基于单片机的电阻测量设计修改
- 格式:doc
- 大小:1.23 MB
- 文档页数:19
基于单片机的简易自动电阻测试仪【摘要】设计了一种具有自动电阻筛选测试仪,选用低功耗单片机C8051F005、多路开关CD4051、步进电机驱动芯片TA8435、LCD LM9033液晶显示器等器件。
利用多路开关实现量程自动切换,测量量程为100Ω、1KΩ、10KΩ、10MΩ四档,测量精度为1%。
用户通过键盘输入要求的电阻值和筛选误差值,测量时能在液晶显示器上显示出被测电阻的阻值以及被测电阻是否符合筛选要求,在自动测量时,液晶显示器能显示电位器阻值随旋转角度变化的曲线。
所有电路结构简单,所选器件价格便宜,并给出了测试结果。
测试结果表明,该电阻测试仪在自动电阻筛选和自动测量等方面具有较好的指标、较高的实用性。
【关键词】电阻测量;C8051F005单片机;量程自动转换1.理论分析与计算1.1 电阻测量原理利用串联分压原理测量电阻阻值,原理如图1所示。
图中在被测电阻上接入恒流源,该恒流源电压由单片机提供,读取被测电阻上的压降,经放大器放大转换为0~10V直流电压,然后送入单片机中,在单片机中进行模数转换后,通过算法处理后经液晶显示器直接显示电阻阻值。
1.2 自动量程转换和筛选功能利用模拟开关切换档位,如图2所示,模拟开关的切换受单片机的控制。
被测电阻RX接入测试电路后,由单片机通过指令设置模拟开关某一路与RX导通,同时单片机输出恒流源电压接在RX上端节点5上,模拟开关内阻设为R0,根据安培定理,U=IR,即I=U/R。
在串联电路中,电流相等,则有(U5-U1)/RX=U0/R1,U5由单片机输出,U1和U0的值经过放大电路后进入单片机中的模数转换电路,经过模数转换后,单片机通过程序计算出RX的值,如果RX的值与某一路R(R1、R2、R3或者R4)档位接近,则直接在液晶显示器上显示RX的值;假如计算出的RX与此时的这一路R档位值相差比较大,则单片机输出命令字切换模拟开关的档位,再重新开始测试;如此循环,直到被测电阻阻值的某一路R档位接近时,在液晶显示器上显示RX的阻值。
基于单片机的自动电阻测试仪的设计【摘要】以STC12C5A08S2单片机为核心控制器件,由运算放大器LM358和MOS管9540组成恒流驱动电源给负载供电来获得电压信号送单片机的A/D 转换器;由按键设定要求筛选的电阻值和误差同时在LCD12864上显示;由步进电机驱动电位器转动绘出阻值和转角变化曲线。
测试结果表明,各项性能均达到指标要求。
【关键词】单片机STC12C5A08S2;自动换挡;LCD128641.设计方案的制定本测试仪主要由LCD显示模块、线性稳压电源模块、恒流驱动电源模块、自动换挡模块、键盘模块、报警模块、电机驱动模块等组成。
整体设计框图如图1所示。
图1 整体设计框图使用STC12C5A08S2单片机。
STC12C5 A08S2是带有8通道10位A/D转换的STC单片机,具有超强的抗静电能力,超低功耗、宽电压等特点。
里面共有8KB FlashROM作为程序存储器,同时E?PROM容量有53KB。
恒流电路采样。
被测电阻通过恒流源,电阻的阻值和采样的电压成正比。
该电路结构较复杂,但精度高,线性采样,单片机对采样的信号易处理。
液晶12864显示。
驱动电压低,功耗微小,可靠性高,可显示数字、字母、字符、单位、曲线等。
2.设计的理论分析根据测量的阻值不同,测量的方法也不同。
本测试仪在量程为100Ω,1kΩ和10kΩ这三个档采用恒流电路采样。
通过自动量程转换电路,流过的采样电流分别是50mA、5mA和0.5mA。
单片机分送到单片机识别的电压是:U=I×RI是采样电流,R是被测电阻。
以100Ω为例。
电阻最大为100Ω,电流为50mA,采样电压是U=50mA×100Ω=5V,正好是单片机采样的最大值。
单片机STC12C5A08S2内部有8路10位A/D转换模块,分辨率为1024,满足设计要求。
先让电路设在最大量程即10kΩ,此时恒流源的电流为0.5mA,采样的电压为:U=0.5mA×R,当电阻大于1kΩ时,U大于0.5V,通过A/D转换得到的数字信号大于100,此时档位不变。
基于51单片机的自动电阻测试仪设计作者:徐梅来源:《安徽理工大学学报·自然科学版》2011年第04期摘要:为了实现自动测量电阻的目的,自动电阻测试仪以C8051F020单片机为核心,在被测电阻上通过已知的恒定电流,取出被测电阻上的压降,送入单片机A/D转换的输入端,经单片机处理,由LCD12864系统直接显示电阻值。
