当前位置:文档之家› 电机软启动器的探讨

电机软启动器的探讨

电机软启动器的探讨
电机软启动器的探讨

电机软启动器的探讨一、前言

随着国民经济的飞速发展,科学技术的日新月异,智能控制系统得

到了广泛的应用。如:智能大厦、无人值守泵站、无人值守供热站、各种遥控调度系统、生产作业自动化等等。这正是国家实现科学技

术现代化的重要标志,也是每一个技术人员肩负的重要责任。

智能控制技术的应用,给我们提出了很多要求。如电网的波动性,

执行机构的智能配套等,都要求越来越严格。作为重要驱动执行机

构的电动机来说,它的控制方式受到广大技术人员的高度重视。既

要为智能控制打下良好基础,又要降低电动机起动时对电网的冲击。所以,不得不在电动机的起动设备上做工作。

鼠笼型异步电动机电子软启动器的诞生给技术人员解决了这个问题。它既能改变电动机的起动特性保护拖动系统,更能保证电动机可靠

起动,又能降低起动冲击,而且配有计算机通讯接口实现智能控

制。

二、电动机起动方式的选择

作为应用最广泛的鼠笼型异步电动机,它采用降压起动的条件:一

是电动机起动时,机械不能承受全压起动的冲击转矩;二是电动机

起动时,其端电压不能满足规范要求;三是电动机起动时,影响其

他负荷的正常运行。

对于降压起动目前有两种方式,一种是降压起动,一种是软起动。

他经过了三个发展阶段,一是“Y-Δ”起动器和自藕降压起动器,

二是磁控式软启动器,三是目前最先进最流行的电子软启动器。电

子软启动器一般都是采用16位单片机进行智能化控制,他既能保证

电动机在负载要求的起动特性下平滑起动,又能降低对电网的冲击,同时,还能实现直接计算机通讯控制,为自动化智能控制打下良好

的基础。

它们的造价比较是:“Y-Δ”起动器须六根出线而且故障率太高,

维修费也高已不常采用,自藕方式每个千瓦80元左右,磁控的每千

瓦150元左右,自藕和磁控的体积较大且故障率较高,维修费较高,电子软启动器每个千瓦在100元到200元之间,一般情况下,一台开

关柜能放多台电子软启动器,节省工程造价,且故障率较低,维修费也低。所以,电子软启动器应是我们首选的目标。

三、电子软启动器的选择

通过以上所述,毋庸置疑地在工程设计和工程改造中,要想改善工艺提高自动化水平,降低成本提高企业效益,对电动机的起动就必须首先采用先进的起动设备——电子软启动器。

在应用电子软启动器时应考虑哪些问题呢?做为软启动器首先要看它的起动性能和停车性能,目前的软启动器有以下五种起动方式:

限流起动顾名思义是限制电动机的起动电流,它主要是用在轻载起动的负载降低起动压降,在起动时难以知道起动压降,不能充分利用压降空间,损失起动力矩,对电动机不利。斜坡电压起动顾名思义是电压由小到大斜坡线性上升,它是将传统的降压起动从有级变成了无级,主要用在重载起动,它的缺点是初始转矩小,转矩特性

抛物线型上升对拖动系统不利,且起动时间长有损于电机。转矩控

制起动用在重载起动,它是将电动机的起动转矩由小到大线性上升,它的优点是起动平滑,柔性好,对拖动系统有更好的保护,它的目

的是保护拖动系统,延长拖动系统的使用寿命。同时降低电机起动

时对电网的冲击,是最优的重载起动方式,它的缺点是起动时间较长。转矩加突跳控制起动与转矩控制起动相仿也是用在重载起动,

不同的是在起动的瞬间用突跳转矩克服电机静转矩,然后转矩平滑

上升,缩短起动时间。但是,突跳会给电网发送尖脉冲,干扰其它

负荷,应用时要特别注意。电压控制起动是用在轻载起动的场合,

在保证起动压降下发挥电动机的最大起动转矩,尽可能的缩短了起

动时间,

是最优的轻载软起动方式。

综上所述不难看出,最适用最先进的起动方式应是电压控制起动和

转矩控制起动及转矩加突跳控制起动。目前的软启动器多是限电流

起动和斜波电压起动,它是最原始最低级最简单的方式(如“ABB”

软起以及国内的大多厂家),还有的是限流起动和转矩加突跳控制起动。唯有“雷诺尔”的软启动器实现了电压控制和纯转矩控制及转

矩加突跳控制起动。“AB”、“施耐德”、“西门子”的是限流起

动和转矩加突跳控制起动。

停车方式有三种:一是自由停车,二是软停车,三是制动停车。电

子软起动带来最大的停车好处就是软停车和制动停车。软停车消除

了由于自由停车带来的拖动系统反惯性冲击。制动停车在一定的场

合代替了反接制动停车。

可靠性的选择:可靠性分三个方面,一是产品的短路自保护,二是

无故障停机保护,三是产品故障率。前两项可通过产品说明书识别,国内产品除“雷诺尔”的自带短路保护外其它的一般都不自带短路

保护,需外加快速熔断器,自动开关不能保护电子软启动器。国外

的“ABB”不自带短路保护,需外加快速熔断器。无故障停机保护看

它的软起是不是带有绿色单元(KGL),所有的电力电子产品世界难

题是无故障停机(干扰停机)现象。目前,市场上流行的电子软起中唯有“雷诺尔”的加装了绿色单元。

智能控制功能的选择:在选择软起要注意它的智能化程度,是否带

微机接口,接口是否带有通讯地址和程序,是否能达到通讯控制以

及故障自珍诊断功能等。目前发现这些功能完整的只有“雷诺尔”

