当前位置:文档之家› 利用超声波传感器测量液位高度

利用超声波传感器测量液位高度

利用超声波传感器测量液位高度
利用超声波传感器测量液位高度

本科生毕业设计(论文)

题目:利用超声波传感器测量液位高度

The Design of Using Ultrasonic Sensor Measure The

Liquid Level Altitude

院系名称:

学生姓名:

学生学号:

专业:

指导老师:

完成时间:

声明

本人郑重声明:

所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方,以及法律规定允许的之外,不包含其他人已经发表或撰写完成并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。

本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。

特此声明。

声明人(毕业设计(论文)作者)学号:

声明人(毕业设计(论文)作者)签名:

签名日期:年月日

摘要

随着现代科学技术的发展,人们逐渐了解到,超声波的穿透力很强不易损坏物体,而且它在两万赫兹以上,不会影响到人们的正常工作,并且他的传播速度快。由于超声波具有这样大的优点,所以人们对超声波的利用率越来也高。从大到工业体系的探伤,小到测距和金属表面清尘,超声波几乎无处不在的伴随我们的生活。

本设计是以AT89S52单片机为核心的低成本、高精度、微型化数字显示超声波测距仪。整个电路采用模块化设计,由单片机控制模块,超声波发射模块,超声波接收模块和数据显示模块组成。软件部分由主程序、预置子程序、发射子程序、接收子程序、显示子程序组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。

关键词:AT89S52;超声波;测距

Abstract

With the development of modern science and technology, people gradually understanding that the ultrasonic wave penetrating power is very strong .The ultrasonic wave is not easy to damage the object,morover it above 20KHZ and affect people’s nomal work. So the using of Ultrasonic wave is more and more frequent. From the large scale flaw detection of the industrial system to the measuring distance and clearing of the metal surface , the ultrasonic wave is useful in our every daily

life .

The ultrasonic distance measurer design with digital display functional module used AT89C52 MCU as the core component,of which carries the characteristics with low-cost,high-precision and microminiaturization.The whole circuit used modular design,it includes the MCU control module,ultrasonic transmit module,ultrasonic receive module and the Data display module.In the software design part,it contains the main program,the presets subroutine,the launch subroutine,the receiving subroutine and the display subroutine.Through the comprehensive analysis processing of the

AT89C51 MCU, The signal of each detector can realizing the functions of ultrasonic measure.Based on these,designed the overall scheme of the system.On the

finally,through the hardware and software realize the whole modules.And the relevant parts have the hardware circuit diagrams and program flow charts on the appendix.

Key words:AT89S52;Silent Wave;Measure Distance

目录

摘要...................................................................................................................................................I ABSTRACT................................................................................................................................................. II

1 引言 (1)

2 课题设计的任务和要求 (1)

3 课程的方案设计与论证 (2)

3.1系统整体方案的设计 (2)

3.1.1 设计方案一 (2)

3.1.2 设计方案二 (3)

3.1.3 方案比较以及论证 (5)

3.2系统整体方案的论证 (5)

4 系统的硬件结构设计 (6)

4.1各芯片功能特点简介 (7)

4.1.1 52系列单片机的功能特点 (7)

4.1.2 CX20106简介及其调试 (8)

4.1.3 74ls573管脚及功能特点 (9)

4.2测距原理及框图 (10)

4.2.1 超声波测距的原理 (10)

4.2.2超声波测距仪原理框图 (10)

4.3超声波发射电路 (11)

4.4超声波检测接收电路 (11)

4.5数据显示部分电路 (12)

4.6超声波测距系统的硬件电路设计 (13)

5 系统的软件编程设计 (14)

5.1超声波测距仪的算法设计 (14)

5.2主程序流程图 (14)

5.3超声波发生子程序和超声波接收中断程序 (16)

5.4系统的软硬件调试 (17)

6结束语 (18)

参考文献 (19)

附录一:超声波测距电路原理图 (20)

附录二:程序清单 (21)

1 引言

在科学技术日新月异发展的今天,许多场合开始引进电子设备做为辅助检测,针对诸多行业储液罐液位测量的特点和技术要求,设计一种基于超声波传感器的液位高度测量系统。超声波是由机械振动产生的,可在不同介质中以不同的速度传播,由于超声波具有定向性好,能量集中,在传输过程中衰减小,反射能力较强等特点,超声波传感器可广泛应用于非接触式检测法,不受光线,被测物颜色等的影响,它不仅能够定点和连续测液位,而且能方便地提供遥测或遥控所需的信号。与其他侧位技术相比较,它不需要特别防护,安装维修较方便,而且结构方法都较简单,价格低廉。在超声波液位测量技术中,应用最广泛是超声波脉冲回波方法,由发射传感器发出超声波脉冲,传到液面经反射后返回接收传感器,测出超声波脉冲从发射到接受所需的时间,根据媒介中的声速,就能得到从传感器到液面之间的距离,从而确定液位高度。

2 课题设计的任务和要求

设计一个超声波测距仪,任务:

(1).了解超声波测距原理。

(2).根据超声波测距原理,设计超声波测距器的硬件结构电路。

设计一个超声波测距仪,要求:

(1).设计出超声波测距仪的硬件结构电路。

(2).对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用超声波方法测量物体间的距离,并且,测距范围在20cm-2m之间,测量精度控制在3mm以内。

(3).对设计的电路进行分析。

(4).以数字的形式显示测量距离。

3 课程的方案设计与论证

3.1 系统整体方案的设计

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。

超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率、和声波特性各不相同,因而用途也各不相同。目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89S52单片机作为控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器。

3.1.1 设计方案一

(发射部分)通过NE555振荡器设计出振荡电路,产生40KH的脉冲在通过CD4069的驱动作用于超声波发射探头上(如图3-1)。

(接收部分)将超声波探头接收到的正弦40KH超声波信号(其VPP为50mV)通过LM324运放三级放大以及整形以后产生VPP为3.5V的梯形波信号,用锁相环电路进行检波处理后,启动单片机中断程序(如图3-2)[1]。

