当前位置:文档之家› 利率二叉树模型

利率二叉树模型

二叉树遍历方法技巧

二叉树遍历方法 1.中序遍历的投影法 如果给定一棵二叉树的图形形态,是否能根据此图快速地得出其中序遍历的序列?回答是肯定的。具体做法是:首先按照二叉树的标准绘制二叉树形态,即将所有左子树都严格绘于根结点的左边;将所有右子树都严格绘于根结点的右边。然后假设现在有一个光源从该二叉树的顶部投射下来,那么所有结点在地平线上一定会有相应的投影,从左至右顺序读出投影结点的数据即为该二叉树的中序遍历序列。如图11.10所示。 图示的中序遍历序列: D J G B H E A F I C 2.先序遍历的填空法 如果给定一棵二叉树的图形形态,可在图形基础上,采用填空法迅速写出该二叉树的先序遍历序列。具体做法是:我们知道,对于每个结点都由三个要素组成,即根结点,左子树、右子树;又已知先序遍历顺序是先访问根结点、然后访问左子树、访问右子树。那么,我们按层分别展开,逐层填空即可得到该二叉树的先序遍历序列。 图11.10 中序遍历投影法示意图 如图11.10 中的二叉树采用填空法的步骤如下: (1)根结点左子树右子树 A( )( ) (2)A (根结点(左子树)(右子树))(根结点(左子树)(右子树)) A B C (3)A(B(根结点(左)(右))(根结点(左)(右)))(C(……)(……)) A B D 无 G E H 无 C F 无 (4)A B D G J E H C F I 此即为该二叉树的先序遍历序列。 注:后序遍历的序列亦可以此方法类推,请读者自己尝试。

3.利用遍历序列构造二叉树 如果已知一棵二叉树的先序遍历序列和中序遍历序列,则可以用这两个遍历序列构造一棵唯一的二叉树形态。我们知道任意一棵二叉树的先序遍历序列和中序遍历序列是唯一的,那么首先从给定的先序遍历序列入手,该先序序列的第一个元素一定是该二叉树的根;再分析这个根结点在中序遍历序列中的位置,中序遍历序列中根结点的左边即为左子树的全部元素,而根结点的右边即为右子树的全部元素;然后据此再将先序遍历序列除根结点以外的其余部分分为左、右子树两部分,并在这两部分中分别找出左、右子树的根结点。依此类推,即可得到完整的二叉树。例11.1 已知一棵二叉树的先序遍历和中序遍历序列分别为: 先序: A B C I D E F H G 中序: C I B E D A H F G 请构造这棵二叉树。 按前述分析,这棵二叉树的构造过程如图11.11所示 图11.11 二叉树的构造过程 树、森林与二叉树的转换(flash演示) 如前所述,树(或森林)的存储结构及其操作算法的实现,由于其“度”的不确定性而导致其存储结构不是较为复杂就是浪费空间,因而,定义在其存储结构上的算法也相应地较难兼顾全面。如果我们设定一定的规则,用二叉树来表示树和森林的话,就可以方便地解决树、森林的存储结构及其相关算法问题。 1.树、森林转换为二叉树 我们知道,一棵树中每个结点的孩子是无序的,而二叉树中各结点的孩子必须有左右之分。在此,为避免概念混淆,首先约定树中每个结点的孩子按从左至右的顺序升序编号,即将树中同一层上的兄弟分出大小。那么将一棵树转换成二叉树的方法是: (1)在树中同层兄弟间加一连线; (2)对树中每个结点仅保留其与长兄(左边第一个孩子)的连线,擦去其与其它孩子的连线; (3)以树(或子树)的根作为轴心,将所有的水平连线顺时针旋转45度,即可得到与该树完全等价的一棵二叉树。

基于二叉树模型的期权定价

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1 背景介绍 (3) 1.2 本文的主题 (4) 第二章预备知识 (5) 2.1 期权 (5) 2.2二叉树方法 (6) 2.2.1 方法概述 (6) 2.2.2 二叉树方法的优点和缺点 (9) 2.2.3 风险中性定价 (9) 2.3 Black-Scholes 期权定价模型 (11) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。