的软起,并且在天津市城市排水微机控制中得到良好应用。其它方

面还要考虑是否保护功能完备和冷却方式以及运行方式等,如:过

电流保护,过压保护,单项接地保护,上下口断相保护,三相不平

衡保护,相位颠倒保护等。冷却方式分机械风冷和自然风冷。柜体

是否需加机械通风,元器件的排布等,机械风冷的柜体加机械通风,软起正上方不能放电器元件,机械风冷的还要考虑倾斜度等。自然

风冷的无此要求。运行方式分在线型和非在线型,选型时尽量选用

非在线型。

四、各品牌的比较

目前电子软启动器国内的生产厂家很多,可说五花八门,虽然多数

没形成品牌效应,但也有一定的市场份额。从技术先进性和应用效

果以及市场占有率来看,在整个国内市场能形成品牌和有影响力的

大约有五家。一是“雷诺尔”,二是“ABB”,三是“施耐德”,四

是“AB”,五是“西门子”。到目前功能最多的、最先进的、最适

用的、市场站有率最高的是中国的“雷诺尔”。它是我国首先通过

中国电工产品认证委员会CCEE安全认证和首家通过ISO9002国际质

量体系认证的,它的起动方式有四种,一是限流起动,二是电压控

制起动,三是转矩控制起动,四是转矩加突跳起动。停车有三种。

一是自由停车,二是软停车,三是制动停车。它是目前国内外唯一

的一个带绿色单元的软启动器,彻底消除了无故障停机现象。“雷

诺尔”、“ABB”均属非在线型,后三种均属在线型。“ABB”的起

动方式是限流型和电压斜坡型,后三种是限流型和转矩加突跳型。停车除“ABB”外都有制动停车。价格比较“雷诺尔”的约100~130元/千瓦,后四种约在案180~220元/千瓦。

五、结论

通过论述,电动机的降压起动方式经过了“Y-Δ”起动器和自藕降压起动器到磁控式软启动器,目前又发展到电子软启动器。所以在工程应用中,当电动机在直接起动不能满足要求时,首先考虑的是电子软启动器。这是科技发展的历史阶段,是为今后的智能控制系统化打下良好基础的必然阶段。

各大公司电机软起动器的选型 新

软起动器的选型
2007年8月8日

鼠笼电机-电机端子的不同接法
星形连接
三角形连接
U1 V1 W1
U1 V1 W1
W2 U2 V2
=绕组
W2 U2 V2
3KW以下电机和690V电机常用
较大的电机常用

不同的起动方式-市场趋势
直接起动 星-三角起动 自耦变压器起动 绕线转子电机起动 双绕组电机起动 变频起动 软启动器起动
= 技术角度的市场趋势

起动过程中 通常的问题
直接起动 星-三角起动
皮带 打滑 及轴 承上 的张 力
Yes
中等
高的 冲击 电流
Yes
No
对轴 承和 齿轮 箱的 磨损
停车
时对 货物/ 产品 的损

Yes Yes 中等 Yes
管道 系统 停车 时的 水锤 效应
Yes
Yes
自耦变压器起动
中等 中等 中等 Yes
Yes
绕组转子电机起动 No
No
No No
Yes
转换 瞬间 峰值
Yes Yes
Yes
Yes
双绕组电机起动
No 中等 中等 Yes
Yes Yes
变频器起动 软启动器起动
No No No No
No No 最好方案 No
No No
减弱 No

各品牌软起动器 的型号规格

ABB软起型号定义
PSS 30/52 - 500L
系列号 外接额定电流
内接额定电流(外接的√3倍)
主回路电压500 or 690 V
控制回路电压 F=110-120V, L=220-240V
由型号确定产品一目了然

三相异步电动机软启动器的设计

第2期(总第165期) 2011年4月机械工程与自动化 M ECHAN IC AL EN GIN EERIN G & A U TO M A T IO N N o.2 Apr. 文章编号:1672-6413(2011)02-0144-02 三相异步电动机软启动器的设计 刘芳霞 (山东经贸职业学院,山东 潍坊 261011) 摘要:三相异步电动机直接启动时,启动电流过大,转矩较小,给用电设备及电网带来了一定的影响。通过采用模糊控制与P LC 相结合的方法实现了电机的软启动,给出了软启动控制系统的硬件设计与软件设计,并用M A T L A B 软件进行实验仿真,实验结果验证了系统的有效性及理论的正确性。关键词:软启动;三相异步电动机;仿真中图分类号: T M 343+ .2 文献标识码: A 收稿日期: 2010-08-31;修回日期: 2010-10-27 作者简介:刘芳霞(1975-),女,山东聊城人,讲师,硕士。 0 引言 三相异步电动机以其低成本、高可靠性和易维护等特点,在电力拖动系统中得到了广泛的应用。但在其直接启动瞬间启动电流大约是额定电流的6倍,带负载启动时甚至达到8倍。大的启动电流会给电网及用电设备带来很大的负面影响,使电网电压产生波动,加速电动机绕组的绝缘老化,大大降低了电动机的使用寿命,导致大量的能量被消耗。针对上述问题,本文设计了一个软启动系统,给出了其硬件设计及软件设计,并通过实验验证了系统的有效性及理论的正确性。1 电机软启动系统结构 三相电动机软启动系统结构图见图1。采用晶闸管反并联电路给电动机定子提供电源,通过控制晶闸管触发角的大小来改变导通角的大小,使电动机电压平稳增加,从而调节电动机定子的端电压,使电动机的启动电流缓慢上升,减少电流对电网及电动机的影响,这一过程称为软启动。软启动的实现方法如下:通过对电路电压、电流的检测,将检测的信号模糊处理,经过A /D 模块转化为数字信号,送入PLC 控制器进行处理,用得到的信号来控制晶闸管的触发角,从而控制电动机的端电压,达到控制启动电流的目的 。 图1 三相电动机软启动结构图 2 软启动控制电路硬件设计 软启动器是一种交流调压装置,在本系统中主要是实现电机的软启动、停机及保护等多种功能。由于PLC 具有可靠性高、抗干扰能力强、功能完善、编程 简单、具有网络通讯功能等特点,所以本系统采用松下电工FP0系列可编程控制器作为主控制器,PLC 结构框图如图2所示。它的主要作用是:将模糊化处理得到的信号经过A /D 模块转化保存在数据寄存器中,

