当前位置:文档之家› 医学分子遗传学Medical molecular genetics3版思维导图

医学分子遗传学Medical molecular genetics3版思维导图

分子遗传学名词解释

2014分子遗传学复习 一、名词解释 1、结构基因(Structural gene):可被转录形成mRNA,并进而翻译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 2、调节基因(Regulatory gene):指某些可调节控制结构基因表达的基因,合成阻遏蛋白和转录激活因子。其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。 3、基因组(genome):基因组(应该)是整套染色体所包含的DNA分子以及DNA 分子所携带的全部遗传指令。或单倍体细胞核、细胞器或病毒粒子所含的全部DNA或RNA。 4、C值悖理(C-v a l u e p a r a d o x):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理(C——value paradox)。 N值悖理(N-v a l u e p a r a d o x):物种的基因数目与生物进化程度或生物复杂性的不对应性,这被称之为N(number of genes)值悖理(N value paradox)或G(number of genes)值悖理。 5、基因家族(gene family):由同一个祖先基因经过重复(duplication)与变异进化而形成结构与功能相似的一组基因,组成了一个基因家族。 6、孤独基因(orphon):成簇的多基因家族的偶尔分散的成员称为孤独基因(orphon) 。 7、假基因(pseudogene): 多基因家族经常包含结构保守的基因,它们是通过积累突变产生,来满足不同的功能需要。在一些例子中,突变使基因功能完全丧失,这样的无功能的基因拷贝称为假基因,经常用希腊字母表示 8、①卫星DNA(Satellite DNA):是高等真核生物基因组重复程度最高的成分,由非常短的串联多次重复DNA序列组成。 ②小卫星DNA(Minisatellite DNA) :一般位于端粒处,由几百个核苷酸对的单元重复组成。 ③微卫星DNA (Microsatellite DNA):由2-20个左右的核苷酸对的单元重复成百上千次组成。 ④隐蔽卫星DNA(cryptic satellite DNA):用密度梯度离心分不出一条卫星带,但仍然存在于DNA主带中的高度重复序列 9、DNA指纹(DNA fingerprints):小卫星DNA是高度多态性的,不同个体,各自不同。但其中有一段序列则在所有个体中都一样,称为“核心序列”,如果把核心序列串联起来作为探针,与不同个体的DNA进行分子杂交,就会呈现出各自特有的杂交图谱,它们和人的手纹一样,具有专一性和特征性,因个体而异,因而称为“DNA指纹”。 10、超基因(super gene) :是指真核生物基因组中紧密连锁的若干个基因座,它们作用于同一性状或一系列相关性状。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 11、单核苷酸多态性(single nucleotide polymorphism,SNP):主要是指基因组水平上由单个核苷酸的变异所引起的DNA顺序多态性。它是人类可遗传变异中最常见的一种,占所有已知多态性的90%以上。 12、遗传标记(Genetic marker):可示踪染色体、染色体片段、基因等传递轨

《分子生物学大(综合)实验》课程介绍(精)

《分子生物学大(综合)实验》课程介绍 课程代码(学校统一编制) 课程名称分子生物学大(综合)实验 英文名称MolecularBiologyBigExperiment 学分:3修读期:第七学期 授课对象:生物科学、生物技术 课程主任:姓名、职称、学位 关洪斌,副教授,博士 课程简介 21世记是生命科学的世记,而分子生物学是带动生命科学的前沿科学。分子生物学是在生物大分子水平上研究细胞的结构、功能及调控的学科,在现代生物学学科发展中的重要性与不容置疑的带头作用是众所周知的。许多重大的理论和技术问题都将依赖于分子生物学的突破。随着分子生物学研究工作的不断深入,相关实验技术方法和技术日新月异的发展。为了适应分子生物学研究工作日益发展的需要,满足培养从事现代生物学研究,尤其是进行分子生物学研究的人才的需要,特设置分子生物学大(综合)实验课程。本课程的教学目标和基本要求是使学习者基本掌握分子生物学实验技术的基本原理和方法,教学内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。通过本实验可提高学生的动手能力和创造性思维能力,较好地掌握分子生物学实验操作和技能,为今后独立进行科研工作打下坚实基础。 实践教学环节(如果有) 实验内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。 课程考核 实验报告 指定教材 自编 参考书目 1.分子生物学实验指导高等教育出版社施普林格出版社,1999 2.彭秀玲,袁汉英等.基因工程实验技术.湖南科学技术出版社,1997 3.吴乃虎.基因工程原理(上下册).科学出版社,1998 4.F.奥斯伯等著:颜子颖,王海林译.分子克隆实验指南(第二版).科学出版社,1998 5.J.萨姆布鲁克等著:金冬雁,黎孟枫等译.精编分子生物学实验指南.科学出版社,1993