第三章本论 (14) 3.1期权定价的二叉树模型 (14) ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 3.2 例子模拟计算和结果分析 (18) 3.3 模型改进——三叉树 (19) 第四章结论...................................... 错误!未定义书签。谢辞及参考文献 (23) 谢辞 (23) 参考文献 (23) 附录 (25) 计算过程中涉及算法 (25)

摘要 Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。三叉树方法正是二叉树方法的合适补充。 关键词:二叉树方法,Black-Scholes 模型,风险中性定价

二叉树期权定价法22222

二叉树期权定价法 摘要上世纪七十年代以来金融衍生品得到了蓬勃的发展,在这之中,期权的地位尤为受到重视,居于核心地位,很多的新创的衍生品,都包含了期权的成分。所以一直以来,期权的定价问题受到了大量经济学家的探索。实物期权的定价模式的种类较多,理论界和实务界尚未形成通用的定价模型,主要估值方式有两种:一是B l a c k-S c h o l e s期权定价模型;二是二叉树期权定价模型。 1973年,布莱克和斯科尔斯(B l a c k a n d C s c h o l e s)提出了 B l a c k-S c h o l e s期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)、马克·鲁宾斯坦(M a r k R u b i n s t e i n)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为C o x-R o s s-R u b i n s t e i n二项式期权定价模型。 关键词 B l a c k-S c h o l e s期权定价模型虽然有许多优点,但是它的推导过程却是难以为人们所接受;二叉树期权定价模型假设股价波动只有

二叉树定价模型知识讲解

二叉树定价模型

期权定价的二叉树模型 Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 8.1一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。

一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到 相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。 为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期 权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险利率,则该组合的现值(the present value)为 ,又注意到该组合的当前价值是,故有 即

金融工程-二叉树模型——期权定价方法试验报告---用于合并

期权定价(二叉树模型)实验报告1204200308 学号:1201 姓 名:郑琪瑶班级:创金 一、实验目的计算出支付连续红利率资产Excel 本实验基于二叉树模型对 期权定价。利用的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方从而巩固二叉树模型这种期权定价的数对于期权价格的影响,式、收益率等等)值方法的相关知识。 二、实验原理的红利时,在风险中性条件下,证券价格的当标的资产支付连续收益率为q应该满足以下,因此参数(股票价格上升的概率)、、增长率应该为pq?r u d式子:tq)?(r?dpe)(?pu?1?;同时在一小段时间内股票价格变化的方差 满足下式:2222?]p1?)p)dd?[pu?(?t?pu?(1?;1,将三式联列,可以解考克斯、罗斯和鲁宾斯确定参数的第三个条件是?u d)得(*(r?q)?t??edp?? u?d????t u?e????t?d?e???t?0?三、实验内容 1.假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变化,保持其余变量不变,分别计算出相应美式f和欧式f期权的价格21 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常数、递增及递减情况下,保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程:步骤一:输入已知参数输入参数支付连续收TRSX N 步数无风险利率波动率σ股票价格期限期权执行价格0RC益率9.00% 5 50.00

第九章 期权估价-二叉树期权定价模型

2015年注册会计师资格考试内部资料 财务成本管理 第九章 期权估价 知识点:二叉树期权定价模型 ● 详细描述: 一、单期二叉树模型 关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。 以风险中性原理为例: 根据前面推导的结果: 代入(1)式有: 二、两期二叉树模型 如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。由单期模型向两期模型的扩展,不过是单期模型的两次应用。 三、多期二叉树模型