电机软启动器的探讨参考文本

电机软启动器的探讨参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电机软启动器的探讨参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、前言 随着国民经济的飞速发展,科学技术的日新月异,智 能控制系统得到了广泛的应用。如:智能大厦、无人值守 泵站、无人值守供热站、各种遥控调度系统、生产作业自 动化等等。这正是国家实现科学技术现代化的重要标志, 也是每一个技术人员肩负的重要责任。 智能控制技术的应用,给我们提出了很多要求。如电 网的波动性,执行机构的智能配套等,都要求越来越严 格。作为重要驱动执行机构的电动机来说,它的控制方式 受到广大技术人员的高度重视。既要为智能控制打下良好 基础,又要降低电动机起动时对电网的冲击。所以,不得 不在电动机的起动设备上做工作。

鼠笼型异步电动机电子软启动器的诞生给技术人员解决了这个问题。它既能改变电动机的起动特性保护拖动系统,更能保证电动机可靠起动,又能降低起动冲击,而且配有计算机通讯接口实现智能控制。 二、电动机起动方式的选择 作为应用最广泛的鼠笼型异步电动机,它采用降压起动的条件:一是电动机起动时,机械不能承受全压起动的冲击转矩;二是电动机起动时,其端电压不能满足规范要求;三是电动机起动时,影响其他负荷的正常运行。 对于降压起动目前有两种方式,一种是降压起动,一种是软起动。他经过了三个发展阶段,一是“Y-Δ”起动器和自藕降压起动器,二是磁控式软启动器,三是目前最先进最流行的电子软启动器。电子软启动器一般都是采用16位单片机进行智能化控制,他既能保证电动机在负载要求的起动特性下平滑起动,又能降低对电网的冲击,同

电机软启动器原理图

电机软启动器原理图 6kV电机软启动器控制原理图

软启动器在冷剪控制系统中的应用 1 前言 冷剪是棒材生产线上必不可少的设备,在连续剪切线上,由于对冷剪定位控制的实时性和精确性要求非常高,通常情况下采用变频器或直流调速装置进行控制;对于使用定尺机完成棒材组长度定位的生产线来说,由于要等到棒材组在辊道上完全停止后才进行剪切,对冷剪定位控制的实时性和精确性不要求非常高,这时对交流电机可考虑使用软启动器控制,设备投资大大减少。 2 软启动器概述 软起动器是电力电子技术与自动控制技术相结合的产物,其电路原理如图1所示。将三组反并联晶闸管串接于供电电源与被控电机之间。起动时,由电子电路控制晶闸管的导通角,使电机的端电压逐渐增大,直至全电压,使电机实现无冲击软起动;停机时,则控制晶闸管的关断速度,使电机的端电压由全电压逐渐下降至零,实现软停车,可见,软起动器实际上是一个晶闸管交流调压器。改变晶闸管的触发角,就可调节晶闸管调压电路的输出电压。在整个起动过程中,软起动器的输出是一个平滑的升压过程(且可具有限流功能),直到晶闸管全导通,电机在额定电压下工作。 图1是ABB PSD系列软启动器产品的原理图,图中的元件如下:E1:电路板;F6:温度监视器;J1–J3:连接端子;K4:继电器,在运行状态时动作;K5:继电器,在全压状态时(Ue=100%)动作;K6:继电器,故障信号;T2:电流互感器;T5:控制变压器;V1–V6:晶闸管;X1–X3:端子板。另外,根据功率范围,还有两组或三组风扇作为标准配置。根据不同的应用要求,还可选择过载保护器。在图1中,V2、V4、V6三只晶闸管依次对应于U、V、W三相电源的正半周,开通角α相同,故三相的触发脉冲应依次相差120o;每相的正、负半周依次分别由反并联的两只晶闸管触发控制,所以同一相的两个反并联晶闸管触发脉冲应相差180o,触发顺序是V2、V5、V4、V1、V6、V3,依次相差60o。

电机软启动器探讨

一、前言 随着国民经济的飞速发展,科学技术的日新月异,智能控制系统得到了广泛的应用。如:智能大厦、无人值守泵站、无人值守供热站、各种遥控调度系统、生产作业自动 化等等。这正是国家实现科学技术现代化的重要标志,也是每一个技术人员肩负的重要责任。 智能控制技术的应用,给我们提出了很多要求。如电网的波动性,执行机构的智 能配套等,都要求越来越严格。作为重要驱动执行机构的电动机来说,它的控制方式受到 广大技术人员的高度重视。既要为智能控制打下良好基础,又要降低电动机起动时对电网 的冲击。所以,不得不在电动机的起动设备上做工作。 鼠笼型异步电动机电子软启动器的诞生给技术人员解决了这个问题。它既能改变 电动机的起动特性保护拖动系统,更能保证电动机可靠起动,又能降低起动冲击,而且配 有计算机通讯接口实现智能控制。 二、电动机起动方式的选择 作为应用最广泛的鼠笼型异步电动机,它采用降压起动的条件:一是电动机起动时,机械不能承受全压起动的冲击转矩;二是电动机起动时,其端电压不能满足规范要求;三是电动机起动时,影响其他负荷的正常运行。 对于降压起动目前有两种方式,一种是降压起动,一种是软起动。他经过了三个 发展阶段,一是“Y-Δ”起动器和自藕降压起动器,二是磁控式软启动器,三是目前最先