通过控制继电器切换档位,具有自动电阻筛选功能,满足了测试对象的多变性,提高了测量精度,便于使仪表实现智能化,具有相应的灵活性和实用性。
关键词:单片机;电阻测试仪;液晶显示器中图分类号:TP368.1文献标识码:A文章编号:1672-1098(2011)04-0018-04收稿日期:2011-11-15基金项目:安徽省教育厅省级质量工程资助项目(20101175)作者简介:徐梅(1972-),女,安徽淮南人,副教授,硕士,主要从事电气自动化方面的教学与研究。
Design of Automatic Resistance Tester Based on 51 Single-chip MicroprocessorXU Mei(Department of Mechanical & Electrical Engineering, Huainan United University, Huainan Anhui 232001, China)Abstract: In order to realize the purpose of automatic measurement, automatic resistance tester consists of C8051F020 monolithic integrated circuit as the core element. Through the measured resistance constant current with known value passes, voltage drop on the resistor is input into single-chip A/D converter input port, after processing by single-chip microprocessor, the resistance value is displayed on LCD12864 system. By controlling relay switch, the resister tester can realize function of resistance automatic filtering, which meets the variability of test objects, improving measurement accuracy, and easily makes instrument to be intelligent, with appropriate flexibility and practicality.Key words:Single-chip microprocessor; resistance tester; liquid control display目前,随着电子工业的发展,电子元器件急剧增加,在当今的电子测试领域,电阻的测量已经在测量技术和产品研发中应用十分广泛。
单片机原理及应用课程设计报告单片机原理及应用课程设计报告设计课题:电容、电阻参数单片机测试系统的设计专业班级:电子信息工程091学生姓名:????????????????指导教师:何老师2012 年 6 月单片机原理及应用课程设计报告目录目录 (1)1 设计任务书 (2)1.1 基本设计要求 (2)1.2 选作项目 (2)2 设计阐明 (2)12.1设计内容 (2)1.2设计要求 (3)1.3设备及工作环境 (3)3 系统方案整体设计 (4)3.1 设计思路 (4)3.2 系统整体框图 (4)4 硬件设计 (5)4.1 系统硬件设计 (5)4.1.1 按键电路设计···················································错误!未定义书签。
4.1.2 LCD显示器 (5)4.2 系统工作原理论述 (6)5 软件设计 (7)5.1 分析论证 (7)5.1.1 显示模块 (7)5.1.2 产生脉冲模块 (7)5.1.3 转换模块 (8)3.1.4 启动/暂停,复位模块 (8)5.1.5 整体功效 (8)5.2 程序流程图 (8)5.3程序清单 (8)6 调试过程及分析 (8)7 设计总结 (18)参考文献···········································································································20- 1 -单片机原理及应用课程设计报告1 设计任务书1.1 基本设计要求(1)在综合单片机实验箱的硬件结构上编写软件完成设计。