原理从原理上看,与两期模型一样 ,从后向前逐级推进 乘数确定期数增加以后带来的主要问题 是股价上升与下降的百分比如 何确定问题。期数增加以后 ,要调整价格变化的升降幅度 ,以保证年收益率的标准差不 变。把年收益率标准差和升降 百分比联系起来的公式是: u=1+上升百分比= d=1-下 降百分比= 其中:e=自然常 数,约等于2.7183 σ=标的资 产连续复利收益率的标准差 t=以年表示的时间长度(每期 时间长度用年表示) 做题程序: (1)根据标准差和每期时间间隔确定每期股价变动乘数(应用上述的两个公式) (2)建立股票价格二叉树模型 (3)根据股票价格二叉树和执行价格,构建期权价值的二叉树。 构建顺序由后向前,逐级推进。——复制组合定价或者风险中性定价。 (4)确定期权的现值 例题: 1.如果股票目前市价为50元,半年后的股价为51元,假设没有股利分红,则 连续复利年股票投资收益率等于()。 A.4% B.3.96% C.7.92% D.4.12% 正确答案:B 解析:r=ln(51/50)/0.5=3.96%

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树定价模型

二项式期权定价模型 1.实验名称: 二项式期权定价模型 2.实验目的: 利用二叉树期权定价模型公式Excel 模板计算期权价格。 3.基本原理 计算到期时资产价值的分布,求出资产的期望值,用适当的贴现率计算现值,得到资产的当前价值。 (1) 计算n 期中上升i 次的概率: ()(1 )i i n i i n P n C p p -=-; (2) 计算在终期时的价格分布: ()0i n i ni S S u d -= (3) 计算期权的价值: ()0max(,0)i n i ni Call S u d K -=-,()0max(,0)i n i ni Put K S u d -=-; (4)计算终期时的期望值:0()n n ni i ECall P i Call == ∑,0()n n ni i EPut P i put ==∑; (5)计算期权在起初时刻的价值: ()00 (1)max(,0)n RT RT i i n i i n i n i Call e ECall e C p p S u d K ----===--∑ ()00(1)max(,0)n RT RT i i n i i n i n i Put e EPut e C p p K S u d ----===--∑。 4. 实验数据域内容 已知股票价格为50,执行价格为50,时间为半年,无风险利率为5%,波动率为20%,分为10个时间段,利用二叉树定价模型计算看涨看跌期权的价格。 5. 操作过程与结果 (1)定义变量的符号 在单元格B2—B14中分别输入S 、K 、T 、R 、VOL 、n 、dt 、u 、d 、G-factor 、D-factor 、p 分别表示股票价格、期权执行价格、期权有效期、无风险利率、股价波动率、时段数、时段、上升因子、下降因子、增长因子、贴现因子、风险中性概率。如图:

平衡二叉树 构造方法(绝妙)

平衡二叉树构造方法 平衡二叉树 对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。 平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1 一棵好的平衡二叉树的特征: (1)保证有n个结点的树的高度为O(logn) (2)容易维护,也就是说,在做数据项的插入或删除操作时,为平衡树所做的一些辅助操作时间开销为O(1) 一、平衡二叉树的构造 在一棵二叉查找树中插入结点后,调整其为平衡二叉树。若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树 1.调整方法 (1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点 (2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。 2.调整方式 (1)LL型 LL型:插入位置为左子树的左结点,进行向右旋转

由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。 (2)RR型 RR型:插入位置为右子树的右孩子,进行向左旋转 由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。 (3)LR型 LR型:插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,第二次再调整最小不平衡子树。 由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。 (4)RL型 RL型:插入位置为右子树的左孩子,进行两次调整,先右旋转再左旋转;处理情况与LR 类似。