进最流行的电子软启动器。电子软启动器一般都是采用16位单片机进行智能化控制,他既能

保证电动机在负载要求的起动特性下平滑起动,又能降低对电网的冲击,同时,还能实现直接计算机通讯控制,为自动化智能控制打下良好的基础。 它们的造价比较是:“Y-Δ”起动器须六根出线而且故障率太高,维修费也高已不常采用,自藕方式每个千瓦80元左右,磁控的每千瓦150元左右,自藕和磁控的体积较大且故障率较高,维修费较高,电子软启动器每个千瓦在100元到200元之间,一般情况下,一台开关柜能放多台电子软启动器,节省工程造价,且故障率较低,维修费也低。所以,电子软启动器应是我们首选的目标。 三、电子软启动器的选择 通过以上所述,毋庸置疑地在工程设计和工程改造中,要想改善工艺提高自动化水平,降低成本提高企业效益,对电动机的起动就必须首先采用先进的起动设备——电子软启动器。 在应用电子软启动器时应考虑哪些问题呢?做为软启动器首先要看它的起动性能和停车性能,目前的软启动器有以下五种起动方式: 限流起动顾名思义是限制电动机的起动电流,它主要是用在轻载起动的负载降低起动压降,在起动时难以知道起动压降,不能充分利用压降空间,损失起动力矩,对电动机不利。斜坡电压起动顾名思义是电压由小到大斜坡线性上升,它是将传统的降压起动从有级变成了无级,主要用在重载起动,它的缺点是初始转矩小,转矩特性抛物线型上升对拖动系统不利,且起动时间长有损于电机。转矩控制起动用在重载起动,它是将电动机的起动转矩由小到大线性上升,它的优点是起动平滑,柔性好,对拖动系统有更好的保护,

软启动器常见故障

软启动器常见故障 软启动器的常见故障及处理措施 1、在调试过程中出现起动报缺相故障,软启动器故障灯亮,电机没反应。出现故障的原因可能是: ①起动方式采用带电方式时,操作顺序有误。(正确操作顺序应为先送主电源,后送控制电源) ②电源缺相,软起动器保护动作。(检查电源)③软起动器的输出端未接负载。(输出端接上负载后软起动器才能正常工作) 2、用户在使用过程中出现起动完毕,旁路接触器不吸合现象。故障原因可能是:①在起动过程中,保护装置因整定偏小出现误动作。(将保护装置重新整定即可)②在调试时,软起动器的参数设置不合理。(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置)③控制线路接触不良。(检查控制线路) 3、用户在起动过程中,偶尔有出现跳空气开关的现象。故障原因有:①空气开关长延时的整定值过小或者是空气开关选型和电机不配。(空气开关的参数适量放大或者空气开关重新选型)②软起动器的起始电压参数设置过高或者起动时间过长。(根据负载情况将起始电压适当调小或者起动时间适当缩短)③在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令,出现提前旁路现象。(建议用户不要同时起动大功率的电机)④起动时满负载起动。(起动时尽量减轻负载) 4、用户在使用软起动器时出现显示屏无显示或者是出现乱码,软起动器不工作。故障原因可能是: ①软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松。(打开软起动器的面盖将显示屏连线重新插紧即可) ②软起动器控制板故障。(和厂家联系更换控制板) 5、软起动器在起动时报故障,软起动器不工作,电机没有反应。故障原因可能为:①电机缺相。(检查电机和外围电路)②软起动器内主元件可控硅短路。(检查电机以及电网电压是否有异常。和厂家联系更换可控硅)③滤波板击穿短路。(更换滤波板即可) 6、软起动器在起动负载时,出现起动超时现象。软起动器停止工作,电机自由停车。故障原因有: ①参数设置不合理。(重新整定参数,起始电压适当升高,时间适当加长) ②起动时满负载起动。(起动时应尽量减轻负载)

软启动器原理、电机软起动器工作原理

软启动器原理、电机软起动器工作原理 软启动器(软起动器)工作原理 软启动器(软起动器)一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。 1.什么是软起动器?它与变频器有什么区别? 软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增