基于单片机的热敏电阻温度计的设计
随着科技的不断发展,各种电子设备应用也越来越广泛。
热敏电
阻温度计便是其中之一,它是一种利用物质温度对电阻值的变化来实
现温度测量的智能仪器。
本篇文章将介绍热敏电阻温度计的设计及其
原理。
首先,我们需要准备的材料有单片机、热敏电阻、电阻、显示屏、连接线以及电源。
将这些材料准备齐全后,便可以开始进行热敏电阻
温度计的设计。
我们需要将热敏电阻、电阻、单片机连接成电路。
电路连接后,
需要进行编程,以使得单片机能够读取热敏电阻和电压值,并将其转
换成温度值。
通过显示屏将温度值显示出来,实现对温度的实时监测。
在热敏电阻温度计设计的过程中,需要注意以下几点:
1. 选用合适的热敏电阻:热敏电阻的温度系数决定了它在不同温
度下的电阻值,因此需要选择合适的热敏电阻。
2. 电路的稳定性:电路中各部分的连接不可松动,否则会影响温
度测量的准确性。
3. 编程的准确性:需要通过合理的代码编写来实现对热敏电阻和
电压值的正确读取和转换,确保温度测量的准确性。
总之,热敏电阻温度计因其简单易用、准确度高等优点被广泛应
用于各种领域中,例如工业制冷、医疗设备等。
希望通过本篇文章的
介绍,能够帮助读者更好地了解热敏电阻温度计的设计及其原理,以便于更好地应用于实际生活生产中。
单片机课程设计电阻测量一、课程目标知识目标:1. 理解单片机的基本原理和功能,掌握单片机在电阻测量中的应用;2. 掌握电阻的基本概念、测量方法和相关电路,能运用单片机进行电阻的精确测量;3. 了解并掌握相关程序设计方法,实现单片机对电阻值的读取、显示和处理。
技能目标:1. 能够运用单片机设计简单的电阻测量电路,并进行实际操作;2. 学会使用编程软件,编写、调试和优化单片机程序,实现对电阻值的测量和显示;3. 提高动手实践能力,培养分析问题、解决问题的能力。
情感态度价值观目标:1. 培养学生对单片机技术的兴趣和热情,激发学生学习电子技术的积极性;2. 培养学生的团队协作意识,学会与他人共同探讨、解决问题;3. 引导学生认识到科技对社会发展的作用,树立正确的价值观和责任感。
课程性质:本课程为实践性较强的课程,旨在让学生通过实际操作,掌握单片机在电阻测量中的应用。
学生特点:学生已具备一定的电子基础知识,对单片机有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,强调学生动手实践,培养学生的问题分析和解决能力。
将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 单片机基础知识回顾:复习单片机的组成、工作原理及编程基础,为后续课程打下坚实基础。
教材章节:《单片机原理与应用》第1章、第2章。
2. 电阻测量原理:讲解电阻的定义、测量方法及常见测量电路。
教材章节:《电子测量技术》第3章。
3. 单片机与电阻测量:介绍单片机在电阻测量中的应用,分析测量电路的原理和设计方法。
教材章节:《单片机原理与应用》第6章,《电子测量技术》第4章。
4. 程序设计:学习编写单片机程序,实现对电阻值的读取、显示和处理。
教材章节:《单片机C语言程序设计》第3章、第4章。
5. 实践操作:设计并搭建单片机电阻测量电路,进行实际操作,调试程序。
教材章节:《单片机实验教程》第2章、第3章。
6. 课程总结与拓展:总结本次课程所学内容,探讨单片机在电阻测量领域的拓展应用。
摘要本设计是一种基于单片机(89C51)的高精度电阻电感电容测量仪器的设计.本设计采用MAX038单片压控函数发生器产生高精度的正弦波信号流经待测的电容或者电感和标准电阻的串连电路,利用电压比例计算的方法推算出电容值或者电感值,利用51单片机控制测量和计算结果,采用1602液晶模块实时显示数值,可以手动调节量程,正弦信号发生器可以实现幅值和频率的调整,为了提高精度,我们把被测的交流电压先通过ICL7650来消除因为AD637输入电阻较低产生的误差.实验测试结果表明,本设计性能稳定,测量精度高.