基因治疗就是利用分子生物学技术

基因治疗就是利用分子生物学技术,按照自然规律要求,纠正基因结构和功能异常,组织病变的进展,杀灭病变的细胞,或一致外源病原体遗传物质的复制,从而达到治疗疾病的一种方法或技术。 端粒:是真核生物染色体末端的一种特殊结构,由端粒DNA和端粒蛋白质构成,作用:稳定染色体结构防止染色体末端融合保护染色体结构基因避免遗传信息在复制过程中丢失。 端粒酶是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段。其活性取决于酶内RNA和蛋白质亚基。是端粒复制所必须的一种特殊的DNA聚合酶 DNA变性:在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,DNA双螺旋结构松散,变成单链。 Tm :加热变性过程中DNA双螺旋结构解开一半时的温度。 基因芯片:是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。 反义核酸是根据碱基互补原理,用人工合成或生命有机体合成的特定互补的DNA或RNA片段,与目的序列结合,通过空间位阻效应或诱导RNAase活性降解,在复制、转录、剪切、mRNA转运及翻译等水平上,抑制或封闭目的基因的表达。 肽核酸:能与其互补的DNA或RNA特异性结合的多肽链。 RNA干涉(RNA interference,RNAi):是指内源性或外源性双链RNA(dsRNA)介导的细胞内mRNA 发生特异性降解,从而导致靶基因的表达沉默,产生相应的功能表型缺失的现象。 DNA的一级结构:是指构成DNA的基本组成单位--四种脱氧核苷酸通过3’,5’-磷酸二酯键按照一定的排列顺序连接起来的线性多聚体,以及其组成单位的数量。 DNA的二级结构是指两条脱氧多核苷酸链以反向平行的方式,围绕同一个中心轴盘绕所形成的双螺旋结构. 双螺旋结构特点:1.主链脱氧核糖和磷酸基通过3′,5′磷酸二酯键交互连接,成为螺旋链的骨架。 2.碱基配对:G-C,A-T。 3.螺旋参数:直径2nm,螺距3.4nm,每圈10nt,相邻碱基对夹角36° 4.大沟和小沟:DNA行使功能时蛋白质的识别位点。 超螺旋(supercoiling)是DNA三级结构的一种结构模式,是双螺旋的螺旋。分为正超螺旋和负超螺旋两种形式。 mRNA的主要功能是携带蛋白质的序列信息,在翻译过程中作为模板,通过三联体密码子指导蛋白质的生物合成。 tRNA的功能:1. 搬运氨基酸;2. 活化氨基酸;3. 在密码子与对应氨基酸之间起接合体(adaptor) 的作用。 rRNA单独存在时不执行其功能,它与多种蛋白质结合成核糖体,作为蛋白质生物合成的“装配机”,是蛋白质生物合成的场所。 核酸的杂交(hybridization):指序列互补单链的RNA和DNA,或DNA和DNA,或RNA和RNA,根据碱基配对原则,借助氢键相连而形成双链杂交分子的过程。 原理:互补DNA单链在一定条件下通过碱基互补配对可形成双链DNA分子。 分类: 溶液杂交: 固相杂交:用膜作为固相支持物,将单链DNA或RNA吸附、固定到膜上,再进行杂交