图3-1 555超声波发射电路原理图

图3-2 324超声波接收电路原理图

3.1.2 设计方案二

(发射部分)通过单片机发射40KH的脉冲,在经过4069非门,在经过4011与非门的驱动作用于超声波发射探头上(如图3-3)、(如图3-4)[2]。

(接收部分)将超声波接受探头接收到的信号通过CX20106整形和滤波以后再CX20106的7脚输出一个40KH的脉冲,在单片机的P3.2处产生一个下降沿(如

图3-5)。

图3-3 超声波发射电路原理图1

图3-4 超声波发射电路原理图2

图3-5超声波接收电路原理图

3.1.3 方案比较以及论证

通过方案一和方案二的比较我们可以发现,在方案一中的发射电路中,我们可以用NE555振荡产生40KH的方波信号,它是基于硬件的基础上,便于我们可以通过示波器观察到40KH的方波,具有直观且易于观察的特点,有利于电路的检测。在方案二中,我们可以通过单片机产生40KH的脉冲信号,在通过CD4069(或者74LS04)驱动,将40KH的脉冲信号发射出去,由于是软件控制,准确度比较高。经过比较我们发现,在发射电路中方案一的设计是比较经济实惠而且比较方便,但方案二中的软件设计使发射超声波时间比较容易控制,而且超声波的频率准确度比较高,本设计要求测量精度在3mm以内,所以我们选择方案二来产生超声波。

在接收电路中我们发现,在方案一中我们通过LM324三级放大,再通过LM567检波电路,此电路调试比较复杂,在做三级放大时,放大倍数不容易控制,在输出波形上会发生小幅度的偏移。在方案二中我们通过采用CX20106可以将信号进行放大和整形处理,在CX20106的5脚和7脚串联一个200K的电阻可以将频率稳定在40KH。

因此在本次设计中,我们选用的是方案二,以提高测量结果的准确度,并且在整个系统中我们都会采用单片机做计算和显示。

3.2 系统整体方案的论证

超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式[3]。

测距仪的分辨率取决于对超声波传感器的选择。超声波传感器是一种采用压电效应的传感器,常用的材料是压电陶瓷。由于超声波在空气中传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择频率高的传感器,而长距离的测量时应用低频率的传感器,在本设计中我们采用40KHZ的传感器。

4 系统的硬件结构设计

超声波测距仪硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89S52,采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波发射器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的四位共阴LED动态扫描显示。超声波发射电路主要由74LS00和超声波发射器T-40构成,单片机P1.0端口输出的40kHz的方波信号一路经一级与非门后送到超声波发射器的一个电极,另一路经两级与非门后送到超声波发射器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。压电式超声波换能器是利用压电晶体的谐振来工作的。超声波换能器内部有两个压电晶片和一个换能板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。

超声波检测接收电路主要是由集成电路CX20106A组成,它是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38 kHz与测距的超声波频率40 kHz较为接近,可以利用它制作超声波检测接收电路。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。

4.1 各芯片功能特点简介

4.1.1 52系列单片机的功能特点

At89s52 是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。该系列单片机引脚与封装如图4-1所示。

图4-1 51单片机系列封装图

AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。8 位微控制器 8K 字节在系统可编程 Flash AT89S52引脚P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入[4]。

4.1.2 CX20106简介及其调试

其内部结构图(如图4-2)中,CX20106的总放大增益约为80dB,以确保其7脚输出的控制脉冲序列信号幅3.5-5V范围内。总增益大小由2脚外接的R1, C1决定,R1越小或C越大,增益越高。C1取值过大时将造成频率响应变差,通常取为luf,C2为检波电容,一般取3.3UF, CX20106采用峰值检波方式,当C2容量较大时将变成乎均值检波,瞬态响应灵敏度会变低,C2较小时虽然仍为峰值检波,且瞬态响应灵敏度很高,但检波输出脉冲宽度会发生较大变动,容易造成解调出错而产生误操作。R2为带通滤波器中心频率f0的外部电阻,改变R2阻值,可改变载波信号的接受频率,当f0偏离载波频率时,放大增益会显著下降,C3为积分电容,一般取330PF,取值过大,虽然可使抗干扰能力增强,但也会使输出编码脉冲的低电平持续时间增长,造成遥控距离变短。7脚为输出端,CX20106处理后的脉冲信号由7脚输出给后续电路在加工处理推动负载工作。

一些资料表示,在CX20106的1脚输入0.2mV的信号。在5脚将会输出滤波后放大的有用信号。在实测中,5脚并没有一个放大的信号输出。实际调试的时候只关心芯片的7脚在收到信号是是否有一个下降沿产生。

在本电路的调试中,如果一直发射超声波,在7脚将会有周期的低电平产生。不会像通常认为的那样,即一直发射信号时,7脚一直为低电平。这是刚用CX20106时的一个常见错误。只要通过单片机来来计算发射信号时到收到信号是产生下降沿这段时间的长度,再通过数学计算,转化为距离,然后在显示器上显示。

图4-2 CX20106内部结构图

4.1.3 74ls573管脚及功能特点

74ls573管脚排列图及逻辑图(图4-3)如下:

图4-3 74ls573管脚排列图(左)及逻辑图(右)74ls573功能特点如下表所示:

表4-1 74ls573功能特点

H=高电平 L=低电平×=不定 Z=高阻 Q0=建立稳定条件前Q的状态

4.2 测距原理及框图

4.2.1 超声波测距的原理

超声波测距从机理上可以分为共振式和脉冲反射式两种,该设计采用后者。工作时由超声波发射极发射超声波,同时开始计时,超声波在空气中传播,当碰到障碍物时,由于其良好的反射能力而被反射,由超声波接收极接收,此时计时结束。记超声波往返的时间为t,根据s=ct/2计算超声波收发极与障碍物之间的距离,这就是通常所说的渡越时间法,也称时间差测距法。其中c为超声波波速,与环境温度有关,在测量精度要求高的场合要考虑温度影响,可由软件进行调整补偿;在测量精度要求不是很严格的情况下,可以忽略温度的影响,超声波波速与温度的关系如下表[5]:

表4-2 超声波波速与温度的关系表

4.2.2超声波测距仪原理框图

应用单片机软件产生40kHZ的信号,经驱动放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED显示。(如图4-4):

图4-4 超声波测距仪原理框图

4.3 超声波发射电路

超声波发射电路原理图如图4-5所示。发射电路主要由与非门74LS00和超声波发射换能器T-40构成。

压电式超声波换能器是利用压电晶体的谐振来工作的。超声波换能器内部有两个压电晶片和一个换能板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志。

图4-5 超声波发射电路原理图

4.4 超声波检测接收电路

集成电路CX20106A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38 kHz与测距的超声波频率40 kHz 较为接近,可以利用它制作超声波检测接收电路(如图4-6)。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。

图4-6 超声波检测接收电路

4.5 数据显示部分电路

显示电路主要由单片机,74ls573和四位动态共阴数码管构成,其中数据锁存由74ls573完成,单片机I/O口P0口作为数码管段选端口,P2口作为数码管位选端口,具体电路如图4-7所示:

图4-7 数据显示电路

4.6 超声波测距系统的硬件电路设计

本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,然后直接将测量的距离用共阴数码管显示出来。单片机选用AT89S52,经济易用,且片内有8K的可编程FLASH,便于编程。电路原理图如图4-8所示[6]。

图4-8 超声波测距电路原理图

5 系统的软件编程设计

超声波测距仪的软件设计主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。我们知道C语言程序有利于实现较复杂的算法,汇编语言程序则具有较高的效率且容易精细计算程序运行的时间,而超声波测距仪的程序既有较复杂的计算(计算距离时),又要求精细计算程序运行时间(超声波测距时),所以控制程序可采用C语言和汇编语言混合编程。

5.1 超声波测距仪的算法设计

超声波测距的原理为超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就被超声波接收器R所接收到。这样只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器与反射物体的距离。距离的计算公式为:

(1)其中,d为被测物与测距仪的距离,s为声波的来回的路程,c为声速,t为声波来回所用的时间。在启动发射电路的同时启动单片机内部的定时器T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。

5.2主程序流程图

软件分为两部分,主程序和中断服务程序,主程序完成初始化工作、各路超声波发射和接收顺序的控制。定时中断服务子程序完成超声波的发射,外部中断服务子程序主要完成时间值的读取、距离计算、结果的输出等工作。

程序首先是对系统环境初始化,设置定时器T0工作模式为16位定时计数器模式。置位总中断允许位EA并给显示端口P0和P2置位(本设计采用四位共阳LED动态显示,P0为段选口,P2为位选口,均低电平有效)。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约0.1 ms(这也就是超声波测距仪会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。由于采用的是12 MHz 的晶振,计数器每计一个数就是1μs,当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按式(2)计算,即可得被测物

体与测距仪之间的距离,设计时取20℃时的声速为344 m/s则有:

(2)其中,T0为计数器T0的计算值。

测出距离后结果将以十进制BCD码方式送往LED显示约0.5s,然后再发超声波脉冲重复测量过程。为了有利于程序结构化和容易计算出距离,主程序采用C语言编写,主程序流程图如下(图5-1):

图5-1 主程序流程图

汽包水位三冲量给水调节的工作原理

汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。 直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的! 单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量 为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。

超声波液位计的设计

基于参考声速法超声波 液位的测量 专业:电机与电器班级:06班姓名:陈志伟学号:2012230 基于参考声速法超声波液位的测量

摘要 目前市场上的超声波液位计品种多样,大多采用温度补偿方法对超声波传播速度进行校正,以提高仪表测量精度。此方法需在系统外加一个温度测量单元,通过测量环境温度,获得实际声速;由此也引进了温度测量误差,从而限制了系统精度的进一步提高。 本文是利用参考声速法实现声速校正的超声液位测量系统。设计中采用气介式测量方式,将一个反射性能良好的挡板固定在超声波探头和液面之间,通过测量挡板回波的时间,实现精确的声速校正,从而大大提高液位测量精度。此系统不但继承了传统超声波液位计的优点,而且无需采集环境温度,避免了由于测温误差引起的系统误差。 文中以超声波原理为理论依据, 以超声波传感器为接口部件, 利用超声波在空气中传播的时间差来测量距离, 从而设计了一套超声波测距系统。这种新型声速校正方法相对于传统补偿方法,性能更加优越,是今后超声波液位测量的发展方向,具有广阔的发展前景。 关键词:超声波液位计,探头,声速校正,挡板 第一章绪论