关键词:电压比例法89C51 AD637 1602液晶ABSTRACTThe design is the design of a high-precision instrument for RLC measurement based on microcontroller(89C51).This design adopted MAX038 monolithic voltage-controlled function generator to produce high accuracy sine wave signal,which passed through the series circuit of the capacity or inductance and standard resistance,and then measured the respective voltage of the capacity or the inductance and the standard ing the voltage proportion method calculated the capacitance values or inductance values.The design used 51 microcontroller to control the measurement and calculation results,used 1602 LCD to show the result. The range can be adjusted manually, sine signal generator can adjust amplitude and frequency to improve accuracy, we measured the AC voltage through the ICL7650 to eliminate the error caused by the lower input resistance of AD637. Experimental results show that the performance of this design is stable and of high measurement accuracy.Key words: V oltage proportion method; 89C51; AD637; 1602 LCD;目录1 引言 (1)2 电压比例法测量原理 (1)3 系统方案 (2)3.1系统总体方案设计与结构框图 (2)3.2方案设计与论证 (3)4 硬件电路 (5)4.1稳压电源模块 (5)4.2正弦信号发生器 (5)4.3采样电路 (6)4.3液晶显示模块 (7)5 系统软件设计 (8)5.1控制测量程序模块 (8)5.2按键处理程序模块 (9)5.3电阻电感电容计算程序 (9)5.4液晶显示程序模块 (10)6 系统测试与结果分析 (10)6.1对正弦信号源的测试 (10)6.2对电阻电容电感的测量 (11)6.3误差分析 (12)7 总结 (13)参考文献 (14)致谢 (15)1 引言现代电子产品正以前所未有的速度,向着多功能化、体积最小化、功耗最低化的方向发展,机电产品广泛应用于家电、通信、一般工业乃至航空航天和军事领域.无论是日常生活还是高端科技领域,电子技术的应用均日益深入.掌握必备的电子技术基础设计制作基础知识和基本技能,能够满足我国目前产业结构对广大技术工人、工程技术人员基本素质的要求,而且能为从事高端电子系统开发培养能力和素质,适应信息时代的需要.目前市面上测量电子元器件参数R 、C 和L 的仪表种类较多,方法和优缺点也各有不同.一般的测量方法都存在计算复杂,不易实现自动测量而且很难实现智能化等缺点.电阻电容电感测量方法较多(谐振法,电桥法,电压比例法等)但因为对于测量仪器来说精度越高越好,所以本设计选择精度比较高的电压比较法做电阻电感电容测试仪,它的原理是将一定频率的交流信号经过串联分压电路转化为电压信号,然后经过电路处理变成频率信号经过单片机进行比例运算,最后将计算出的测量值输送给显示模块并显示各参量对应的量纲.2电压比例法测量原理电阻高精度测量较好的方法之一是采用与标准电阻相比较的方法.其主要原理:是在待测电阻x R 与标准电阻1R 的串联电路中加一直流电压V,AD 采样得到Rx 上电压X V ,则测量电阻为:Xx x R V V R V -= (1) 设计中我们采用了与测量电阻一样的方法——电压比例法[1-2]来测量电感和电容;因为电感与电容是电抗元件,所以应采用交流信号来产生测量信号;在角频率为w 的交流信号的作用下电容电感获得的容抗和感抗:cj 1X C w = (2) wL j X L = (3)C 、L 为待测电容和电感.