金融工程-二叉树模型——期权定价方法实验报告---用于合并

期权定价(二叉树模型)实验报告 班级: 创金1201 姓名: 郑琪瑶 学号: 08 一、实验目的 本实验基于二叉树模型对期权定价。利用Excel 计算出支付连续红利率资产的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方式、收益率等等)对于期权价格的影响,从而巩固二叉树模型这种期权定价的数值方法的相关知识。 二、实验原理 当标的资产支付连续收益率为q 的红利时,在风险中性条件下,证券价格的增长率应该为q r -,因此参数p (股票价格上升的概率)、u 、d 应该满足以下式子: d p pu e t q r )1()(-+=?-; 同时在一小段时间内股票价格变化的方差满足下式: 2222])1([)1(d p pu d p pu t -+--+=?σ; 考克斯、罗斯和鲁宾斯确定参数的第三个条件是d u 1 =,将三式联列,可以解 得(*) 三、实验内容 1. 假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel 加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相 应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变 化,保持其余变量不变,分别计算出相应美式f 1和欧式f 2期权的价格 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常 数、递增及递减情况下, 保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程: 步骤一:输入已知参数 步骤二:根据已知参数及式(*)原理,计算如下参数

二叉树和三叉树的期权定价方法

第七章期权定价的二叉树和三叉树方法在这一章中,我们利用二叉树和三叉树方法为期权定价。在第2.1节中我们已经介绍了利用基础途径的二叉树方法解决期权价格不确定性的模型。二叉树方法依赖于对相关随机过程的离散化并利用计算和内存的结合以满足易于管理的要求。我们也在,我们必须把原来的单步格方法扩展到多步格方法,但是我们必须校对格使它能够反映出相关模型,且这个模型是连续时间、连续状态的随机微分方程。然后我们就可以推广到多步的二叉树格和三叉树格。 在7.1节中,我们从如何利用在离散概率分布的时刻下随机价格波动校准简单的二叉树格。从这点来看,弄清楚网格技术和蒙特卡洛模拟之间的联系是非常重要的,而利用时刻匹配技术缩减方差可以看作一种快捷的抽样排序。然后我们讨论内存效率的实现是如何设计的,美式期权定价是7.2节的主题。同时,还是要注重它和其他技术方法的联系。现在我们要做的本质上是一个非常简单满足动态规划原则的程序,我们将在第10章程序中进一步拓展。在7.3节中,我们把上述方法推广到双标的资产的情形,虽然这是一个最简单的情形,但是我们可以从这个情形中看出内存控制是这一情形的基础。另一种一般化的代表是三叉树格方法,三叉树格方法可以作为一种更普遍的有限差分方法(具体将在,最后,我们在7.5节中具体讨论网格化方法的优势和劣势。 期权定价的二叉树和三叉树格方法 图7.1单时期二叉树格 7.1二叉树定价方法

在,我们已经考虑过单步二叉树方法在无套利情况下的期权定价,这里我们为了方便直接利用图7.1。其主要思想是复制两个资产, 一个是无风险资产,另一个是相关股票。利用这两项资产,我们可 以通过它们的组合塑造任何收益率的资产。如果我们令u和d为任意两个价格的角标,我们可以看到期权的价格应该为f 则, f0=e-rδt[pf u+(1-p)f d](7.1) 在公式7.1中f u 和f d 是标的资产在涨跌两种情况的期权价格,p是 风险中性前提下相关资产升值的概率。 为了寻找一个更好的不确定性模型,我们可以增加分类的情况,复制期权收益,甚至我们可以使用更多的资产,或允许中间日期交易。第二种可能性更为实际,并且也是必不可少的,例如,对于在期权的存续期内可以随时执行的美式期权来说。对其求极限,就会得到连续时间模型,并且其最后收敛于Black—sholes方程。当Black—sholes方程没有解析解的时候,我们必须采取一些离散化的途径,比如说可以通过蒙特卡洛模拟从而估计出风险中性条件下预期收益,或者建立一个自适应网格的有限差分方法去解决相应的PDE模型。就像我们在图7.2中展示的一样,多级二叉树格方法就是一种可以选择的离散化方法。我们也可以考虑利用树图,但是要注意使计算方法易于控制。 二叉树格定价 图7.2新生成的二叉树图 这里我们为了方便令u=1/d。虽然这个不是必须的,但是在后面我们可以看到,这个假设令模型简化了很多即每上一步紧接着下