分子遗传学

第一章
公元前4000年,伊拉克 的古代巴比伦石刻上记 载了马头部性状在5个 世代的遗传。
浙江大学


第一节 遗传学研究的对象 和任务
遗传学第一章
1
浙江大学
遗传学第一章
2
1.遗传学的研究内容: 1.遗传学的研究内容:
(1).是研究生物遗传和变异的科学: 遗传学与生命起源和生物进化有关。 (2).是研究生物体遗传信息和表达规律的科学: 解决问题:物种 代代相传; 性状 遗传。 (3).是研究和了解基因本质的科学: 遗传物质是什么? 遗传物质 性状?
浙江大学 遗传学第一章 3
∴ 遗传学是一门涉及生命起源和生物进化的理论科学, 同时也是一门密切联系生产实际的基础科学,直接指导 医学研究和植物、动物、微生物育种。
浙江大学
遗传学第一章
4
2.遗传和变异的概念: 2.遗传和变异的概念:
(1).遗传(heredity):亲子间的相似现象。 “种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 “母生九子,九子各别” (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 三大因素: 遗传 + 变异 + 自然选择 遗传 + 变异 + 人工选择 形成物种 动、植物品种
自然选择
人工选择
(5).遗传和变异的表现与环境不可分割。
浙江大学 遗传学第一章 5 浙江大学 遗传学第一章 6

3.遗传学研究的对象: 3.遗传学研究的对象:
以微生物(细菌、真菌、病毒)、
植物和动物以及人类为对象,研究其 遗传变异规律。
4.遗传学研究的任务: 4.遗传学研究的任务:
(1).阐明:生物遗传和变异现象 (2).探索:遗传和变异原因 (3).指导:动植物和微生物育种 表现规律; 物质基础 内在规律;
提高医学水平。
浙江大学
遗传学第一章
7
浙江大学
遗传学第一章
8
第二节
遗传学的发展
一、现代遗传学发展前
浙江大学
遗传学第一章
9
浙江大学
遗传学第一章
10
1.遗传学起源于育种实践:
人类 生产实践 遗传和变异 选择
2. 18世纪下半叶和19世纪上半叶期间,拉马克和达尔文对
生物界遗传和变异进行了系统的研究: (1).拉马克(Lamarck J. B., 1744~1829): ①.环境条件改变是生物变异的根本原因; ②.用进废退学说和 获得性状遗传学说 如长颈鹿、家鸡翅膀。
育成优良品种。
浙江大学
遗传学第一章
11
浙江大学
遗传学第一章
12

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

第九章生化与分子遗传学(答案)