这样一来,标准元件的选择就有许多种方法.但为了提高测量精度和降低成本,该测量仪采用了标准电阻,且与电阻测量共用一套标准电阻.所以有电感:)(...U jw L LX LX U RU -=⋅ (4)jwC1jwC 1U U ..CX +=R (5) 电容: jwR 1C ..-=CXU U(6)测量Q 值时,加入交流信号测量出电感Q 值L jw R Z 1S 1+= (7)L jw R Z 2S 2+= (8)两个方程联立,求得电感2-12212W W -L 22z z = (9) 2-122121s W W -jw R 22z z -=Z (10) S R L Q jw = (11)1Z 为电感在电路中角频率为1w 的等效阻抗,2Z 为电感在电路中角频率为2w 的等效阻抗,L 为电感量,S R 为电感的等效电阻.为保证测量精度,必须保证电阻的精度和w 的高稳定值.为此,我们在该设计中采用MAX038单片压控函数发生器[3-4]产生高精度的正弦波信号,同时输出缓冲器采用了运算放大器,为保证波形精度采用了闭环深度负反馈方式,无失真的放大正弦信号.3.系统方案3.1系统总体方案设计与结构框图本电路由电源模块、正弦信号发生器、标准电阻和电感或电容串联分压电路、多路开关、电压跟随器、高精度交流/有效值转换、A/D 转换、单片机、液晶显示、键盘等模块组成.系统主要模块流程图如图1所示:图1系统流程图3.2方案设计与论证3.2.1电阻电感电容测试采样模块电阻电感电容测试采样模块的设计方案有很多,例如利用纯模拟电路来实现、电阻可用比例运算器法、电容可用恒流法和比较法、电感可用时间常数法和同步分离法等.方案一利用纯模拟电路虽然避免了编程的麻烦,但是电路复杂,所用的元器件较多,制作较麻烦并且测量精度低,调试困难,现已很少使用.方案二可编程序控制器(PLC)应用广泛,它能够非常方便的集成到工业控制系统中.可编程控制器速度快,体积小,可靠性和精度都比较好,在此系统中可以使用PLC对硬件进行控制,但是PLC的价格相当昂贵,因而成本过高,应用于要求比较高的场合.方案三利用震荡电路与单片机结合利用555多谐振荡电路将电阻、电容转化为频率,而电感则是根据电容三点式电路也转化为频率,这样就把模拟量近似转化为数字量了,而频率是单片机很容易处理的数字量,该方案测量精度较高,易于实现仪表的自动化,而且单片机构成的系统可靠性高,硬件的描述完全可用软件来实现,成本低.但由于必须采用大量地倍频、分频、混频和滤波环节,导致结构复杂、体积大、成本高并且难以达到较高的频谱纯度而使测量误差加大,外围电路非常复杂.且不符合需要一个独立信号发生器的要求.方案四电压比例法采用与标准电阻相比较的的方法,其原理是在待测原件与标准原件的串联电路中加以电流I,这样被测元件与标准元件上得到的电压分别为Vx与Vi;通过计算得出被测值,此方法精度高,需要一个具有输出频率稳定的信号源来提供激励.本设计采用此方案. 3.2.2正弦信号发生器模块正弦信号源发生器模块是决定系统误差的重要部分,要求有稳定的频率,另外为了测试系统的可靠性还要求正弦信号发生器的频率和电压具有可调性,本系统要求频率范围1HZ~1MHZ,电压大于5V.方案一 555信号发生器采用555信号发生器制作的发生器,其外围电路较复杂.这种方法能实现快速频率变换,具有低噪声以及所有方法中最高的工作频率.但由于必须采用大量地倍频、分频、混频和滤波环节,导致结构复杂、体积大、成本高并且难以达到较高的频谱纯度而使测量误差加大.方案二单片机信号发生器[5]使用单片机编程实现正弦波的产生简单易行.可以在外围电路不变的情况下通过程序来改变输出电压的幅值和频率.由于输出的是数字信号,可以做得很高,产生的信号精度及其性价比比较高,集成度也高并且需求电压低,功耗低.方案三 DDS信号发生器[6]利用直接合成DDS芯片的函数发生器,能产生任意波形并能达到很高的频率并且频率的稳定性比较好.但成本较高,主要用于测量电路和系统的频率特性、非线性失真、增益与灵敏度等.按不同的性能与用途分为低频信号发生器、高频信号发生器、频率合成式信号发生器等.方案四 MAX038信号发生器MAX038是MAXIM公司生产的一个只需要很少外部元件的精密高频波形产生器,他能产生准确的高频正弦波、三角波、方波。
基于单片机PIC绝缘电阻测量仪的研制目前对于电缆故障进行测量,检测,以及控制的系统有很多。