第45讲_二叉树期权定价模型

(二)二叉树期权定价模型 1.单期二叉树定价模型 期权价格=×+× U:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】 风险中性原理的应用 其中: 上行概率=(1+r-d)/(u-d) 下行概率=(u-1-r)/(u-d) 期权价格=上行概率×C u/(1+r)+下行概率×C d/(1+r) 【教材例7-10】假设ABC公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。 【答案】 U=1+33.33%=1.3333 d=1-25%=0.75 =6.62(元) 【例题?计算题】假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。 要求:利用单期二叉树定价模型确定期权的价值。 【答案】期权价格=(1+r-d)/(u-d)×C u/(1+r)=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元) 2.两期二叉树模型 (1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。变动以后的数据如下:ABC公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。 【解析】 P=(1+1%-0.816)/(1.2256-0.816)=0.47363 C U=23.02×0.47363/(1+1%)=10.80 C d=0 C0=10.80×0.47363/(1+1%)=5.06 (2)方法: 先利用单期定价模型,根据C uu和C ud计算节点C u的价值,利用C ud和C dd计算C d的价值;然后,再次利用单期定价模型,根据C u和C d计算C0的价值。从后向前推进。 3.多期二叉树模型 (1)原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。 (2)股价上升与下降的百分比的确定:

树,二叉树,森林间的转换方法

树,二叉树,森林间的转换方法 <1>将树转换为二叉树 树中每个结点最多只有一个最左边的孩子(长子)和一个右邻的兄弟。按照这种关系很自然地就能将树转换成相应的二叉树。 将一般树转化为二叉树的思路,主要根据树的孩子-兄弟存储方式而来,步骤是: ①加线:在各兄弟结点之间用虚线相连。可理解为每个结点的兄弟指针指向它的一个兄弟。 ②抹线:对每个结点仅保留它与其最左一个孩子的连线,抹去该结点与其他孩子之间的连线。可理解为每个结点仅有一个孩子指针,让它指向自己的长子。 ③旋转:把虚线改为实线从水平方向向下旋转45℃,成右斜下方向。原树中实线成左斜下方向。这样就树的形状成呈现出一棵二叉树。 如下图: <2>二叉树转换为一般树 此时的二叉树必须是由某一树(一般树)转换而来的没有右子树的二叉树。并非随便一棵二叉树都能还原成一般树。其还原过程也分为三步: ①加线:若某结点i是双亲结点的左孩子,则将该结点i的右孩子以及当且仅当连续地沿着右孩子的右链不断搜索到所有右孩子,都分别与结点i的双亲结点用虚线连接。 ②抹线:把原二叉树中所有双亲结点与其右孩子的连线抹去。这里的右孩子实质上是原一般树中结点的兄弟,抹去的连线是兄弟间的关系。 ③进行整理:把虚线改为实线,把结点按层次排列。如图:

<3>二叉树转换为森林 将一棵二叉树转化成森林,可按如下步骤进行: ①抹线:将二叉树根结点与其右孩子之间的连线,以及沿着此右孩子的右链连续不继搜索到的右孩子间的连线抹掉。这样就得到了若干棵根结点没有右子树的二叉树。 ②将得到的这些二叉树用前述方法分别转化成一般树。 <4>森林转换为二叉树 森林是树的有限集合,如图3-55a所示。由上节可知,一棵树可以转换为二叉树(没有右子树),一个森林就可以转换为二叉树(没有右子树)的森林。将森林转换为二叉树的一般步骤为: ①将森林中每棵子树转换成相应的二叉树。形成有若干二叉树的森林,如图3-55b所示。 ②按森林图形中树的先后次序,依次将后边一棵二叉树作为前边一棵二叉树根结点的右子树,这样整个森林就生成了一棵二叉树,实际上第一棵树的根结点便是生成后的二叉树的根结点。下图将一个森林转化为一棵二叉树的示例:

_二叉树期权定价模型

财务成本管理(2019)考试辅导 第十三章++产品成本计算 第1页 (二)二叉树期权定价模型 1.单期二叉树定价模型 期权价格=×+× U:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】 风险中性原理的应用 其中: 上行概率=(1+r-d )/(u-d ) 下行概率=(u-1-r )/(u-d ) 期权价格=上行概率×C u /(1+r )+下行概率×C d /(1+r ) 【教材例7-10】假设ABC 公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。 【答案】 U=1+33.33%=1.3333 d=1-25%=0.75 =6.62(元) 【例题?计算题】假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。 要求:利用单期二叉树定价模型确定期权的价值。 【答案】期权价格=(1+r-d )/(u-d )×C u /(1+r )=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元) 2.两期二叉树模型 (1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。变动以后的数据如下:ABC 公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。 【解析】 P=(1+1%-0.816)/(1.2256-0.816)=0.47363 C U =23.02×0.47363/(1+1%)=10.80 C d =0 C 0=10.80×0.47363/(1+1%)=5.06 (2)方法: 先利用单期定价模型,根据C uu 和C ud 计算节点C u 的价值,利用C ud 和C dd 计算C d 的价值;然后,再次利用单期定价模型,根据C u 和C d 计算C 0的价值。从后向前推进。 3.多期二叉树模型 (1)原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。

程序二叉树的四种遍历方法和两种求深度的方法

二叉树的四种遍历方法和两种求深度的方法 用到了以前学的栈和队列的知识,也算是一种复习。不过用到栈来求深度的时候,改变了二叉树,不知道如何去避免? // 二叉树.cpp : 定义控制台应用程序的入口点。 #include "stdafx.h" #include "stdio.h" #include "stdlib.h" typedef struct BiTNode{ //二叉树结构 int data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; #define STACK_INIT_SIZE 100 #define STACKINGMENT 10 int CreateBiTree( BiTNode **T ) //用先序顺序建立二叉树 { char c; if( (c = getchar()) == '#') *T = NULL; else { if(!(*T = (BiTree)malloc(sizeof(BiTNode)))) { printf("ERROR!"); return 0; } (*T)->data = c; CreateBiTree(&(*T)->lchild); CreateBiTree(&(*T)->rchild); } return 0; } int PrintfElement( int e ) { printf("%c",e); return 1;

} int PreOrderTraverse(BiTree T,int (* PrintfElement)(int e)) //先序遍历二叉树的递归方法 { if(T) //访问根结点 { if(PrintfElement(T->data)) if(PreOrderTraverse(T->lchild,PrintfElement)) //先序遍历左子树 if(PreOrderTraverse(T->rchild,PrintfElement)) //先序遍历右子树 return 1; return 0; } else return 1; } int InOrderTraverse(BiTree T,int (*PrintfElement)(int)) //中序遍历二叉树的递归方法 { if(T) { if(InOrderTraverse(T->lchild, PrintfElement)) if(PrintfElement(T->data)) if(InOrderTraverse(T->rchild, PrintfElement)) return 1; return 0; } else return 1; } int PostOrderTraverse(BiTree T, int (*PrintfElement)(int) ) //后序遍历二叉树的递归方法 { if(T) { if(PostOrderTraverse(T->lchild, PrintfElement)) if(PostOrderTraverse(T->rchild, PrintfElement)) if(PrintfElement(T->data)) return 1; return 0; } else

二叉树期权定价模型

二叉树期权定价模型 [编辑本段] 二叉树期权定价模型概述 Black-Scholes期权定价模型虽然有许多优点, 但是它的推导过程难以为人们所接受。在1979年, 罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型, 称为二项式模型(Binomial Model)或二叉树法(Binomial tree)。 二项期权定价模型由考克斯(J.C.Cox)、罗斯(S.A.Ross)、鲁宾斯坦(M.Rubi nstein)和夏普(Sharpe)等人提出的一种期权定价模型,主要用于计算美式期权的价值。其优点在于比较直观简单,不需要太多数学知识就可以加以应用。 二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。 [编辑本段] 构建二项式期权定价模型 1973年,布莱克和舒尔斯(Blackand Scholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。 1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。 二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定