第九章生化与分子遗传学(答案) 选择题 (一)单项选择题 1.基因突变对蛋白质所产生的影响不包括: 影响活性蛋白质的生物合成B.影响蛋白质的一级结构 C.改变蛋白质的空间结构D.改变蛋白质的活性中心 E.影响蛋白质分子中肽键的形成 2.原发性损害指: A.突变改变了protein的一级结构,使其失去正常功能 突变改变了糖元的结构,使糖元利用障碍 突变改变了脂肪的分子结构,使脂肪动员受阻 D.突变改变了核酸的分子结构,使其不能传给下一代 E.突变主要使蛋白质的亚基不能聚合 *3.苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺乏导致: A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积 D.代谢终产物缺乏E.代谢终产物堆积 4.半乳糖血症Ⅰ型的发病机理是由于基因突变导致酶遗传性缺乏使: A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积 D.代谢终产物缺乏E.代谢终产物堆积 5.色氨酸加氧酶缺乏症的发病机理是由于基因突变导致: A.5-羟色胺增多B.色氨酸不能被吸收C.色氨酸吸收过多 D.烟酰胺生成过多E.代谢终产物堆积 6.下列何种疾病不属于分子病? A. 肝豆状核变性 B. 先天性睾丸发育不全综合征 C. 血友病 D. 镰形细胞贫血 E. 家族性高胆固醇血症 7.关于苯丙酮尿症(PKU),下列哪项说法是不正确的? 可进行新生儿筛查 B. 可进行产前检查 C. 不通过DNA分析不能确定出携带者 D. 是一种表现为智力低下的常染色体隐性遗传病 E. 是由于遗传性缺乏苯丙氨酸羟化酶所致 8.人类珠蛋白基因包括: A. 位于16p13上的类α珠蛋白基因簇,包括α和δ基因 B. 位于llpl5上的类β珠蛋白基因簇,包括α、β、γ、ε和δ等基因 C. 位于llpl5上的类α珠蛋白基因簇 D. 位于16p13上的类β珠蛋白基因簇 E. 位于Xp21的STR序列 *9.镰状细胞贫血是由于血红蛋白β链上的第6位氨基酸被下列哪种氨基酸替代? A. 脯氨酸 B. 色氨酸 C. 苏氨酸 D. 缬氨酸 E. 亮氨酸 *10.正常HbA的α链为141个氨基酸,有一种称为Hb Constant Spring的突变型,其α链为172个氨基酸,推测可能发生了: A. 无义突变 B. 终止密码突变 C. 移码突变 D.错义突变 E. 同义突变 11.一个溶血性贫血病人,经检查Hb A2为30%,肽链裂解后见有α、γ、δ三种肽链,其最可能被诊断为: A.α—地中海贫血 B.β-地中海贫血 C. HbS病 D. 高铁血红蛋白病

分子生物学实验技术全攻略

分子生物学实验技术 目录 实验一细菌的培养 2 实验二质粒DNA的提取 3 实验三紫外吸收法测定核酸浓度与纯度 4 实验四水平式琼脂糖凝胶电泳法检测DNA 5 实验五质粒DNA酶切及琼脂糖电泳分析鉴定 7 实验六植物基因组DNA提取、酶切及电泳分析 8 实验七聚合酶链反应(PCR)技术体外扩增DNA 9 实验八 RNA提取与纯化 11 实验九 RT-PCR扩增目的基因cDNA 13 实验十质粒载体和外源DNA的连接反应 15 实验十一感受态细胞的制备及转化 16 实验十二克隆的筛选和快速鉴定 18 实验十三 DNA分析——Southern杂交 19 一基本操作 实验一、细菌培养 实验二、质粒DNA提取 实验三、紫外吸收法测定核酸浓度与纯度 实验四、水平式琼脂糖凝胶电泳法检测DNA 实验五、质粒DNA酶切及琼脂糖电泳分析鉴定 实验六、植物基因组DNA提取、定量、酶切及电泳分析实验八、植物RNA提取及纯化 二、目的基因获取

实验七、聚合酶链式反应(PCR)技术体外扩增DNA 实验九、RT-PCR扩增目的基因cDNA 三、目的基因的克隆和表达 实验十、质粒载体和外源DNA的连接反应 实验十一、感受态细胞的制备及转化 实验十二、克隆的筛选和快速鉴定 实验十三、DNA分析——Southern杂交 实验一细菌的培养 一、目的 学习细菌的培养方法及培养基的配置。 二、原理 在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。特别是常用的大肠杆菌。 大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。然后进入对数生长期,以20~30min复制一代的速度增殖。最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。此时菌体密度可达到 1×109~2×109/mL。 培养基可以是固体的培养基,也可以是液体培养基。实验室中最常用的是LB培养 基。 三、实验材料、试剂与主要仪器 (一)实验材料 大肠杆菌 (二)试剂 1、胰蛋白胨 2、酵母提取物