1.1液位测量的意义 近年来,随着电子技术的迅速发展,液位测量仪表中的测量技术经历了有机械向机电一体化再到自动化的发展过程。结合这两大技术,尤其是将微处理器引进液位测量系统,使得液位计的精度越来越来高,越来越来向智能化、一体化、小型化发展。在实际应用中,可根据需要选择合适的液位计,满足测量精度、测量环境等多方面的要求。 1.2液位计的种类 根据工作原理的不同,液位计可分为以下几种:直读液位计,浮子液位计,静压液位计,电磁液位计,超声波液位计,光纤液位计等等。传统的液位计逐渐被这些新型液位计所取代。新型液位计无论是在精度稳定性,还是在智能测量方面都比传统液位计有着明显的优势,是今后液位计发展方向。其中超声波液位计以其低成本高精度非接触式稳定性好等优势受到广泛青睐,发展出了适应不同场合的超声波液位计,广泛应用于石油化工,航空航天,水利,气象,环保医疗卫生,食品饮料等多个领域。 超声波液位计是非接触测量中发展最快的一种。该技术基于超声波在空气传播速度及遇到被测液体产生反射的原理。可实现非接触测量、测量范围宽、并且测量不受介质密度、介电常数、导电性等的影响,因此它的使用范围非常广泛,包括水渠、油罐、粘稠、腐蚀性及有毒液体等的液位测量。我国从就是年代开始将超声波测距技术应用到河流、湖泊等水体的水位测量中,以及油、浆等液体的液位测量中,超声波液位测量技术在越来越来多领域发挥极其重要的作用。 1.3超声波液位计概况 1.3.1国内外的超声波液位计发展 在国际上,把超声波技术用于液位测量己有较长时间,我国从20 世纪90 年代开始发展,将超声测距技术应用到河流、湖泊、水、渠等水体的水位测量中,以及油、浆等液体的液位测量中。目前国内高精度超声液位测量仪表的发展主要采用引进加吸收等手段,还有许多合资企业代理国外相应产品。国内自主研发超声波液位计的公司极少,不足十家,而且在测量范围,死区范围和精度都低于国外超声仪表的平均水平。有的厂家只有生产设备,没有标定装置。由此可见,我国在该领域的发展相对国外还有较大差距,在产品性能指标、仪表可靠性、企业

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

E+H超声波液位计设置

Endress+Hauser超声波液位计设置 我们需设置三个参数: V0H1 探头到滤池滤砂的距离 V0H2 设定的量程 V0H9 实际液位高度 调试步骤:先设定量程V0H2,再估计探头到滤砂的距离设定V0H1,通过查看V0H9的数据,调节V0H1,在滤池没有水时将其调节到0。 具体操作步骤如下: 1、如何选择V、H参数 通过相应按键可选择V、H的参数,当你一直按着V或H按 键时相应V、H的参数将不断的循环增减。 2、设定V0H2参数 V0H2参数为设定的量程,如下图我们设定的量程为3m: 设定时通过按键对数值的增减操作,一直按着时数 值将会不断的增(减)。 3、初设V0H1参数 V0H1参数为探头到底砂的距离,我们需要先估计一下,现滤池液位计探头到底砂的距离大概为2m。

4、调节V0H1参数,查看V0H9参数 当我们初设了V0H1参数,然后查看V0H9参数,V0H9为实际的液位数值。 我们在进行调试液位计时,需保证滤池中无水,这样V0H9应该需要调节到0。如下图: 我们需要不断的调节V0H1参数使得V0H9参数设置为,当然在之间波动也无妨,但不要在之间波动。 在调节V0H1参数查看V0H9参数时,若V0H9变大则说明V0H1参数偏大,反之则偏小,我们需不断反复的调节V0H1参数,尽量使得V0H9参数达到标准。每次调节V0H1参数后查看V0H9参数,需要观察V0H9参数1分钟以上,看看是否稳定。 超声波液位计RESET:将参数V9H5设定为333即可复位超声波液位计。

你可以先尝试在V3H0输入1m,这是抑制,从上往下1m内的干扰将被抑制。 然后退到V0H0看示数是否正常。 若不行则先记录下空标满标值如下。 V0H1是空标值,也就是探头到池底的距离。 V0H2是满标值,也就是空标值减去的盲区,该值需要与上位机对应上,相当于量程。同时按-和V便是复位,复位后需要重新设空标和满标。 设好后选择V0H0,便是显示测量值的主界面。 若还不行,建议更换仪表测试。

