共有多少个? 解 设a n =3n ,b m =4m -3,n ,m ∈N 令,则=-=为使为整数,令=,a =b 3n 4m 3n n m 3k n m ?-43 3m 得n =4k -1(k ∈N),得{a n },{b m }中相同的项构成的数列{c n }的通项c n =12n -3(n ∈N). 则在[1000,2000]内{c n }的项为84·12-3,85·12-3,…,166·12-3 ∴n =166-84+1=83 ∴共有83个数.

数列 §4.1等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同 而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:?? ?≥-==-). 2(),1(1 1 n S S n S a n n n 若a 1适合 a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n . 4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列. 5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为 n d a n d S n )2 (212-+= ,若令A =2d ,B =a 1-2d ,则n S =An 2+Bn. 6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。三、经典例题导讲 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3,指出这个数列的通项公式; [例2] 已知数列{}n a 的前n 项之和为① n n S n -=2 2 ② 12 ++=n n S n

数列 §4.1等差数列的通项与求和一、知识导学1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若a 1适合 a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列. 5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为n d a n d S n )2 (212-+=,若令A =2d ,B =a 1-2d ,则n S =An 2+Bn.6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。 三、经典例题导讲 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3,指出这个数列的通项公式; [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n

2.3 等差数列经典题型 一、选择题 1.已知数列{a n }的前n 项和S n =n 2,则a n 等于() A .n B .n 2 C .2n +1 D .2n -1 答案D 2.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是() A .-2 B .-1 C .0 D .1 答案B 解析等差数列前n 项和S n 的形式为:S n =an 2+bn ,∴λ=-1. 3.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5S 8,则下列结论错误的是() A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值 答案C 解析由S 50.又S 6=S 7?a 7=0,所以d <0. 由S 7>S 8?a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和31= n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证 111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

高二数学 等差数列典型例题 【例1】 在100以内有多少个能被 7个整除的自然数? 解?/ 100以内能被7整除的自然数构成一个等差数列,其中 a 1 =7, d = 7, a n = 98 - 代入 a n = a 〔 + (n - 1)d 中,有 98= 7+ (n - 1) ? 7 解得n = 14 答100以内有14个能被7整除的自然数. 【例2】 在—1与7之间顺次插入三个数 a , b , b 使这五个数成等差数列, 求此数列. 解 设这五个数组成的等差数列为 {a n } 由已知:a 〔 = — 1, = 7 ??? 7=— 1 + (5 — 1)d 解出 d = 2 所求数列为:—1 , 1, 3, 5, 7. 1 1 【例3】 在等差数列一5,— 3?,— 2,— ,…的相邻两项之间 插入一个数,使之组成一个新的等差数列,求新数列的通项. 3 3 23 a n 5 (n 1) n 4 4 4 即a n =3 23 n 4 4 【例 4】 在[1000 , 2000]内能被 解 设 a n =3n , b m = 4m — 3, n , m € N 令a n = b m ,则 3n = 4m — 3 n = 一3 为使 n 为整数,令 m = 3k , 3 得n = 4k — 1(k € N),得{a n } , {b m }中相同的项构成的数列{c n }的通项c n = 12n —3(n € N). 则在[1000 , 2000]内{c n }的项为 84 ? 12 — 3, 85 ? 12— 3,…,166 ? 12— 3 ??? n = 166 — 84+ 仁83 二共有 83 个数. 1 解原数列的公差d= 3 2 1 3 2 d =-,期通项为 2 4 3 (-5)=-,所以新数列的公差d 3整除且被 4除余1的整数共有多少个?

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列?在等差数列的括号后面打√。 0,2,6,12,20,30,36…… 6,12,18,24,30,36,42…… 700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20, 10 二、求等差数列3,8,13,18,……的第30项是多少? 三、求等差数列8,14,20,26,……302的末项是第几项? 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位? 五、计算11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几? 4、求等差数列46,52,58……172共有多少项? 5、求等差数列245,238,231,224,……中,105是第几项? 6、求等差数列0,4,8,12,……中,第31项是几?

在这个数列中,2000是第几项? 7、从35开始往后面数18个奇数,最后一个奇数是多少? 、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少? 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次? 3、请用被4除余数是1的所有两位数组成一个等差数列。并求出这个等差数列的和。 4、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少? 5、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数? 6、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手? 7、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好? 8、40个连续奇数的和是1920,其中最大的一个是多少?

高考数学-等差数列的前n 项和·例题解析 【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125, 求其第6项. 解 依题意,得 10a d =140a a a a a =5a 20d =125 1135791++++++101012()-????? 解得a 1=113,d=-22. ∴ 其通项公式为 a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3 【例2】 在两个等差数列2,5,8,…,197与2,7,12,…,197中, 求它们相同项的和. 解 由已知,第一个数列的通项为a n =3n -1;第二个数列的通项为b N =5N -3 若a m =b N ,则有3n -1=5N -3 即=+ n N 213 ()N - 若满足n 为正整数,必须有N =3k +1(k 为非负整数). 又2≤5N -3≤197,即1≤N ≤40,所以 N =1,4,7,…,40 n=1,6,11,…,66 ∴ 两数列相同项的和为 2+17+32+…+197=1393 【例3】 选择题:实数a ,b ,5a ,7,3b ,…,c 组成等差数列,且a +b + 5a +7+3b +…+c =2500,则a ,b ,c 的值分别为 [ ] A .1,3,5 B .1,3,7 C .1,3,99 D .1,3,9 解 C 2b =a 5a b =3a 由题设+? 又∵ 14=5a +3b , ∴ a =1,b =3 ∴首项为1,公差为2 又+ ∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212

精选高中数学数列分类典型试题及答案 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 31 2n n a -= . 解:(1) 21231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13--=-n n n a a ,故 )()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++= , 所以证得 31 2n n a -=. 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又 112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且 212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{ }n n b b -+1是等差数列.

相关主题
文本预览
相关文档 最新文档