分子遗传学考博试题

分子遗传学试题(2003年) 一、名词解释 1.持家基因:在哺乳动物各类不同的细胞中均有相同的一组基因在表达,这组基因数目在10000左右,它们的功能对于每个细胞都是必需的,这组基因叫做持家基因。 2.DNA指纹: 3.剪接体: 4.操纵子:又称操纵元,是原核生物基因表达和调控的一个完整单元,其中包括结构基因、调节基因、操作子和启动子。 5.S-D序列: 6.内含子:在原初转录物中通过RNA拼接反应而被去除的RNA序列或基因中与这段序列相应的DNA序列。有些基因的内含子可以编码蛋白质(RNA成熟酶或转座酶)。 7.AP位点: 8.基因簇: 9.冈崎片段: 10.Alu序列:Alu族序列大约有300000个,平均每6kbDNA就有一个。每个长度约300bp,在其第170位置附近都有AGCT这样的序列,可被限制性内切酶AluⅠ所切割(AG↓CT)。11.核酶: 12.琥珀突变: 13.弱化子: 14.同功tRNA:携带氨基酸相同而反密码子不同的一族tRNA称为同功tRNA。 15.颠换:由一个嘌呤碱基变为一个嘧啶碱基或由一个嘧啶碱基变为一个嘌呤碱基的突变,就做颠换。 16.核小体: 17.拟基因: 18.增变基因:研究发现有一些基因的突变可以大大提高整个基因组其它基因的突变率,这些基因被称为增变基因。 19.异源双链体:是指重组DNA分子两条链不完全互补的区域。 二、问答题: 1.简述snRNA的生物学功能 2.真核mRNA和原核mRNA在结构上有何区别 3.真核生物体内的重复序列有哪几种类型?有何生物学意义?在分子研究中有何应用?4.病毒8s(+)RNA复制的表达特点 5.以乳糖操纵子为例,说明正调控和负调控的作用 分子遗传学试题(2002年) 一、名词解释 1.拓扑异构酶(topoisomerase):催化DNA拓扑异构体相互转化的酶,有Ⅰ、Ⅱ两类,Ⅰ类使一条链产生切口,Ⅱ类使两条链都产生缺口,Ⅱ使DNA超螺旋化,Ⅰ使DNA松驰化。2.同裂酶(Isoschizomer):能识别和切割同样的核苷酸靶序列的不同内切酶。 3.卫星DNA(Satellite-DNA):DNA碱基的高度重复序列,用CsCl密度梯度离心时,在高峰外有几个小峰处于不同密度位置,长度为2~10bp,可 4.接酶(ribozyme):具有催化活性的RNA,如L19,有些只作用于,有些可作用于。5.同功tRNA(isoacceptor):由于简并性原理,一个aa可有不同的密码子,也就不同的6.冈崎片段:DNA复制过程中后随链方向的3-5端DNA合成

中科院分子遗传学试题1997-2003(精)