二叉树定价模型

期权定价的二叉树模型 )模型,它假tree二叉树(binomialRoss、和Rubinstein提出了期权定价的另一种常用方法Cox 设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 一步二叉树模型8.1 我们首先通过一个简单的例子介绍二叉树模型。 $18.,也有可能下降到,三个月后该股票价格有可能上升到$228.1假设一只股票的当前价格是$20例直观表示出来。8.1股票价格的这种变动过程可通过图 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能表示的二叉树称为一步8.1出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图

)二叉树。这是最简单的二叉树模型。(one-step 。经过一个时间步(至到期日一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为 )后该股票价格有可能上升到;也有可能下降到相应的期权价格为T )二叉树表示出来,如图这种过程可通过一步(one-step.相应的期权价格为所示。我们的问题是根据这个二叉树对该欧式股票期权定价。8.2. )假设,即市场上无套利机会存在。构造一arbitrage为了对该欧式股票期权定价,我们采用无套利(no 股空头期权。如果该股票价格上升股的多头股票和1个该股票和期权的组合(portfolio),组合中有 ,则该组合在期权,则该组合在期权到期日的价值为到;如果该股票价格下降到。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,到期日的价值为即有 由此可得 (8.1) 是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。上式意味着 )为value又注意到该组合thepresent以表示无风险利率,则该组合的现值(, 的当前价值是,故有

二叉树的遍历有三种方式

二叉树的遍历有三种方式,如下: (1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。 (2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。简记左-根-右。 (3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。简记左-右-根。 例1:如上图所示的二叉树,若按前序遍历,则其输出序列为。若按中序遍历,则其输出序列为。若按后序遍历,则其输出序列为。 前序:根A,A的左子树B,B的左子树没有,看右子树,为D,所以A-B-D。再来看A的右子树,根C,左子树E,E的左子树F,E的右子树G,G的左子树为H,没有了结束。连起来为C-E-F-G-H,最后结果为ABDCEFGH 中序:先访问根的左子树,B没有左子树,其有右子树D,D无左子树,下面访问树的根A,连起来是BDA。 再访问根的右子树,C的左子树的左子树是F,F的根E,E的右子树有左子树是H,再从H出发找到G,到此C的左子树结束,找到根C,无右子树,结束。连起来是FEHGC, 中序结果连起来是BDAFEHGC 后序:B无左子树,有右子树D,再到根B。再看右子树,最下面的左子树是F,其根的右子树的左子树是H,再到H的根G,再到G的根E,E的根C无右子树了,直接到C,这时再和B找它们其有的根A,所以连起来是DBFHGECA 例2:有下列二叉树,对此二叉树前序遍历的结果为()。 A)ACBEDGFH B)ABDGCEHF C)HGFEDCBA D)ABCDEFGH 解析:先根A,左子树先根B,B无左子树,其右子树,先根D,在左子树G,连起来是ABDG。A的右子树,先根C,C左子树E,E无左子树,有右子树为H,C的右子树只有F,连起来是CEHF。整个连起来是B答案ABDGCEHF。 例3:已知二叉树后序遍历是DABEC,中序遍历序列是DEBAC,它的前序遍历序列是( ) 。 A)CEDBA B)ACBED C)DECAB D)DEABC 解析:由后序遍历可知,C为根结点,由中序遍历可知,C左边的是左子树含DEBA,C右边无结点,知

期权定价二叉树多步推导

期权定价的二叉树模型 Cox、Ross和Rubinstein提出了期权定价的另一种常用方法-----二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。这里只讨论股票期权定价的二叉树模型 1一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18.股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T) 后该股票价格有可能上升到相应的期权价格为;也有可能下降到 相应的期权价格为.这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。 为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到 ,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到 期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得

相关主题
文本预览
相关文档 最新文档