电机软启动器的故障分析及改进措施分析

电机软启动器的故障分析及改进措施分析 发表时间:2019-07-02T14:37:29.067Z 来源:《河南电力》2018年23期作者:邓树良 [导读] 电机软启动器是用来控制交流异步电动机的设备,结合电力技术、微处理技术等来制造的拥有着较为先进的技术水平的启动设备。(莱钢集团矿山建设有限公司山东济南市莱芜区 271199) 摘要:随着我国电力电子技术与微机技术的不断发展,电机软启动器也在随之不断革新。如今,传统软启动器在运行过程中缺点也渐渐暴露了出来,所以,对于电机软启动器的更新和改进是迫在眉睫的。本文主要阐述了电机软启动器的主要问题以及相关的改进方法。期望电机软启动器的改进能够更加顺利地进行。 关键词:电机;软启动器;故障;改进 引言 电机软启动器是用来控制交流异步电动机的设备,结合电力技术、微处理技术等来制造的拥有着较为先进的技术水平的启动设备。电机软启动器可以高效地对交流异步电进行控制,替代了传统的降压设备。电机软启动器能够有效地降低了大功率电动机启动时电流对设备冲击较大造成损耗的问题,极大地保障了设备的使用寿命。 一、电机软启动器简介 (一)软启动器的工作原理 可以通过改变晶闸管的导通角来对电压进行控制。通常,两个晶闸管进行反并联来组成软启动器的主要回路,在运行过程中,收到控制的指令时,按照用户的指令来自动控制晶闸管,让电机能够按照计划启动。完成启动之后,处理器发出指令,让旁路真空接触器参与到工作当中,并使晶闸管暂时停止运行。当需要停车的时候,下达停车的命令,中央处理器使真空接触器断开,并且使晶闸管进行与电机启动时正好相反方向的脉冲移相,通过晶闸管做到软停车。而需要进行惯性停车时,处理器可以直接控制真空接触器,使电机断电,从而做到惯性停车。 (二)晶闸管 上个世纪70年代,美国某公司推出了第一代软启动器,一经问世便迅速开始普及。晶闸管是软启动器的开关装置,在其运行过程中,不但能在起动时对电动机的电压进行有效控制,还能在电动机在运行时,提供全电压。简易的电路以及操作的便捷都是它的优势,对电动机的日常工作进行有效地保护,保证了电动机的稳定工作。不过也有着消耗大、散热性差、设备体积较大等不足,使软启动器在运用上也有着一些限制[1]。 二、电机软启动器的故障分析 某部门有一台功率为120千瓦的磷酸料浆泵电机设备,并且以pss250/515型的软启动器来对其进行控制。某天,工作人员在控制室发现了关于电机的电流表中没有相关显示,便对设备进行检查,然后得知电机已经停止工作。之后尝试重新启动设备也没能启动电机,相关检修部门对配电室进行检测时也没有看到软启动器的报警和显示故障。而对于电机的回路系统检查过程中,发现了中间继电器燃烧过,并且对中间继电器进行更换之后尝试重新启动却还是无法启动。对电机的控制部件也未检查出故障,而软启动器也一直没有故障的显示。按照电动机的原理,从软启动器的旁路接触器停止工作的迹象分析,需要先对软启动器中的旁路继电器输出端子工作结束之后的关闭状态进行确认,并将其启动方式更换成电压斜坡。在这些都做完后,需要把万用表的档位旋钮设置到RX1电阻,之后将表笔搭在9、10号端子,并且对端子的接通状况进行检测,检测没有差错再次启动软启动器。通过万用表的显示结果来对内部继电器的输出节点的闭合情况进行判断,这也关系着旁路接触器能否正常运作。发生故障的原因便是设备使用时间已久,电机软启动器中的继电器节点频繁断开,也有可能是由于电弧烧毁了软启动器中内部继电器的触头,从而导致了设备的发热和故障的产生,致使继电器线圈中线圈被烧毁,旁路接触器无法闭合,软启动器也不能正常地运行。所以之后便要对软启动器的电路状况进行准确判断,为了使设备更加安全地运行,可以将负载电缆拆掉,并在软启动器的输出端接上,以灯泡来模拟电机的运转过程的负载。如果在软启动器启动得电之后,灯泡渐渐发光并且越来越亮,便说明了软启动器的功能是健全的[2]。 三、软启动器的升级 在设备的运行过程中,软启动充分地做到了对设备的保护效果,降低了大功率电流对于机械的冲击,使设备能够更顺利稳定地进行。不过,随着如今企业对于设备的先进程度要求越来越高,为了解决软启动器中存在的一些问题,对其进行升级是十分必要的。 (一)升级的重要性 软启动器的升级要针对于电路的简化、提高其稳定性、降低故障发生频率、强化对于晶闸管的保护等问题进行解决。能够有效地避免晶闸管由于电压导致的故障,提高电机运行的稳定性和安全性,降低了事故的发生也间接减少了维修成本,增加经济效益。3RW34型软启动器当结合一系列的电气回路时,才能够发挥出应有的功效,使设备能够更加高效地运行。 (二)软启动器的升级措施 通过不断地试验,西门子3RW44型软启动器能够很好地将传统软启动器进行替代,这种软启动器是最新的旁路型软启动器,不仅继承了传统的软启动器的优点,也通过相关研究经验,功能更加完善,在技术上也有很大突破,不仅解决了传统软启动器的缺点,工作稳定性也更高。内部智能控制器能够更加全面地保护电机,而这些保护功能在传统的软启动器中是没有的,只能是在外部电路中添加保护组件。新型软启动器的运用不需要这么多外部电路保护组件,不仅减少了发生故障的概率,也节约了成本,以完善的保护能力减少了对设备的损伤。 新型的软启动器不同于传统的电压斜坡启动方式,具有着多种启动模式,而这种更加灵活的启动模式也更符合企业的需求。即便是电机类型不一样,新型软启动器也能够通过不同的启动模式来对其进行更好的保护,像是磨碎机这种有着反向负载特点的电机可以设置成图条脉冲和电压斜坡结合的控制方式,来对电机进行更具有针对性的保护。 引进了先进的微控制技术,不但软启动器的启动方式和指标能够以自行设置,还能进行对电机与软启动器的运行状况进行实时监测,

异步电动机软启动分析

异步电动机软启动分析 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。 一、软启动的现状 交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的两倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。 对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器将压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、转子串电阻分级起动。但这些传统的起动方法都存在一些问题。 1.定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时、却付出了较大的代价- 起动转矩降低得更多,一般只能用于空载和轻载。 2.Y-△起动:丫-△起动方法虽然简单,只需一个Y-△转换开关。但是Y-△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于△接法380v电动机。 3.自祸变压器将压起动:自祸变压器将压起动,比起定子串接电抗器起动,当限定的起动电流相同时,起动转矩损失的较少;比起卜△起动,有几种抽头供选用比较灵活,并且巩/峨较大时,可以拖动较大些的负载起动。但是自祸变压器体积大,价格高,也不能拖动重负载起动。 4.延边三角形起动:采用延边三角形起动鼠笼式异步电动机,除了简单的绕组接线切换装置之外,不需要其他专用起动设备。但是,电动机的定子绕组不但为△接,有抽头,而且需要专门设计,制成后抽头又不能随意变动。 随着电力技术(尤其是集成电路、微处理器以及新一代电力电子器件)的不断发展,异步电动机起动过程中的起动电流过高,起动转矩过小等问题得到了很好的解决。 从20世纪70年代开始推广利用晶闸管交流调压技术制作的软起动器,以及采用微控制器代替模拟控制电路,发展成为现代的电子软起动器。 二、软启动的特点 电子软起动器相对于传统的起动方式,其突出的优点体现在: 1.电力半导体开关是无电弧开关和电流连续的调节,所以电子软起动器是无级调节的,能够连续稳定调节电机的起动,而传统起动的调节是分档的,即属于有级调节范围。 2.冲击转矩和冲击电流小。软起动器在起动电机时,是通过逐渐增大晶闸管的导通角,使电机起动电流限制在设定值以内,因而冲击电流小,也可控制转矩平滑上升,保护传动机械、设备和人员。