中国科学院遗传与发育生物学研究所博士研究生入学考试分子遗传学2003年 一、今年是DNA双螺旋模型发表五十周年。请回答以下问题(20分): 1、在双链DNA分子中A+T/G+C是否等于A+C/G+T ?(4分) 2、DNA双链的两条链中是否含有相同的遗传信息?为什么?(4分) 3、大肠杆菌的基因组DNA的长度约为1100微米。请根据DNA模型估计其基因组的碱基对数目。(4分) 4、如果两种生物基因组DNA在四种碱基的比率上有显著差异,那么预期在它们编码的tRNA、rRNA和mRNA上是否也会在四种碱基的比率上呈现同样的差异?(8分) 二、在一牛群中,外观正常的双亲产生一头矮生的雄犊。请你提出可能导致这种矮生的各种原因,并根据每种原因提出相应的调查研究的提纲(注意整个调查研究工作必须在两个月内完成)。(20分) 三、请给出以下6种分子标记的中文全称、定义、检测方法及其在遗传分析中的特征。(20分) RFLP , microsatellite , STR , SSLP , SNP , InDeL . 四、在普通遗传学中,非等位基因间的相互作用有哪几种?请举例说明其中的两种相互作用?请从分子遗传学和分子生物学的角度对非等位基因间的相互作用的分子机制进行阐述,并举例说明。(20分) 五、有哪些诱变剂可以诱发基因突变?基于突变被辨认的方法,可以将突变分为哪几种类型?哪些类型的突变对功能基因组的研究最有意义?为什么?对一个已完成基因组测序的真核生物,如何构建一个突变体库,以揭示基因组中预测基因的功能?(20分) 中国科学院遗传与发育生物学研究所博士研究生入学考试分子遗传学2002 年 注:1、A卷考生必须回答下列5题,每题20分。 B、卷考生任选四题回答,每题25分。 一、请举出细胞中的各种RNA分子的名称、特征和功能。如何从RNA出发开展功能基因组的研究。 二、真和生物的基因表达控制(control of gene expression)和信号传导(signal transduction)有密切的关系,请举出一个你熟悉的例子分别说明这两个概念的含义及其联系。 三、目前已经有一些现成的软件用来预测基因组全序列中的基因。为了设计这些软件,你觉得哪些关于基因和基因组的分子遗传学知识是必须的?请说明理由。 四、在真核生物中转座子可以分为几种类型?请分述每种类型的结构和特征。如何利用转座子进行分子遗传学的研究和功能基因组的研究。 五、自从克隆的多利羊诞生以来,报界经常传播所谓克隆动物的缺陷,有一种说法是克隆动物会早衰,有人推测早衰的原因可能是:(1)被克隆的体细胞核的染色体端粒变短或(2)被克隆的体细胞核的基因表达程序已经处在发育上成熟的阶段。现在请你从染色体DNA复制的角度作支持第(1)种可能的阐述,并从基因表达调控的角度做反对第(2)中可能的阐述。 中国科学院遗传与发育生物学研究所博士研究生入学考试分子遗传学2001 年 (A卷考生必须回答下列五题,每题20分;B卷考生任选四题回答,每题25分)

基因治疗在疾病防治中的应用

基因治疗在疾病防治中的应用 120311102 张宇鑫 [摘要] 传染病是目前人类所面临的一类重大疾病,在某些疾病状态下,人类还未寻找到理想的治疗方法,如病毒感染等。现代基因治疗是一种应用基因工程技术和分子遗传学原理,对人类疾病进行治疗的新疗法。主要是指对致病基因的修正和基因增强及采用外源性细胞因子基因、核酶、基因药物进行疾病治疗的方法。经过多年的发展,技术逐步走向成熟,在传染性疾病的防治中显示了重大的临床应用前景。传染性疾病的基因治疗包括:基因疫苗、RNA干扰、反义技术、药物靶向治疗等。 [关键词] 基因疫苗反义技术药物靶向治疗 一、现状 1.1我国传染病预防现状 21世纪人类依然面临着传染病的挑战,就全球而言,艾滋病是当前首恶,由于其病毒极易发生变异,所以到目前为止疫苗仍在试验阶段,缺乏理想的特效药物,免疫损伤治疗难度大。我国2003年比2002年发病率上升44.39%,人类免疫缺陷病毒检出率提高了55%。并且防治工作面临来自传统传染病和新发传染病的双重压力:传统传染病威胁持续存在,新发传染病不断出现。近10年来,我国几乎每一两年就有1种新发传染病出现,许多新发传染病起病急,早期发现及诊断较为困难,缺乏特异性防治手段,早期病死率较高。其次,人口大规模流动增加了防治难度,预防接种等防控措施难于落实。三是环境和生产生活方式的变化增加了传染病防治工作的复杂性。一些地区令人堪忧的城乡环境卫生状况,以及传统的生产生活方式,使一些人畜共患病持续发生。 1.2基因治疗研究的现状 (1) 复合免疫缺陷综合征的基因治疗 1991年美国批准了人类第一个对遗传病进行体细胞基因治疗的方案,即将腺苷脱氨酶(ADA)采用反转录病毒介导的间接法导入一个4岁患有严重复合免疫缺陷综合征(SCID)的女孩,大约1-2月治疗一次,8个月后,患儿体内ADA水平达到正常值的25%,未见明显副作用。此后又进行第2例治疗获得类似的效果。 (2)黑色素瘤的基因治疗 对肿瘤进行基因治疗是人们早已期望的事,在进行了多方面探索的基础上,发现了肿瘤浸润淋巴细胞(即能在肿瘤部位持续存在而无副作用的一种淋巴细胞)在肿瘤治疗中的作用。于1992年实施了TNF/肿瘤细胞和IL-2/肿瘤细胞方案,即分别将IL-2基因肿瘤坏死细胞(TNF)基因导入取自患者自身并经培养的肿瘤细胞,再将这些培养后的肿瘤细胞注射至病人臀部,3周后切除注射部位与其引流的淋巴结,在适合条件下培养T细胞,将扩增的T细胞与IL-2合并用于病人,结果5名黑色素瘤病人中1名肿瘤完全消退,2名90%的肿瘤消退,另2人在治疗后9个月死亡。由于携有TNF的TIL可积于肿瘤处,因而TIL的应用提高了对肿瘤的杀伤作用。