超声波液位测量系统设计

超声波液位测量系统设计阳华忠孙传友长4女学电,;学M4¨025 鞭蛹隧鞠獬黼黜裂簿螽缓灏醺戳黼{t*t☆sPcEoBl^女m●^‰,LMl812≈,《{目^《tE“&”^#&*雎*t{《.*#自&m£i”1“女T一**¨t《,”‘f#十∞}m*.mtT≈,《ttt湿度.*^.B§f#境目t*Ⅻt十¥∞#自.tm7}#《*目^#^*&镕■t十来目f&.#^i&&■t¨#*t.豳■蕾鞠积整黼燃霸麟醐黼}E#.}m*,《’女;LMlB12 1引言 n【】__超市披挂求班}K迅速.4、M渗墟刮*个镯域.¨仃军¥Ⅸ玎驯缭婶冉IIii#8有rL£的“川.漓f±☆1删*和托M也址日常t僻巾十最盛的邻j域+披ft的删*片证卉他毒。恻如羞Ⅲ往洲n液俺U锌“,删屉池位,赳胜补偿趟自浊扯删量池似等等m采邢t些方法会J、腰劣∞环境和抽悼峦‘£的坐化给删*带m#k的瞄莘…毕“;fm悼具有蝇蚀什…嘲蚀删抽越^¨埘I№-陋,奉&计性出r坫f浮rn0磐【匕浊ms},cl,∞l^.1…单Jt扎LMl8l二越r々渡々m推成,0片#【f占,l的古洼自g{kI。硅U越。水《统可蒜性-≈.近H1fj:%精度高。 2参比法液位测量原理 警比洼H娘理是利用超}"往换能8发一¨110趟-;浊忸冲]Ⅲ过’Ln《传播0g鹰崔ft转^的并【日处掰成fi针日睦f々到搀能*片搏M接收。精Ⅲ忧5超声被¨垃日十纠挡牧自坩_{,J就“J眦牯确地计算Ⅲ随Ⅻ4披体的触协。其原H圳Ⅵl,j超声藏#射Ji掳4£趟十波∞传感*就鼻m趺控憧剑州柬m泄f:号求…濉足“枉准环处r“生的删∞帅时问为【o。B求H“#是I_I_泞r灶产’p的,删址的时问山r6掉F陆触洲浦傩的披1Ⅳ峦fLm坐化超J:一被“行早以j,的7L秆m。…々播。山十越钠【d的j{罐中1怍,超F*纠K,*q■fJ}”}千肌蛳的琏鹰+H‘÷,山ft可得 咖} P止巾vf)是超,r漓到拉准环∞迹Ⅱ。V是超声涟刊iTr顺_fii自0Jl嚏.“r“推111: ⅢJ+ H一=_』 胜艟Ⅻ目演津的液化- ¨】|0_hd }r=H卜坐1一d l^?hH是储删砝液体的涟n h-挂地奇被传晦%爿存*睡带的m离;h 是超■被心堪*Ⅻ",琐部的H捕.酒过 删%的时州“弹其值?ho是超声被f々盛* 判}tt*M一的啦离.一q椒擗址日】肫m】稠整棱 挂环的r*度;d是泞r项而刊油自帕* 离。m此”rⅢ删址日f々出#艘∞谴虚£ 芏*仃枉州温睦m鹿,≮H描{啊超 Jh挫∞速疃拚呆统带沫舶m菇。 法i坑錾盛观J#功矩{【l减少i统琨 蕈麓世gm满Mmr要求苴M t管的底口?‘o№删f&体连通恒f*删陂 似进^【I|II最昔:¨’,浮于的密度90川、 T触目哺体的密嘘.JL汗子具备托惭蚀 忡;其。,抟c*环_胛丁^选有利于起} *i川nⅡ“抖;】lH,Ⅲl量管录I¨抗腐蚀 忡蝗的十诱钢村料. 囤1臆理犀 3硬件原理电路 牟系统纳简嘤碰什}b路¨RI!.性自f 和拄牧Ⅻ什电路目ⅢIM1s11趟■胜々… 鞋成oI_l。M1sl二硅种既能K进《能 接性超声波的0H呆¨』适块鞋戍,,l以简 ft№m“牿提高{统的一,J稚性。0l-内 郫乜拈:胩f-p州制c生妊落#,,*增& 接收∞,脉冲啁,¨拴删#啭自抑制≈, ‘j8%【☆j自电。Fn、f.1MI812处于发时 模式.箱】符嘟外拄c1lik亡m瞎的世蚶 矗摊投的[怍撷牛LlCI扳蒿增蚰被憾为 振荡醺走,振荡信≈!{驱r女坡★后,M13管 wⅡ6管脚输m。 ’_8管Ⅷ为Ⅱl“平时.iMl8l!处于 拉收懊文,趣声踺1々媾g摇收“连日的衄 市披1j号%电彝耦仟…4符脚输^再经 内郫哺级般^艘凡岳的f;}轴U】管删 的喈扳日路取出的竹母起送剑幢删£. 目时竹檗F一也披捡删,-4“通过l7管W外 接的电料进行滤眭。’1管M【L的电Ⅲ盘 拜小州*能触牲怪Ⅻ蝌祝j,器&蜒蚓簋 T转¥”IⅢ” 圉3主程序流程圈 图2简要磋件电路目

超声波液位传感器结构及工作原理

超声波液位传感器是一种常用的测量仪器,被广泛的应用于多个行业当中。超声波传感器是一种利用超声波的特性研制而成的传感器,具有测量精准、检测范围广、使用灵活、维护简便等优点。接下来艾驰商城小编主要来为大家介绍一下超声波液位传感器的结构及工作原理,希望可以帮助到大家。 超声波液位传感器的结构 超声波传感器主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声传感器的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个传感器的性能是不同的,我们使用前必须预先了解它的性能。 超声波液位传感器的工作原理 超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/e417281707.html,/

储罐液位监测系统

储 罐 液 位 检 测 系 统 专业: **** 班级: ***** 学号: ***** 姓名: ***** 摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速 度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光 学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、 电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系 统中的应用具有重要的现实意义。试设计储油罐(圆柱体型)液位、温度的实时监测系 统。

对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状

储油罐液位检测系统设计 一、设计要求 我国石油资源丰富,采油炼油企业众多,储油罐是储存油品的重要设备,储油罐液位的精确计量对生产厂库存管理及经济运行影响很大。但国内许多反应罐、大型储油罐的液位计量仍采用人工检尺和分析化验的方法,其他参数的测定也没有实行实时动态测量,这样易引发安全事故,无法为生产操作和管理决策提供准确的依据。采用计算机自动监测技术,实时监测储油罐液位、温度等参数,可以方便了解生产状况,及时监视、控制容器液位及温度等,保障安全平稳生产。试设计储油罐(圆柱体型)液位的实时监测系统。 二、方案设计 目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。 1、方案一 在光通信研究中发现,光纤受外界环境因素的影响,如压力、温度、电场、磁场等环境条件变化时,将引起光纤传输的光波量,如光强、相位、频率、偏振态等改变。如果能测量出光波变化的信息,就可以知道导致这些光波量变化的压力、温度、电场、磁场等物理量的大小,于是就出现了光纤传感器技术。光纤传感器的信号载体是在光纤中传输的光,而光纤本身是一种介质材料,这就赋予了光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高、响应速度快、动态范围大、防电磁干扰、超高压绝缘、无源性、防燃防爆、适用于远距离遥测、多路系统无地回路“串音”千扰、体积小、机械强度大、可灵活柔性挠曲、材料资源丰富、成本低等。

超声波液位计与雷达液位计的区别

超声波液位计和雷达液位计的区别 我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。 在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。如图所示,将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。 由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。 超声波有盲区,安装时必须计算预留出传感器安装位置与测量液体之间的距离。 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间

雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 超声波用的是声波,雷达用的是电磁波,这才是最大的区别。而且超声波的穿透能力和方向性都比电磁波强的多,这就是超声波探测现在比较流行的原因。 主要应用场合的区别: 1.雷达测量范围要比超声波大很多。 2.雷达有喇叭式、杆式、缆式,相对超声波能够应用于更复杂的工况。 3.超声波精度不如雷达。 4.雷达相对价位较高。 5.用雷达的时候要考虑介质的介电常数。 6.超声波不能应用于真空、蒸汽含量过高或液面有泡沫等工况。