这些故障主要包括电缆网络的短路,以及断路等,但是这些系统并不能对导线间的绝缘进行测试。
本文研发和制造了一个包括原有系统功能,并对导线的绝缘可以测试的系统。
该系统的实现主要运用单片机PIC16F877A为主控芯片实现的绝缘电阻测量仪进行研制。
标签:PIC16F877A单片机;绝缘电阻;测量仪1 緒论对于绝缘电阻的检测,我国计量法早有强制性规定,为了保证电气安全,必须进行检测。
兆欧表是专门用来测量绝缘电阻的,也被称作绝缘电阻测试仪。
之前的兆欧表(摇表)因其拥有非常多的缺点,诸如:体积庞大,只有很小的测量范围,非常低的测量精度,操作也非常复杂,因此让测量结果的精确性无法获得保障,渐渐人们放弃使用。
数字式兆欧表没有了这些缺点,同时结合单片机使用,可以将测量获得的结果保存起来,以及显示,最后能够和pc机保持通讯。
本文主要分析一种以PIC16F877A单片机为基础的数字式绝缘测试仪。
2 工作原理这个数字式绝缘测试仪的组成部分包括:LCD显示电路、PIC16F877A单片机系统电路、量程切换电路、A/D转换电路、采样电路、直流高压电源电路等。
如图1所示为它的整个工作原理框图。
这个系统的测试电压源为1000V的直流电源,这个电源是由高压电源集成模块提供的。
同时选择恒压法(国家标准规定)测量绝缘电阻。
取样电压接到基准电压输人端(VeR-EF+ ),电源分压信号连接到A/D转换器的模拟量输人端(An)。
LCD驱动器的缓存中保存由A/D转换的相应经过一定计算的结果,根据要求将缓存保存的结果显示出来,用户可以依据显示值的大小,采用合适的量程来选择开关。
在PIC16F877A单片机的内部有一个A/D转换器模块(12位)的集成在里面。
所以本系统的电路根本不需要再添加一个A/D转换器,如此让电路板的尺寸大大缩小了。
3 系统的硬件组成(1)直流高压电源电路。
基于单片机的低功耗数字电阻测试仪设计与研究文章是以16位的低功耗MSP430单片机为控制芯片的简易低功耗数字电阻测试仪的设计,整个系统包含CPU模块、电源DC-DC模块、电阻数据采集处理模块、数据显示等模块。
本系统采用了TI公司生产的低功耗CPU、高输入阻抗LMC6484运算放大器、DC-DC电源芯片TPS54331等元件满足低功耗、高输入阻抗的设计要求,通过互锁按键选择测试功能并能实现量程自动切换功能。
通过整机试运行和利用标准元件校验测试精度。
标签:MSP430单片机;DC-DC变换器;电阻测试1 设计方案采用恒流法测电阻,通过搭建恒流源,取样待测电阻两端电压的方法,通过欧姆定律,来求被测电阻的阻值,这种方法测量比较准确,但是电路搭建比较麻烦并且只能测小电阻和中值电阻。
采用恒压法测量电阻,通过把精密电阻与待测电阻串联的分压形式,采集待测电阻两端的电压,即可求出待测电阻的阻值,这种方法也是比较准确的,同时电路搭建起来也非常方便,只需采用电路的标准电压来提供固定电压,通过相应的处理,即可快速精确的计算出待测电阻值。
2 总体设计该系统主要由功能轉换及变换电路、电源变换电路,单片机控制系统、显示部分和输入部分组成,电源变换部分主要完成低功耗系统电源设计。
被测量对象首先经变换电路取得电阻两端的电压送给MSP430单片机控制系统。
然后在输出设备上显示电阻的阻值。
3 详细设计3.1 DC-DC电源处理电路的设计常用的线性稳压芯片搭建的电源电路,设计方便简单,但是功耗比较大,不满足低功耗设计要求。
采用DC-DC电源模块功耗小,效率高。
其PWM开关控制方式,可极大地提高电源转换效率,可高达90%以上,并且输出电压可以很方便的调节,所以非常适合低功耗,电源要求高的产品。
DC-DC电源处理电路如图2所示。
通过DC-DC电源芯片TPS54331产生3.3V 电源,给CPU、运放等芯片供电。
该电源具有功耗低、效率高、纹波小等特点。
基于单片机STC89C52的电阻测量系统设计
张常友
【期刊名称】《无线互联科技》
【年(卷),期】2013(000)009
【摘 要】本系统以单片机STC89C52为数据处理和控制芯片,采用恒压源给待测
电阻提供稳定电压,通过采样待测电阻Rx上的电压值,经放大后送至A/D转换,
然后送人MCU进行数据处理,并将测量结果通过LCD12864液晶显示。该测试
系统能够实现1Ω~10MΩ电阻量程的自动切换、自动筛选,并且可以对电位器的
阻值变化进行扫描测试,并将测试得到的曲线在LCD12864液晶显示。
【总页数】1页(P82-82)
