当前位置:文档之家› 桥台、桩基础计算说明书新

桥台、桩基础计算说明书新

桥台、桩基础计算说明书新
桥台、桩基础计算说明书新

驹荣路3号桥桥台计算说明书

一基本资料

1.上部构造

普通钢筋混凝土单跨箱梁,跨径10m;桥台上用板式橡胶支座,支座厚28mm;桥面净宽35m。

2.设计荷载:车辆荷载。

3.钢筋混凝土一字型桥台,填土高H=3.1m。

4.台高H=3.10m,灌注桩基础。

5.建筑材料

台帽、台身、基础均为25号钢筋混凝土。容重25KN/m3。

中板边板

①空心板自重g1(一期恒载):g1=3539.8X10-4X25=8.85KN/m

②桥面系自重g2(二期恒载):人行道板及栏杆中立,参照其他桥梁设计资料,单侧重力15.0KN/m。桥面铺装采用10cm钢筋混凝土和5cm中粒式沥青,全桥铺装每延米总重为:0.1X25X29+0.05X23X29=105.85KN/m

每块板分摊的桥面系重力为:g2=(15X2+105.85)/24=5.66KN/m

③铰缝重g3=(448+1X45)X10-4X24=0.15KN/m

由此的空心板一期恒载:gⅠ=g1=8.85KN/m;

gⅡ=g2+g3=5.81KN/m

④恒载内力计算

结果见下表:

8.859.6 5.819.6 14.669.642.48 27.888 70.368

g(KN/M)L(m)支点处Q(KN)

二期荷载

荷载合计

所以,R恒′=70.368X26

R恒=R恒′+R绿化带+R人行道板(包括砖)=70.368X26+2X0.25X1.5X10X18+2X3.5X (0.05+0.080X25==2192.068KN

R恒对基底形心轴I-I的弯矩为M I恒=0KN·m

对基底脚趾处O-O的弯矩为M O恒=2192.068X1.0=2192.068KN·m

三支座活载反力计算

R-桥面板恒载.活载按荷载组合I,III,在支坐产生的竖向反力.

Ea-台后主动土压力.

R2-台后搭板恒载,活载效应在桥台支坐处产生的反力.

《桥规》规定:对于1-2车道。制动力按布置在荷载长度内的一行汽车车队总重量的10%计算;对于同向3车道按一个设计车道的2.34倍计算,但不得小于90KN。

一行车队总重量的10%为:400X0.1=40KN

因此板式橡胶支座制动力为:0.30X2.34X40=28.08KN

所以取90KN。

2)支座摩擦力

板式橡胶支座摩擦系数f=0.30,上部结构恒载为2192.068,则摩擦力为:0.30X2192.068=657.62KN

所以在附加组合中取支座摩擦力作为设计荷载。所以,F=657.62KN

F对1-1截面的偏心矩为:M1F=-657.62X2.872=-1888.69KN·m

F对2-2截面的弯矩为M2F=-657.62X3.872=-2546.30·m

2.桥上、台后均有汽车荷载,重车在台后

(一)按最不利布置汽车荷载如图:

对I-I截面的弯矩为:M I2=0KN·m

对O-O的弯矩为M O2=(198.06+157.5)X1.0=355.56KN·m

(二)汽车制动力及支座摩擦力

1)汽车制动力

《桥规》规定:对于1-2车道。制动力按布置在荷载长度内的一行汽车车队总重量的10%计算;对于同向3车道按一个设计车道的2.34倍计算,但不得小于90KN。

一行车队总重量的10%为:280X0.1=28KN

因此板式橡胶支座制动力为:0.30X2.34X28=19.66KN

所以取90KN。

2)支座摩擦力

板式橡胶支座摩擦系数f=0.30,上部结构恒载为2192.068,则摩擦力为:

0.30X2192.068=657.62KN

所以在附加组合中取支座摩擦力作为设计荷载。所以,F=657.62KN

F对1-1截面的偏心矩为:M1F=-657.62X2.872=-1888.69KN·m

F对2-2截面的弯矩为M2F=-657.62X3.872=-2546.30·m

四台后土压力计算:

1)台后填土表面无活载土压力计算

根据库仑土压力计算理论,台后每延米的主动土压力为:E a1=rBH2K a/2

计算时,将台身与台帽近似看成整体,H=3.1米。

回填土采用内摩擦角为35的砂性土,则土压力系数

K a=cos2(35-0)/[cos20cos(0+17.5)X(1+0.605)2]=0.260

由于桥后有搭板,其恒载需看成均布荷载作用在填土表面,其等代土层厚度h1=G/(bl0r)

先求破裂角tgθ=-tg(35+17.5+0)+1.887=0.584所以θ=30.28度

破坏棱体在填土面长度

L0=H(tga+tgθ)=3.1X0.584=1.810

搭板每延米重G=0.25X5X25=31.25KN/m

把该恒重看作均布在长为L0的滑动土体上,等代土层厚度

h1=31.25/(1X1.81X18)=0.96m

所以无荷载作用下的台后土压力为:

E a1=0.5X35.5X18X(3.1+0.96)2X0.260=1369.24KN

E a1的作用点距1-1截面的距离为Y E1=(H/3)·(H+3h1)/(H+2h1)=1.23m

E a1的水平分力E Ax=E a1×cos(δ+a)=1369.24×0.954=1305.69KN/m

E a1对1-1的弯矩为M1E1=-1369.24X1.23=-1606.02KN·m

折减后:0.55X640=352KN

换算土层厚度h2=352/(35.5X1.81X18)=0.304m

当台后有汽车-超20时土压力:

E a2=0.5X35.5X18X(3.1+0.96+0.304)2X0.260=1582.15KN/m

E a2的作用点距1-1截面的距离为Y E2=(H/3)·[H+3(h1+h2)]/[(H+2(h1+h2)]=1.22m

E a2的水平分力E Ax=E a2×cos(δ+a)=1582.15×0.954=1509.37KN/m

E a2对1-1的弯矩为M2E1=-1509.37X1.22=-1841.43KN·m

E a2对2-2的弯矩为M2E2=-1509.37X2.22=-3350.80KN·m

E a2的竖向分力E AY=E a2×sin(δ+a)=474.65KN·m

E a2对I-I的弯矩为M IE2=474.65X0.30=142.40KN·m

E a2对O-O的弯矩为M OE2=474.65X1.30=617.04KN·m

五.桥台自重计算

(1-1截面以上)

桥台每延米总=18566X10-4X25=46.42KN/m

ΣG1对I-I截面的偏心矩为:

e1=(456X0.32+80X0.31)X25X10-4/46.42=0.0092m

ΣG1=46.42X35.5=1647.91KN

ΣG1对I-I的弯矩为M IG1=1647.91X0.0092=15.15KN·m

ΣG1对O-O的弯矩为M OG1=1647.91X1.0092=1663.07KN·m

(2-2截面以上)

每延米桥台总重=38566X10-4X25=96.42KN/m

ΣG2对I-I截面的偏心矩为:

e2=(456X0.32+80X0.31)X25X10-4/96.42=0.0044m

ΣG1=96.42X35.5=3422.91KN

ΣG2对I-I的弯矩为M IG2=3422.91X0.0044=15.15KN·m

ΣG2对O-O的弯矩为M OG2=3422.91X1.0044=3437.97KN·m

六荷载组合

(一)桥上有活载,台后无汽车荷载

1.主要组合:包括桥面板恒重,桥台恒重,桥上活载及台后土压力

2.附加组合:主要组合+支座摩阻力

(二)桥上有活载,台后也有汽车荷载

1.主要组合:包括桥面板恒重,桥台恒重,桥上活载及台后有汽车荷载土

压力

2.附加组合:主要组合+支座摩阻力

(三)桥上无活载,台后有汽车荷载

1.主要组合:包括桥面板恒重,桥台恒重,台后有汽车荷载土压力

2.附加组合:主要组合+支座摩阻力

主要组合+支座摩阻力

(四)无上部构造时

此时作用在桥台上的荷载包括桥台及基础自重,台后土压力。

七台身底截面强度验算

b=35500mm,h=600mmm,e0=ΣM/ΣY,ΣM计算如下表:

综合考虑:组合(三)附加组合中:e0=0.0365m最大 (小偏压)

e=ηe o+h/2-a=286.5mm

R a=14.5MPa、根据设计规范(JTJ023-85):

r b=0.95、r c=1.25、r s=1.25

求受压区高度,解三次方程:

A x 3-

B x 2+

C x -D=0

A=(1/2)·(r b/r c)·R a b(R g1 +0.003 E g)=136518.8

B=(r b/r c)·R a b(R g′a g′+0.00435 E g h0)=152808

C= R g′N(e- h0+ a g′)+0.003 E g (Ne+0.9 h02·(r b/r c)·R a b)=144608.2 D=0.0027 E g h0 Ne=367.63

试算:

x=0时,方程=-367.63

x=1时,方程=127951.4

x=0.5时,方程=50799.34

x=0.004时,方程=208.369

x=0.0025491时,方程=0.002435

所以,按构造配筋。

截面强度验算:

N=αA R a/ r m其中:

A=35.5X0.6=21.3 m2;I=bh3/12=35.5X0.63/12=0.639 m4;

y=h/2=0.6/2=0.3 m

α=[1-(e o/y)m]/ [1+(e o/r w)2]且r w= I/ A=0.03 m2

截面形状系数:矩形m=8

带入得:

α=0.4032

带入计算得:

N U=64129.282KN>N j=4267.2KN,满足安全。

配筋计算:

台身截面简化为一竖放置的简支梁,而梁截面的弯矩主要有主动土压力的水平分力产生,弯矩最大的截面为Ea作用点所处的水平截面。根据荷载组合,组合(三)附加组合水平力(2166.837KN)最大。其距离1-1截面为1.22米。

其作用点的截面弯矩为:

M j=E ax ab/l=1509.37X1.22X(3.10-1.22)/3.10=1603.206 KN·m

需要的钢筋

A g=r c Mj/(αhR g)=1.25X1116.739X103/(0.76X0.6X340X106)

=0.015696m2 =15696.55 mm2

保守考虑,采用对称配筋,每侧选配237Φ16既Ag=Ag′=47628mm

驹荣路3号桥桩基础计算说明书

根据地质资料,,由于浅层土工程力学性质差,强风化层以下没有钻探资料,所以采用端承摩擦桩,打入强风化层7米,直径选用Φ100cm,桩底标高-54m,桩长52.5 m.

1.单桩轴向容许承载力(取ZK3钻探资料)

[P]=(UlГ

Ρ+AσR)/2

ГΡ=1/l·ΣГi l i

σR=2m0λ{[σ0]+k2Υ2(h-3)}=

[P]=[πX(35X9.60+40X8.8+50X5.8+80X8+7X160)]/2+{(π/4)X2X0.50X0.65X[1000+2.0X18(40-3)]}/2=4896.094KN

桩顶以上N j=maxΣY=5506.1KN

考虑合岸两边地质资料相差不大,所以采用相同的布桩方案,每个桥台采用8根Φ100cm的桩,单桩容许承载力为2000KN,

每根桩的自重的一半为:G1/2桩=0.5X(π/4)X52.5X25=515.4175KN

每根桩所要承担的荷载为:

N j1=N j/8+G1/2桩=7391.247/8+515.4175=1439.323KN<[P]=3000KN所以满足要求2.桩身配筋计算及强度验算

(1)桩身最大弯矩计算

桩的宽度计算:b1=K f K0Kd

K f=0.9, K0=1+1/d=2,桩间间距L=5.0m>0.6h1= 0.6X[3X(1+1)]=3.6m,所以K=1.0,带入得:

b1=K f K0Kd=0.9X2X1.0X1.0=1.8 m

桩d的变形系数为α=(mb1/EI)0.2

柱顶为流塑性淤泥粘土,m=3000KN/m4,E h=28.0X106Pa,I=πd4/64=0.049,EI=0.67 E h I=0.67X28.0X106X0.049=919240

所以α=(3000X1.8/919240)0.2=0.357926

桩的换算深度:h′=αh=0.357926X52.5=18.7911m>2.5m所以按照弹性桩计算。根据荷载组合,承台底(桩顶)的最大水平力,弯矩为:

ΣX=2166.873KN,ΣM=M I-I+ M2-2=157.53+(-5896.85)=-5739.32 KN·m

每根桩的柱顶外力为:

Q0=ΣX/8=2166.873/8=270.86KN

M0=ΣM/8=-5739.32/8=-717.42 KN·m

αh>4.0m所以,可由M0= Q0C Q/α求出C Q,从而查表求出对应的最大弯矩的深度

C Q=0.94803

所以从查表得αZ=0.97所以,

Zmax=0.87/0.3567=2.71039 m;Km=1.526547(内插)

桩身最大弯矩Mmax=M0Xk m=-710.57X1.526547=-1095.17KN·m

(2)配筋验算

验算最大弯矩Z=2.71039处,M j=-1095.17KN·m

确定计算轴力时得恒载安全系数为1.2,活载为1.4

其中,恒载应为R恒,G2,E ay1得和(除以8)加上Zmax以上桩重的的一半并减去相应的桩侧磨阻力的一半。

活载为R II+( E ay2- E ay1)

N j=[(R恒+G2+E ay1)/8+桩重/2-桩侧磨阻力/2)]X1.2+ (R II+ E ay2- E ay1)X1.4 =[(2144.60+3422.91+411.8)/8+πX3.1071X25/2-20Xπ

X3. 1/2)] X1.2+[(1144.37+474.65-411.8)/2]X1.4=1140.825KN

参考经验配筋法,在Zmax处布16Φ20

A g=5026mm2=0.005026m2

A=πX0.52=0.785 m2

μ= A g/A=0.64>0.2%

偏心矩增大系数:

e0= M j/ N j=0.96

r c N j=1.25X1140.825=1426.031KN

E h=28.0X106Pa,I h=πd4/64=0.049

αe=0.1/(0.3+e o/d)+0.143=0.24809

10αe E h I h r b=10X0.24809X28.0X106X0.049X0.95=2898324

η=1/(1-1426.03/2898324)=1.000492

ηe0=0.960451

r g=r-a g=0.5-0.05=0.45,g=r g/r=0.45/0.5=0.9

根据公式ηe0=(BR a+DμgR g)·r/( AR a+CμgR g)从《圆形截面偏心受压构件强度计算系数》表(JTG D62-2004附录C)中用不同的A、B、C、D值试算,当

ξ=0.68、A=1.7466、B=0.6589、C=1.0071、D=1.5146,时最符合ηe0=0.68064 因此,Np=(r b/r c)R a Ar2+(r b/r s)R g Cμr2=4228.567 KN >Nj=1850.67KN

Mp=(r b/r c)R a Br3+(r b/r s)R g Dμgr3=29086.46 KN·m > Mj=1205.75 KN·m 桩身材料足够安全,桩身裂缝验算不进行。

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

栈桥桩柱式桥台承载能力计算

栈桥桩柱式桥台承载能力计算 1 基本资料 1.1地质水文资料 台后填土:填土容重318m kN =γ、内摩擦角?=30?、粘聚力0=c 。 桩身计算范围内有三层不同土层,其物理力学指标见下表: 桩身计算范围各土层主要参数表 1.2 承台结构 承台台帽为L 形结构,由四根桩基组成的单排桩支承。台帽长度m B 13=,桥台帽梁截面为m m h b 0.13.2?=?,桩间距为m m m .346.33++,桩径m d 2.1=,台后填土高度m H 0.5=,台帽背墙高m h 89.21=,台背竖直。 1.3 承台结构材料 混凝土强度等级为C25,钢筋为HPB,混凝土弹性模量2 7108.2m kN E c ?=, MPa f cd 9.11=,MPa f sd 210=。 1.4 桥台荷载 桥跨上部结构为跨度m 9贝雷梁,上部结构的恒载,桥跨活载产生的弯矩与台后填土压力产生的玩具方向相反,其值越小对结构约为有利,因此在进行桥台结构内力计算时忽略上部结构恒载和活载对桥台产生的弯矩,只考虑有上部结构恒载与活载产生的竖向力。 1.4.1由上部结构传来作用于桩顶的荷载: ) (24.6454 75 .13612.1219kN N =+= 1.4.2 台背填土破坏棱体内活载等效厚度 台后填土对桩柱式桥台产生的主动土压力需要考虑活载作用在台背填土破坏棱体内的荷载,将其换算成等效土层厚度。