超声波水位检测仪的设计任务书

一、毕业设计(论文)的内容 超声波测长、测距、测位移有着悠久的历史。它具有很多优点:易定向发射、方向性好、强度易控制、与被测量物体不需直接接触等,因此是水位测量的理想手段。目前国内外对超声波测量水位的研究主要集中在提高测距精度方面。采用超声波测距技术,设计一水位测量仪,并保证一定的测距精度。具体工作内容有: 1.收集、消化有与现用测距技术相关的内容方法、发展概况、工作机理和 生产工艺等方面资料。 2.收集、消化与超声波测距测和测水位技术相关的测量原理、计算方法和 微机控制等方面的资料。 3.深入了解超声波的特点及其测水位技术、了解相关测距算法和微机控制 方法、常用芯片的工作原理和使用方法。包括:超声波测水位技术的原 理与实现方法、ARM或51等微处理器及其显示接口的设计与应用、测 距算法和提高测距精度的措施等;进行必要的软硬件可靠性设计,使系 统功能齐备,使用方便,经济实用,工作可靠。 4. 给出若干可行方案并进行比较,确定一个最佳方案。例如:测距方法的 选取、测量芯片及算法选取(提高精度)、微机控制系统的选取等。 5. 按最佳方案设计设计硬件电路。设计过程应有理论分析、电路参数的计 算,并选择元器件的具体型号。 6. 用计算机绘制相关硬件的电路原理图、制版图。 7. 设计样机,进行软硬件仿真与调试。 8. 扩展内容:实现上述功能的硬件样机。 二、毕业设计(论文)的要求与数据 1. 设计并制作硬件并完成相关软硬件仿真和实物调试; 2. 主要技术参数:主要技术参数:供电220V AC;测距距离>5m,精度10%; 3. 用Proteus进行软硬件系统的仿真; 4. 用计算机绘制相关硬件的原理图、制版图、电气安装接线图各一份; 5. 系统应方便设备的调试与使用。

超声波液位测量系统的设计

黄河科技学院本科毕业设计任务书 信息工程学院电子与通信工程系电子信息工程专业级班学号学生指导教师王二萍 毕业设计题目超声波液位测量系统的设计 毕业设计工作内容与基本要求 一、背景和意义 液位控制问题是工业过程中的一类常见问题,目前国内在液位自动控制方面缺少长期可靠的使用范例,还没有适用于液位测量和自动控制的定型产品。因此研究出一种超声波液位传感器很有必要。传统的液位测量绝大多数都是人工控制,造成了人力资源的浪费,同时安全性可靠性都不高,采用单片机实现液位测量即可避免这种情况的发生。 二、目标和任务 本设计目标是针对现有液位传感器的不足,开发一种大量程、精度高、带有标准工业控制输出接口的超声波液位传感器,建议采用单片机作为超声液位传感器的控制核心,能够简化控制电路设计;采用单一换能器进行超声波的发射和接收以降低装置成本;采用多级二阶有源滤波器以提高信噪比,进而能较大限度地提高对微弱回波信号的放大倍数。最后根据设计原理图焊接、调试。 三、途径和方法 1.从网络上查阅此领域最新研究成果,并查阅相关理论知识,利用单片机控制技术的相关知识整理出硬件设计方案; 2.在已搭建的硬件的基础上构思软件流程,给出程序; 3.软硬件联调。 四、主要参考资料 [1] 白宗文,刘生春,白洁.基于单片机的超声波测控液位系统的设计[J].电子设计工程,2011(18):33~36. [2] 么启等. 基于DSP的超声波明渠液位测量系统[J].电子设计工程,2011(21):142~145. [3]房小翠、熊光洁、聂学俊等,单片微型计算机与机电接口技术[M].北京;

国防工业出版社,2002. [4]王质朴,吕运朋,MCS-51单片机原理、接口及应用[M].北京:北京理工大学出版社,2009. [5] 杨素行等.模拟电子技术基础简明教程[M].北京:高等教育出版社,2001. [6] 闫石.数字电子技术基础[M].第三版.北京: 高等教育出版社,1989. 毕业设计时间:2013 年 2 月10 日至2013 年 5 月25 日 计划答辩时间:2013 年 5 月22 日 工作任务与工作量要求:原则上查阅文献资料不少于12篇,其中外文资料不少于2篇;文献综述不少于3000字;文献翻译不少于3000字,理工科类论文或设计说明书不少于8000字(同时提交有关图纸和附件),提交相关图纸、实验报告、调研报告、译文等其它形式的成果。毕业设计说明书撰写规范及有关要求,请查阅《黄河科技学院本科毕业设计(论文)指导手册》。 专业(教研室)审批意见 审批人签名:

关于汽包水位测量问题

就地水位计 有:玻璃板式水位计、就地双色水位计、电接点式水位计几种。原理都是通过连通器原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。见下图。只不过看的方式不同而已 对于就地水位计来讲,存在着散热误差,导致读数不准。