电动机软启动器和断路器的选择

电动机软启动器和断路器的选择 三相电流=功率/1.7321*电压*功率因素(按0.8~0.9) 电流=功率/1.7321*电压*功率因素,电机一般取0.85. 即 22/(0.38*1.732*0.85)≈39.33A,如果考虑效率(即电动机实际输出功率有22kW), 一般再取0.9的系数,即39.33/0.9=43.7A。所以在没有太准确要求的场合,一般电机电流即按2倍功率数。 软启动和功率没有必然关系,软启动主要是体现设备运行环境的优劣。 电机的启动方法比较; 1、用变频器软起最好,启动电流最小,运行中根据需要调速,启动和运行中都节约电能,可以延长设备的使用寿命,是现代提倡的启动方法。缺点是维护复杂,技术含量高,一次性投资大。 2、用星三角启动次之,启动电流中等,运行不节约电能,是以前和现在都是常用的方法。 3、直接启动没有维修量,不花经济,但需要一定的条件:1.由于电动机直接启动电流是正常运行的5倍,供应这台电动机的变压器容量必须要有电动机容量的5倍以上,变压器小了,强大的启动电流将使变压器电压严重下降影响它人使用,自己的电动机加长启动时间,使电动机发热烧毁或不能启动。2.供应这台电动机的线路不能偏长、导线截面积不能偏小,否则,强大的启动电流导线电压严重下降加长电动机启动时间,使电动机发热烧毁或不能启动。3、启动必须用接触器、空气开关、铁壳开关等有储能功能的开关,不能使用胶木闸刀等直接用人力开合的开关,速度慢了容易引起弧光短路。满足以上三个条件,可以直接控制。 恩···这个原理是控制降压启动器,就是设定电流或者电压,到达设定电压或电流后,然后旁路吸合,启动器断开····全压运行···在选型上可以随便点,在功率选择上,要稍高,楼上那个 1.2-1.5倍还是可以的,你的37KW选择45左右就好··也不用太高·· 在星三角起动中30KW的电动应选多大的主接触器,星点用的又是多大,是CJ20-100A的好还是CJ20-160A的好.前题是经济实会耐用.

软启动器在风机上的应用

软启动器是用于电动机启动的产品。它的核心部件是可控硅以及相关功能的软、硬件。软启动器由三对反并联的晶闸管串接组合而成,通过控制其触发角改变输入电压,以达到控制电动机的启动特性。在启动离心风机和水泵等负载时,与传统的接触器、星/三角和自耦降压启动等相比有很多优点。其启动和运行参数可调节,因此在安装、调试和使用环境上都与传统的电机启动器有很大区别。 一、软启动基本参数 1.软启动与其它启动方式的比较 直接启动也称全压启动,启动电流一般为额定电流的4~7倍,对电网及用电设备造成很大冲击,小容量的电机一般采用直接启动。 对于大、中容量的电机,当其容量超过供电变压器的5%~25%时,一般应采用降压启动,降压启动方式有Y-△降压启动、自耦降压启动等。虽然降压启动电流较低,但也存在冲击电流,会对电网及设备造成危害。 为此研制了电机软启动器,它能实现无级加速的启动,对电网及设备的冲击相对较弱。软启动与其它启动方式的比较如图所示。

2.软启动(西安西驰电气CMC-M系列数码智能型电机软起动器)常见启动方式 软起\软停电压(电流)特性曲线

CMC-M 软起动器有多种起动方式:限流起动、电压斜坡起动、电流斜坡起动;多种停车方式:自由停车、软停车、制动刹车、软停+制动刹车。用户可根据负载不同及具体使用条件选择不同的起动方式和停车方式。 (1)、限流软起动 使用限流起动模式时,斜坡时间设置为零,软起动器得到起动指令后,其输出电压迅速增加,直至输出电流达到设定电流限幅值Im ,输出电流不再增大,电动机运转加速持续一段时间后电流开始下降,输出电压迅速增加,直至全压输出,起动过程完成。 注: “---”表示用户自己根据需要进行设定(下同)。 (2)、电压斜坡起动

(完整版)电工们常用的五种电机软启动器接线图

电工们常用的五种电机软启动器接线图 软启动器工作原理 软起动器(软启动器)是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。软启器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。常用的五种电机软启动器接线图 一、CMC-L系列数码型电机软启动器是一种将电力电子技术,微处理器和自动控制相结合的新型电机起动、保护装置。它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星/三角起动、自耦减压起动等传统起动方式起动电机

而引起的机械与电气冲击等问题,并能有效地降低起动电流及配电容量,避免增容投资。 1、CMC-L系列数码型电机软启动器基本接线原理图:软起动器端子1L1、3L 2、5L3接三相电源,2T1、4T2、6T3接电动机。当采用旁路接触器时,可通过内置信号继电器K2控制旁路接触器。 2、CMC-L系列数码型电机软启动器基本接线示意图: 3、CMC-L系列数码型电机软启动器典型应用接线图:注意:1.上图所示为单节点控制方式。接点闭合软起动起动,接点打开软起动器停止。但要注意这种接线LED面板起动操作无效。端子3、 4、5起停信号是一个无源节点。2.PE接地线应尽可能短,接于距软起动器最近的接地点,合适的接地点应位于安装板上紧靠软起动器处,安装板也应接地,此处接地为功能地而不是保护接地。3. 电流互感器副边线径不小于2.5mm2。二、CMC-M系列数码智能型电机软启动器是一种将电力电子技术,微处理器和自动控制相结合的新型电机起动、保护装置。它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星/三角起动、自耦减压起动等传统起动方式起动电机而引起的机械与电气冲击等问题,并能有效地降低起动电流及配电容量,避免增容投资。1、基本接线原理图软起动器端子1L1、3L2、5L3接三相电源,2T1、4T2、6T3接电动机。软起动器可通过参数