【作 者】张常友
【作者单位】江西渝州科技职业学院电子信息工程学院,江西 新余 338029
【正文语种】中 文
【相关文献】
1.基于STC89C52单片机的自动电阻测量仪2.基于STC89C52单片机智能教室灯
光控制系统设计3.基于STC89C52单片机的智能晾衣架控制系统设计4.基于
STC89C52单片机的自动浇花系统设计5.基于STC89C52单片机的液位控制系统
设计
因版权原因,仅展示原文概要,查看原文内容请购买
基于单片机的电阻测量设计修改
2
———————————————————————————————— 作者: ———————————————————————————————— 日期: 0
1.设计目的及其意义 本设计基于单片机和AD转换器实现电阻的测量。采用ADC0809,实现由模拟电压转换到数字信号,通过单片机系统处理后,由LCD显示被测量电阻的阻值。测量范围为1Ω~5KΩ,精度大于98%。
2.方案设计 2.1 总体设计思路 本设计包括硬件和软件设计两个部分。模块划分为电压测量(数据采集)、模数转换、阻值显示等子模块。电路结构可划分为:电压测量,电压转换电阻,阻值显示及相关的控制管理软件组成。用户终端完成信息采集、处理、数据传送、显示等功能。 从设计的要求来分析该设计须包含如下结构:电压测量电路,电压转换电路,阻值显示电路、单片机及相关的控制软件组成;它们之间的构成框图如图1总体设计框图所示:
图1 总体设计框图 处理器采用51系列单片机AT89C51。整个系统是在系统软件控制下工作的。当测量一个电阻时,经过电压采集,电压转换为电阻,电阻显示三个部分可以在LCD上显示该被测电阻的阻值。当被测电阻为100Ω范围以内时,通过开关选择测量量程,再次测量该电阻,以减小误差。
电压测 电压
转换电阻
AT89C
测量精 1
2.2 具体电路模块设计 2.2.1 电压测量的设计 如图2所示为被测电阻电压测量。电压经过已知电阻R1和被测电阻Rx接到地。通过OUT输出被测电阻Rx上的电压。送到ADC0809的IN0口。
图2 被测电阻电压测量图 2.2.2 模数ADC转换的设计 由电压测量得到的电压经过ADC模数转换可得到8位的电压值,经过欧姆定律(即电压之比等于电阻之比)可得到被测电阻的阻值的大小。公式如下
本设计用到的R1的阻值为600Ω和300Ω。 由被测电阻得到的电压值经ADC0809的26脚IN0输入,经过内部的AD转换,在OUT1~7输出数字电压量,经过上述公式的转变,在P2口上的显示的数字量为被测电阻的阻值数字量。如图3所示为被测电阻电压量转换为阻值量。
图3 被测电阻电压量转换为阻值量图 2
2.2.3 液晶显示电路的设计 经过ADC0809模数转换得到的电阻值数字量,在MCU的P2口输入,MCU系统处理后在P0口由LCD1602显示出来该被测电阻的阻值。如图4所示为被测电阻阻值显示。
图4 被测电阻阻值显示图 2.2.4 时钟电路的设计 XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。 因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12MHZ,一个振荡周期为1/12us,故而一个机器周期为1us。如图5所示为时钟电路。
图5 时钟电路图 3
2.2.5 复位电路的设计 复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路工作以后, 在RESET端持续给出2个机器周期的高电平时就可以完成复位操作[6]。例如使用晶振频率为12MHz时,则复位信号持续时间应不小于2us。本设计采用的是外部手动按键复位电路。如图6所示为复位电路。
图6 复位电路图 2.2.6 电源电路的设计 本设计使用USB接口给电路提供+5V电压。电路中所有的高电平全部接在VCC端,地接在USB接口的4号脚上。通电时红灯LED-R亮。如图7所示为电源电路。
图7 电源电路图 4
2.2.7 下载电路的设计 本设计使用串口RS232以及烧录芯片MAX232组成的下载电路。MAX232的11和12号脚(R1OUT、T1IN)与MCU的10和11号脚(RXD、TXD)连接,即可向MCU烧录程序。图8所示为下载电路。