分子生物学总结

分子生物学总结 1.分子生物学的三大原则 根据“序列假说”、“中心法则”这两个基本原则,分子生物学作为所有生命物质的共性学科遵循“三大原则:其一,构成生物大分子的单体是相同的。在动物、植物、微生物3大系统的所有生物物种间都具有共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G。所有生物物种间都具有共同的蛋白质语言,即构成蛋白质大分子的单体均是20种基本氨基酸。 其二,生物大分子单体的排列决定了不同生物性状的差异和个性特征。 其三,所有遗传信息表达的中心法是相同的。 2.简述Morgan基因论 经典基因概念:即基因是孤立的排列在染色体上的实体,是具有特定功能的,能独立发生突变和遗传交换的,“三位一体”的、最小的遗传单位。 3.简述“顺反子假说”的主要内容 顺反子理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位被称为交换子。在一个顺反子中有若干个突变单位,最小的

突变单位被称为突变子。在一个顺反子结构区域内,若果发生突变就会导致功能丧失,所以顺反子即基因只是一个具有特定功能的、完整的、不可分割的最小的遗传单位。 4.名词解释:等位基因、全同等位基因、非全同等位基因等位基因(allele):同一座位存在的两个不同状态的基因 全同等位基因(homoallele):在同一基因座位(locus)中,同 一突变位点(site)向不同方向 发生突变所形成的等位基因非全同等位基因(heteroallele):在同一基因座位(locus) 中,不同突变位点(site)发 生突变所形成的等位基因 5.简述DNA作为遗传物质的优点(自然选择的优势) DNA作为主要的遗传物质的优点在于: 1)储存遗传信息量大,在1kb DNA序列中,就可能编码出41000种遗传信息 2)以A / T, C / G 互补配对形成的双螺旋,结构稳定,利于复制,便于转录,可以突变以求不断进化,方便修复以求遗传稳定; 3)核糖的2’ – OH 脱氧,使其在水中的稳定性高于RNA,DNA中有T无U,消除了C突变为U带来进化中的负担

分子遗传学复习题

分子遗传学复习题 名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。 反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。 反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。 核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。 核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。 化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