软启动

1.什么是软起动器?它与变频器有什么区别? 软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为SoftStarter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。 (3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。 (4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。 3.软起动与传统减压起动方式的不同之处在哪里? 笼型电机传统的减压起动方式有Y-Δ起动、自耦减压起动、电抗器起动等。这些起动方式都属于有级减压起动,存在明显缺点,即起动过程中出现二次冲击电流。软起动与传统减压起动方式的不同之处是: (1)无冲击电流。软起动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。 (2)恒流起动。软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。 (3)根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。

电机软启动器的故障分析及优化

在工业生产中,大功率电机在启动的时候会出现电流负载以及冲击电网设备的情况。而电机软启动器的应用有效的减少了这种情况,电机软启动器是利用电子以及微处理等技术结合现代化的控制理论设计出的一种新型电机启动设备,可以有效的控制异步电机在启动时所产生的启动电流。文章以某工业生产企业中两台大功率电机的软启动器出现的故障为例,分析故障的原因,提出相应的优化方案,仅供参考。 1.电机软启动器故障事例一 1.1 故障的发生一台185kW 电动机的突然出现自行运转启动,但是当时操作工并未进行启动操作,且现场按停止按钮也无法停下设备,检查PLC的远程控制也未发出启动命令,通过检查之后,排除了外部因素导致的突然启动。将设备断电后,然后使用万用表对软启动进行检测,用万用表检测软启动器的模块或可控硅是否击穿,及他们的触发门极电阻是否符合正常情况下的要求(一般在20-30欧左右),发现软启动器的A相和B相晶闸管导通,因设计图中软启动上侧未设计主接触器,而是断路器直接连接软启动器电源侧,在软启两相晶闸管击穿后现场电机带两相电缺相运行,险些造成人员及设备损坏。 1.2 解决措施该设备为破碎机,属于重载设备,且根据记录显示,这个设备在短时间内有多次启停记录,而软启动可控硅属于电子产品,易损坏,造成软启动可控硅损坏的原因有电机在起动时,过电流将软起动器击穿、起动频繁,高温将可控硅损坏,滤波板损坏(更换损坏元件)输入缺相等。而该设备的频繁启停导致软启动器可控硅过热损坏。通过这一系列的判断和分析后,经过更换电机软启动器

之后,电机设备可以正常的启动和运行,确定了故障的原因正是上述因素造成的{1}。 2.电机软启动器故障事例二 2.1 故障的出现在进行企业生产的时候,操作人员在控制室发现某一监测电机运行的电流表并没有显示电流,因此就到现场进行检查,发现这一台电机并没有工作,然后按下开启按钮后,电机依然没有运行。当检修人员去配电室进行检查后,发现电机软启动器以及保护器并没有故障报警,也没有显示故障,直到检查控制器的元件时闻到很浓的烧焦味道,经过仔细的检查,发现在ka1中间继电器上有一些焦黑的痕迹,而旁路接触器没有吸合。即使在更换了一个继电器之后,设备也依然不能运行。然后又检查了电机的其他元件,没有发现其他的故障情况。 2.2 对产生故障的原因进行分析首先需要根据旁路接触器不吸合的情况进行分析,确定软启动器中旁路继电器上的输出端子在设备启动时的运行状态。通过更换启动方式,同时将万用表的电阻档调到了RX1档,利用万用表来检查输出端子的连接情况。检查之后再次开启软启动器,十几秒后,万用表的显示上并没有位置变化,所以,根据这种情况,判断出这个继电器中的输出端出现问题,不能顺利的进行闭合,从而使旁路继电器不能正常的运行,影响到电机的启动。因为长时间的不断连接和闭合,继电器触点过热出现损伤从而使电阻变大,使继电器线圈的电压变低,进而被烧毁,影响到接触器的吸合功能,也就出造成软启动器不能正常的运行。 有了判断之后,就需要检查软启动器中的可控硅和相关的电路是不是

三相异步电动机软起动的应用

三相异步电动机软起动的应用 夏玉权 大唐甘肃发电有限公司八〇三热电厂 【摘要】三相异步电动机的起动电流高达额定电流的5~8倍,对电网造成较大干扰,尤其在工业领域中的重载起动,有时可能对设备安全构成严重威胁。利用软起动技术不仅实现在整个起动过程中无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数,如限流值、起停时间等,以达到最佳的起停状态。 【关键词】电动机;软起动 1 前言 三相异步电机由于结构简单、控制维护方便、性能稳定、效率高等优点而被广泛地应用于各种机械设备的拖动中。因其直接起动时产生的冲击电流对电网及其负载造成冲击,同时由于起动应力较大,使负载设备的使用寿命降低,因此常采用降压起动方式来减少影响。但是,传统的降压起动方式,如星三角起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重、损耗大,要么起动力矩小、维修率高等等,都不尽人意。随着电子技术的发展,使用软起动器可以无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数达到最佳的起停状态,从而延长机械设备的使用寿命,减少设备的维修量,提高经济效益。正是利用其无冲击而平滑起动电动机,延长设备的使用寿命的优点,我厂(大唐803发电厂)排渣泵、冲灰泵电动机等使用了异步电动机软起动技术,大大增加了其使用寿命。随着我厂2×330MW 机组的投运,软起动技术应用到我厂新机组是一种趋势,对于频繁操作的重要设备,既可以保证系统的安全稳定,又可以保证设备的使用寿命,降低经济费用。 2 软起动的基本原理 软起动是指运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压的起动方法。软起动器是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,它的主要构成是串接于电源与被控电机之间的三相反并联晶闸管及其电子控制电路,通过运用不同的方法,控制三相反向并联晶闸管的导通角,使被控电动机的输入电压按不同的要求而变化,就可实现不同的功能。如图(一)所示。