图8 下载电路图 2.3 系统硬件电路的选择及说明 硬件电路的设计见附图示,从以上的分析可知本设计中要用到如下器件:STC89C52RC、ADC0809转换器、LCD1602、按键等一些单片机外围应用电路,以及单片机的手工复位,单片机电源电路等。其中R3,R6电阻为已知电阻,R4,R5为不同测量精度下的未知电阻,开始工作时可在LCD上观察到被测电阻的阻值。电路设有2个按键,S1键作为阻值测量精度的选择键,S2键作为电路复位键。 5
2.4 软件的程序实现 2.4.1主程序工作流程图 按上述工作原理和硬件结构分析可知系统主程序流程图如下图9所示。
图9 主程序工作流程图 系统初始(重新)放置电阻 选择测量
精度开关
结束
开始
最终显示 初次显无正常<300
正常 6
3.软件仿真 本设计通过利用Proteus仿真,将所编写的程序用Keil软件编译,所仿真原理图见附录二。 本设计所要求达到的目标是测量一个电阻,在误差允许范围内,通过LCD1602显示出该电阻的阻值。测量的部分电阻的阻值如下表1所示。 表1 仿真测量电阻阻值 7
实际电阻(Ω)仿真测量(600Ω)硬件测量(600Ω)仿真测量(300Ω)硬件测量(300Ω)1.220111.520112.122222.622223.522334.344435.44464677666.37466997881099910141412131220191920202321212222474848474749484849495151515052908989909210098981001001201211211201222202182222202232402402452382463003003002972973303273383323374704694774724805105085165135225505505675505691K993102799610662K120842233209023373K29853042302631773K333233426334235253K535353771352539504K545004864448151644K646755066448151644K746754864480051645K150665284516455846K60526354607273506K160526685607573506K563547452665482008K28400840082009262
4.结束语 本设计研究了一种基于单片机技术的电阻测量。由电路知识可以容易测出一个电阻上的电压,通过欧姆定律又能得到该电阻的阻值。由于测量的电压是模拟量,故用ADC转换器转换为数字量,再由单片机系统处理即可完成电阻的阻值测量。 由于数字量在数值上是离散的,通过此种方法得到的阻值存在着误差,为了尽可能的减小此误差,在选择已知电阻上,试用了很多电阻。通过大量数 8
据与实际电阻的阻值相比较,以及实验室能提供的电阻,选用了600Ω和300Ω的已知电阻,用不同的量程可以尽可能的减小误差。表1中给出了部分电阻的硬件电路测量结果,从中可以得知,同一电阻,用不同的量程测量得到不同的阻值,存在的误差也很明显。本设计只采用了两种已知电阻,也就是2个量程测量电阻,测量范围从1Ω~5KΩ,精度大于98%。若提高测量精度,只需增加更大的量程,即可完成大电阻的阻值测量。由于硬件电路的连接,元器件不理想等原因,实际测量电阻的阻值与仿真得到的阻值还是有一定误差的。 虽然硬件电路能正常工作,但程序以及元器件的选择不足,使得这次设计并没有达到很好的测量效果,对微欧姆级和K欧姆级电阻无法测量,还是感到不理想。 通过此次设计,尤其硬件电路的焊接,对单片机系统有了更好的认识。在以后的学习中,会更加注重设计原理与硬件电路的相结合,做好每一个设计,达到理想的要求。
参考文献: [1] 史翔,张岳涛.基于AT89C51单片机微电阻测量系统[J]. 甘肃科技,2007年8月 [2] 周瑞景. Proteus在MCS-51&ARM7系统中的应用百例[M]. 北京:电子工业出版社,2006 [3] 李全利.单片机原理及接口技术[M].2版. 北京:高等教育出版社,2010 [4] 王东峰,王会良.单片机C语言应用100例[M].北京:电子工业出版社,2010 9
[5] 彭伟. 单片机C语言程序设计实训100例—基于8051+Proteus仿真.北京:电子工业出版社,2010
附录一 设计编程程序 //*************头文件及宏定义***************** #include "includes.h" #define TIME0H 0x3C #define TIME0L 0xB0