上面公式推导过程:(假定饱和蒸汽密度与水H*ρ’=H 位计中蒸汽的密度相同) 管向周围空间散热,其水柱温度实际上低于容器内水的温度,直接影响水位计误差值|△h |与水位值H 成正比,即水位值H 越高(以水侧连通高,ρ'减少, ρ"增大,即在同样的散热条件下 (ρ1-ρ')变大,(ρ1-ρ上讲,当ρ1=ρ'时,(1)式可以简化为H1=H ,也就是说水位计水位值等于容器内水MW 机组)在高水位运行时,汽包水位计的“散热”误差值达100~150取样孔及连通管): 方向倾斜,水侧取样管应向下向容器方向倾斜,一般的上部不用保温: 一、个凸面安装法与高压容器上所对应的安装法兰相连接,组成一个高压二、1*ρ1+(H-H 1) *ρ ’’ H*ρ’=H 1*ρ1+H*ρ’’-H 1* ρ’’H*ρ’- H*ρ’’=H 1*ρ1 -H 1*ρ’’ H*(ρ’- ρ’’)=H 1*(ρ1-ρ’’) H 1=[(ρ’- ρ’’)/ (ρ1-ρ’’)]*H (1)直接“散热”误差 由于测量筒及其引位计测量筒内水的密度ρ1,即测量筒内水的密度ρ1大于容器内水的密度ρ',由(1)式可知水位计显示的水位H ,比容器内水位H 低。由(2)式可以看出,水位计测量筒散热越多,ρ1也就越大,因而测量误差|△h |越大,这种误差我们称为直接“散热”误差。为了减少直接“散热”误差|△h |,一般在水位计测量筒的下部至水侧连通管应加以保温,以减少测量筒水柱温度与容器内水的温度之差:同时水位计的汽侧连通管及水位计测量筒的上部不用保温,并让汽侧连通管保持一定的倾斜度,使更多的凝结水流入测量筒,以提高水位计测量筒内水的密度ρ1。 (2)取样“散热”误差 由式(2)可以看出,水管作零点),水位计误差值|△h |就越大,可以说存在取样“散热”误差。由图1可以看出,若容器内实际水位不变,当水位计水侧取样孔及连通管向上移时(相当于零水位线上移),容器水位示值H 减少,则由式(2)可以看出,水位计取样“散热”误差|△h |可减少。为了能测量到水位下限,水位计水侧取样向上移是有限的,因此图1中取样“散热”误差是无法完全消除的。 (3)工况“散热”误差 随着容器压力的增")变小,由式(2)可以看出测量误差|△h |增大,这种误差我们称为工况“散热”误差。在图1的水位计中,容器的工作压力是由运行工况决定的,因此工况“散热”误差是无法消除的。 从理论位值(实际水位):同时(2)式可以简化为△h=0,也就是说水位计的三种”散热”误差均为0(无“散热”误差)。 一般高压锅炉(如300mm ,有可能造成各种联锁及保护失效,因此对减少甚至消除“散热”误差最为关键。减少水位计的“散热”误差应注意如下: (1)每一种水位计应单独取样(有单独的 (2)容器与测量筒的连通管不宜长; (3)水位计的汽侧取样管应向上向容器至少应有1:100的斜度: (4)水位计汽侧取样管及测量筒 (5)水位计水侧取样管及测量筒下部的保温应良好:玻璃板式水位计 以仪表上、下端两连通器,通过该液位计可直接观察到高压容器内介质液位的实际高度。 就地双色水位计:

液位测量系统设计

液位测量系统设计 专业:自动化 班级:自控1202 学号:2012014059 姓名:徐越

目录 摘要: (3) 关键词: (3) 一、液位检测方法简介 (3) 简述各种液位计的特点 (5) 1 超声波液位计|物位计 (5) 2 静压液位计 (6) 3 雷达液位计 (6) 4 磁致伸缩液位计 (6) 5 差压式液位计|物位计 (6) 6 磁翻板或磁翻柱液位计 (7) 7 伺服式液位计 (7) 8 电容式液位计 (7) 9 射频导纳液位计 (7) 10 浮筒液位计 (8) 11 钢带液位计 (8) 12 静磁栅液位计 (8) 几种常见液位计性能比较 (9) 二、液位测量系统设计 (10) 2.1液位测量原理 (10) 2.2补偿设计 (11) 2.3测量系统结构 (12) 2.4误差分析 (13) 三、总结 (14) 四、参考文献 (14)

实验设计 摘要:设计一套液位测量系统,要求测量范围0~2000mm,系统测量精度0.1%。利用单片机加以控制,挡板补偿方法减小误差,提高传播时间的测量准确度来提高精度。 关键词:液位检测、超声波 一、液位检测方法简介 常用于测量液位的液位计有连通器式、吹泡式、差压式、电容式等,测量物位的有超声波物位计和放射性物位计等。其测量原理和特点如下: 1、连通器式就是应用最普通的玻璃液位计。 它的特点是结构简单、价廉、直观,适于现场使用,但易破损,内表面沾污,造成读数困难,不便于远传和调节。 2、浮力式液位计包括恒浮力式和变浮力式两类。 (1)恒浮力式液位计 恒浮力式液位计是依靠浮标或浮子浮在液体中随液面变化而升降,它的特点是结构简单、价格较低,适于各种贮罐的测量; (2)变浮力式液位计 变浮力式亦称沉筒式液位计,当液面不同时,沉筒浸泡于液体

基于单片机的超声波液位检测系统设计

编号: 审定成绩:毕业设计(论文) 设计(论文)题目: 基于单片机的超声波液位检测系统设计

摘要 液位测量及控制广泛应用于工业、生活等领域,由于许多测量环境条件及其恶劣,例如对具有腐蚀性的液体的液位测量。显然,传统的液位测量设备已不能满要求。因此,一些基于超声波的非接触式液位测量控制技术应运而生。本文利用单片机的强大功能,通过硬件和软件的完美结合,设计、实现了一种基于超声波的液位检测控制系统。系统由液位测量模块、数据显示模块、液位控制模块、超限报警模块和参数设置模块组成,通过HC-SR04超声波测距模块采集数据,经过单片机进行数据处理,然后进行实时液位显示,同时发出液位控制信号和报警控制信号。最后,对所实现的实物进行了测试。测试结果表明系统功能符合设计要求,能达到易控制、稳定性强、测量精度高、安全性高、功耗低的预期目的。 【关键词】单片机超声波液位测量液位控制