市场上常用的五种电机软启动器接线图

一、CMC-L系列数码型电机软启动器是一种将电力电子技术,微处理器和自动控制相结合的新型电机起动、保护装置。它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星/三角起动、自耦减压起动等传统起动方式起动电机而引起的机械与电气冲击等问题,并能有效地降低起动电流及配电容量,避免增容投资。 1、CMC-L系列数码型电机软启动器基本接线原理图: 软起动器端子1L1、3L2、5L3接三相电源,2T1、4T2、6T3接电动机。当采用旁路接触器时,可通过内置信号继电器K2控制旁路接触器。 2、CMC-L系列数码型电机软启动器基本接线示意图:

3、CMC-L系列数码型电机软启动器典型应用接线图:

注意: 1.上图所示为单节点控制方式。接点闭合软起动起动,接点打开软起动器停止。但要注意这种接线LED面板起动操作无效。端子3、4、5起停信号是一个无源节点。 2.PE接地线应尽可能短,接于距软起动器最近的接地点,合适的接地点应位于安装板上紧靠软起动器处,安装板也应接地,此处接地为功能地而不是保护接地。 3. 电流互感器副边线径不小于2.5mm2。 二、CMC-M系列数码智能型电机软启动器是一种将电力电子技术,微处理器和自动控制相结合的新型电机起动、保护装置。它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星/三角起动、自耦减压起动等传统起动方式起动电机而引起的机械与电气冲击等问题,并能有效地降低起动电流及配电容量,避免增容投资。 1、基本接线原理图 软起动器端子1L1、3L2、5L3接三相电源,2T1、4T2、6T3接电动机。软起动器可通过参数设定选择是否检测相序。当采用旁路接触器时,可通过内置信号继电器K2控制旁路接触器。 2、基本接线示意图

电机软启动

电动机软起动器的使用 焦化项目部王京辉 摘要:针对焦化企业使用的异步电机,通过分析软起动器的工作原理及常用的几种起动方式,阐述了软起动器在使用及选型时应注意事项。 关键词:软起动器、起动转矩、冲击电流、可控硅、自由停车、软停车、制动停车。 一、异步电机由于结构简单、控制方便、效率高等优点正在被焦化企业广泛地应用于机械设备的拖动中。 在实际使用中,电动机在起动或停止过程中存在着一系列问题。全压起动时要产生较大的冲击电流(一般为额定电流的5~8倍)。电动机容量越大,起动时冲击电流对电网及其负载冲击就越大,特别是大容量电机直接起动会对电网及其他负载造成干扰,甚至危害电网的安全运行;同时由于起动应力较大,使负载设备的使用寿命降低。在停机时,如果拖动系统突然失去转矩,靠系统的摩擦转矩克服系统的惯性滑行停车,也给拖动系统带来很多问题。解决的方法有两个:一是增大配电容量;二是安装限制电机起动电流的设备。如果仅仅为起动电机而增大配电容量,从经济角度来说,显然不可取。为此,在设计时,对低压大电机需要配备限制电机起动电流的起动设备,常用的有Y/Δ起动,自藕降压起动等方式。这些方法虽然靠接触器切换实现降压启动,可以达到降低电流的目的,但并没有从根本上解决起动瞬时尖峰电流冲击问题。起动转距基本固定不可调,起动过程中都存在二次冲击电流,对负载机械有冲击转矩,且受电网波动的影响,一旦出现电网电压向下浮动,会造成电机堵转、起动过程接触器带负荷切换,易造成触点损坏等方面问题。严重时烧毁开关、接触器、电动机,影响其它设备运行。随着电气技术的发展,软起动器作为一个新型电动机起动装置能够克服以上缺点,它是一种集电机软起动、软停车、节能和多功能保护于一体的新型电机控制装置。目前,异步电机的降压起动设备正逐步被软起动器取代。 二、软起动器的工作原理及主要特点 软起动器的工作原理:软起动主要由串接于电源与被控电动机之间三对反并联可控硅调压电路构成。现代软起动器基本上都采用了电力电子技术和微机控制技术,以单片微机作为中央控制器控制核心来完成测量及各种控制算法,因此,软起动器具备了很强的功能和灵活性。整个起动过程是数字化程序软件控制下自动进行。利用三对可控硅的电子开关特性,通过起动器中的单片机,控制其触发脉冲的迟早来改变触发角的大小。而触发导通角的大小,又改变可控硅的导通时间,最终改变加到定子绕组的三相电压的大小。 软起动器的主要特点:具有通过软启动器输出电压平稳升降和无触点通断,实现电机使用最小起动电流,得到最佳转矩,平稳起停;减小电流对电网冲击,降低设备振动噪声,延长电机及相关设备的使用寿命;所有参数均通过键盘设置,中文液晶显示;自带0-20mA电流标准信号;对输入三相电源无相序要求,起动时间、停车时间可数字修改;动态故障记忆,便于查找故障原因;可在线查找最大起动电流及最大运行电流;可编程延时起动方式及连锁控制等优点。 软起动器常用的几种起动方式: 1、限流起动。电机的起动过程中限制其起动电流不超过某一设定值(Is)的软起动方式。其输出电压从零开始迅速增长,直到输出电流达到预先设置的电流限值Is,然后保持输出电流I

相关主题
文本预览
相关文档 最新文档