分子生物学论文

分子生物学课程论文 基因治疗与基因诊断的研究与发展 邓小红临床医学08级3班200805090346 摘要:基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 关键词:基因治疗基因诊断重组DNA 英文题目:Molecular biology course in dissertation Molecular biology curriculum paper gene treatment and gene diagnosis research and developmen t Deng Xiaohong clinical medicine 08 levels of 3 classes 200805090346 Summary: gene-diagnosing and gene therapy in the relatively short time from theoretical ideas into reality, mainly due to the molecular biology of theory and techniques, in particular the recombinant DNA technology is developing rapidly, so that people can build a variety of carriers in the laboratory, cloning and analysis of target genes. The disease can drill down to the molecular level research and has made significant progress. Thus, in the late 1970s was born gene diagnosis (gene diagnosis); subsequently, in 1990, United States implemented the first gene therapy (gene therapy) clinical trials programme. V isible, genetic diagnosis and gene therapy is a modern molecular biology of theory and technology combined with the medicine. Keywords: gene therapy gene-diagnosing recombinant DNA 1.引言 20世纪后半叶以来,由于分子生物学的崛起,人们进入了合成代谢与代谢调节的研究。这一阶段,细胞内两类重要的生物大分子---蛋白质与核酸,成为研究焦点。20世纪50年代初期发现了蛋白质的α螺旋的二级结构形式;更具里程碑意义的是1953年提出的DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础,是生物化学发展进入分子生物学时期的重要标志。 20世纪70年代,重组DNA技术的建立不仅促进了对基因表达调控机制的研究,使基因操作无所不能,而且使人们主动改造生物体成为可能。基因诊断和基因治疗也是重组DNA技术在医学领域应用的重要方面。 随着对各种疑难疾病的深入研究,和分子生物学日新月异的发展,传统的诊断治疗手段无法解决的一些重要问题。通过对生物体在分子水平上的研究,基因诊断与治疗的作用逐渐显露出来,尤其是许多遗传疾病。

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

病理技术的发展与现状

病理技术的发展与现状 病理学是研究疾病发生的原因、发病原理和疾病过程中发生的细胞、组织和器官的结构、功能和代谢方面的改变及其规律。 研究方法 病理学的研究方法多种多样,研究材料主要来自自患病人体(人体病理材料)和实验动物以及其他实验材料如组织培养、细胞培养等(实验病理材料)。 (一)尸体剖检 对死亡者的遗体进行病理剖检(尸检)是病理学的基本研究方法之一。尸体剖检(autopsy)不仅可以直接观察疾病的病理改变,从而明确对疾病的诊断,查明死亡原因,帮助临床探讨、验证诊断和治疗是否正确、恰当,以总结经验,提高临床工作的质量,而且还能及时发现和确诊某些传染病、地方病、流行病、为防治措施提供依据,同时还可通过大量尸检积累常见病、多发病、以及其他疾病的人体病理材料,为研究这些疾病的病理和防治措施,为发展病理学作贡献。显然,尸检是研究疾病的极其重要的方法和手段,人体病理材料则是研究疾病的最为宝贵的材料。 (二)活体组织检查 用局部切除、钳取、穿刺针吸以及搔刮、摘除等手术方法,由患者活体采取病变组织进行病理检查,以确定诊断,称为活体组织检查(biopsy),简称活检。这是被广泛采用的检查诊断方法。这种方法的优点在于组织新鲜,能基本保持病变的真像,有利于进行组织学、组织化学、细胞化学及超微结构和组织培养等研究。对临床工作而言,这种检查方法有助于及时准确地对疾病作出诊断和进行疗效判断。特别是对于诸如性质不明的肿瘤等疾患,准确而及时的诊断,对治疗和预后都具有十分重要的意义。 (三)动物实验 运用动物实验的方法,可以在适宜动物身上复制某些人类疾病的模型,以便研究者可以根据需要,对之进行任何方式的观察研究,例如可以分阶段地进行连续取材检查,以了解该疾病或某一病理过程的发生发展经过等。此外,还可利用动物实验研究某些疾病的病因、发病机制以及药物或其他因素对疾病的疗效和影响等。这种方法的优点是可以弥补人体观察之受限和不足,但动物与人体之间毕竟存在种种差异,不能将动物实验的结果直接套用于人体,这是必须注意的。

相关主题
文本预览
相关文档 最新文档