ABSTRACT Level measurement and control are widely used in the industrial field and other related fields. In the field of industry, many measurement environments are very bad such as the level measurement of corrosive liquids. Obviously, the traditional level measurement devices can not satisfy the requirements. As a result, some control based on the non-contact ultrasonic level measurement technology arises at the historic moment. This paper makes use of the powerful features of the SCM and the perfect combination of software and hardware to design and implement an advanced control system for liquid level measurement based on the ultrasonic measurement. The designed system includes level measurement module, data display module, level control module, limit alarm module, and parameter set module. The system collects data through HC-SR04 Ultrasonic Ranging Module, and then process the data, display the level in real-time and issue level control signal and the warning signal. Finally, the system was tested. The tested results show the system functions can meet the designed requirements, which achieve control easily, high stability, high accuracy, and high security. 【Key words】SCM Ultrasonic Level measurement Level control

基于单片机的超声波液位测量系统

摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。 本设计基于单片机的超声波液位测量系统主要由硬件与软件两部分组成,硬件是基于AT89C51芯片为核心的超声波液位测量,采用AT89C51单片机进行控制及数据处理,给出了超声波发射和接收电路,通过盲区的消除以及环境温度的采样,提高了测距的精确度。利用超声波传输中距离与时间的关系,设计出了能精确测量两点间距离的超声波液位检测系统。此系统具有易控制、工作可靠、测量精度高的优点,可实时检测液位。并有超声波处理模块CX20106A、CD4069组成的超声波发射电路、超声波接收电路、单片机复位电路、LED显示电路、报警电路等。软件部分由主程序、预置子程序、发射子程序、接收子程序、显示子程序组成。各探头的信号经单片机综合分析处理。 最后通过实物的调试,各项参数及功能符合设计要求,能达到预期的目的。 关键词:单片机;超声波;温度控制;高精度测距

Abstract The ultrasonic liquid level measurement is a non-contact measurement method, realized by the principle of ultrasonic wave in the same medium with relatively constant propagation velocity and being reflected when it approaches an obstacle. Compared with other methods (such as electromagnetic or optical method), it has a certain of adaptability when objects to be measured are under such harsh environment as darkness, dust, smoke, electromagnetic interference, toxicity, unaffected by the light or the color of the object to be measured. Therefore, it bears important practical significance to conduct research on the application of ultrasonic wave in high precision ranging system. In this project, SCM-based ultrasonic liquid level measuring system is mainly composed of two components, namely the hardware and the software. The hardware is ultrasonic liquid level measurement based on AT89C51 chip as the core; it adopts AT89C51 single chip microcomputer for control and data processing, provides the ultrasonic transmitting and receiving circuit, and improves ranging accuracy through elimination of blind spot and sampling of ambient temperature,. By taking advantage of the relationship between distance and time in ultrasonic transmission, an ultrasonic liquid level detecting system which can accurately measure the distance between two points is designed. This system has these advantages like easy control, reliable operation, high measurement precision, and real-time detection of liquid level. And it has ultrasonic transmitting and receiving circuit, reset circuits of SCM, LED display circuit, alarm circuit composed of ultrasonic processing module CX20106A and CD4069. The software part consists of main program, preset subroutine, transmitting and receiving subroutine, and display subroutine. The probe signal is processed by SCM through comprehensive analysis. Finally through debugging of real objects, various parameters and functions can meet the project requirements to achieve the desired objective. Key words: single chip microcomputer (SCM); ultrasonic wave; temperature control; high precision ranging

超声波液位计介绍

超声波液位 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 目录 基本简介 工作原理 现场条件 产品特点 超声波液位计测量水位的原理以及安装要求 超声波液位计主要技术参数 HD-ALY系列精巧型小盲区超声波液位计 基本简介 QF-8000超声波液位计可采用二线制、三线制或四线制技术,二线制为:供电与信号输出共用;三线制为:供电回路和信号输出回路独立,当采用直流24v供电时,可使用一根3芯电缆线,供电负端和信号输出负端共用一根芯线;四线制为:当采用交流220v供电时,或者当采用直流24v供电,要求供电回路与信号输出回路完全隔离时,应使用一根4芯电缆线。直流或交流供电,具有 4~20mADC,高低位开关量输出。 量程范围:0-50米,多种形式可选,适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC 系统监控。 工作原理 QF-8000超声波物位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2. 探头部分发射出超声波,然后被液面反射,探头部分

再接收,探头到液(物)面的距离和超声波经过的时间成比例: hb = ct2 即 距离[m] = 时间×声速/2 [m] 声速的温度补偿公式: LU20超声波液位计 环境声速= 331.5 + 0.6×温度 现场条件 1) 环境温度: -10 ~ +60℃(低温情况需特殊说明) 2) 表壳保护等级: IP65 适用于户外安装 3) 适用测量的介质: 适用于大部分液体及粉状颗粒状固体,弱酸,弱碱,强碱,低于40%的强酸。若在强酸应用场合,请与我司联系,应使用防腐探头。 4) 容器压力: 0.7~3 bar 5) 在下面的任何一种情况,要注意: ①有泡沫的液体/固体 ②周围有强电压,强电流,强电磁干扰,尽量避免高电压,高电流及强电磁干扰 ③大风和太阳直晒 ④强震动 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 产品特点 多脉冲低电压多点发射发射电路,双平衡抑制噪声多点接收电路(QF-9000系列):提高仪器可靠性,解决不物位不平整测量不准确的难题,并大大加强抗干扰能力,可在变电站发射塔附近稳定工作 自动功率调整、增益控制、温度补偿。 先进的检测技术,丰富的软件功能适应各种复杂环境。 采用新型的波形计算技术,提高仪表的测量精度。 具有干扰回波的抑止功能保证测量数据的真实。 16位D/A转换,提高电流输出的精度和分辨率。 传感器采用四氟乙烯材料,可用于各种腐蚀性场合。 多种输出形式:可编程继电器输出、高精度4-20mA电流输出、Rs-485数字通信输出分体超声波液位探头

相关主题
文本预览
相关文档 最新文档