0G h Bl γ = ∑ 式中:0l ——为台背填土破坏棱体长度 B ——台帽长度 当台背竖直时:θtan 0H l = 653.0)tan )(tan tan (cot tan tan =-++ -=αωω?ωθ 其中:?=+?+?=++=4501530αδ?ω 故 )(265.3653.05t a n 0m H l =?==θ 在破坏棱体内,可能作用有履带吊车荷载、一列挂—80荷载,两种荷载不组合,分两种情况进行计算,取其较大值。 (1)当破坏棱体内作用有履带吊车荷载时 )(78.1015265.39 2800kN G =?= (2)当破坏棱体内作用有挂—80荷载时 )(5002250kN G =?= (只两排车轮作用在破坏棱体内) 故 )(78.1015kN G = 所以 )(33.118 265.31378.10150m r Bl G h =??= = ∑ 2 地面处桩身截面荷载计算 2.1 土压力系数 填土表面与水平面的夹角?=0β,桥台背墙与垂直面的夹角?=0α 台背或背墙与填土的夹角230215δφφ==?=? 2 2 0.312 a μ= = =

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桩基础课程设计任务书1

长沙学院课程设计任务书 题目基础工程课程设计 系(部) 土木系 专业(班级) 09级:建筑3班 姓名 学号 指导教师欧名贤、林涛、 起止日期2012年6月4-2012年6月8日

基础工程课程设计任务书 一、设计资料 1 场地工程地质条件 1.1 工程概况: xx 学院委托xx 建设集团在滨江路兴建教学大楼,其中6号楼高20层 采用框剪结构,建有地下室一层。其工程地质条件和水文地质条件祥见如下报告,确定了相关工程地质参数,在此基础上按规范进行工程地质条件详细评估,再进行基础设计。 1.2 勘察工作概况 通地对场地的踏勘,确定了孔位,并制定本次的施工纲要,完成如下工作量: (1)施工钻孔135个,累计进尺2791.90m ; (2)采取土样47件,其中原状土样31件,扰动土样16件,由xx 市建筑设计院土工实验室测定; (3)原位测试孔24个,计原位测试130次(标准贯入,重型п); (4)对135个钻孔进行了简易地下水测定,并在ZK6号孔采取一个全孔水样,由XX 地勘局赣西北中心实验室进行水质简易分析; (5)协助XX 防震减灾工程研究所做了4个钻孔的土层剪切波速测试,累计孔深度达100米; (6)对施工钻孔进行了平面位置及空口标高测定,以建设方提供的规划布置图为依据。 1.3 场地工程地质条件 1.3.1 场地地形、地貌特征 场地位于长江南岸,xx 市滨江大道南侧,庾亮北路西侧,场地内地形高差不大于,小于4.5m ,属长江中下游冲积二级阶地。场地东侧靠近庾亮北路原为与长江接通的水沟,即原四码头所在地,南侧,西侧地形均较低,现已填平。南东侧有S 人防工程,从ZK58号深孔资料、临近的22层高的其士大酒店岩土工程勘查及区域地质资料知:该场地无全新活动断裂、地裂缝,覆盖厚度50-70米,基岩为第三系泥岩。除人防工程及其影响因素外,无其它不良地质现象。 1.3.2 场地内各岩土层的分布及物理力学性质 通过钻探揭露知,场地内共有十四层岩土层,分别为(1)填土(3ml Q )、(2)粉质粘土(4al Q )、(3)粉质粘土(3al Q )、(4)圆砾(3al Q )、(5)粘土(2al Q )、(6)细砂(1al Q )、(7)圆砾(1al Q )、(8)粘土(1al Q )、(9)砾砂(1al Q )、(10)粉粘土(1al Q )、(11)粉质粘土(1al Q )、(12)强风化泥岩(E )、(13)中风化泥岩(E )、(14)微风化泥岩(E ),现自上而下分别叙述如下:

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

桩柱式桥台计算

无锡至张家港高速公路 桩柱式桥台台帽位移计算书 中交第二公路勘察设计研究院 年月日

一、基础资料 台后填土内摩擦角φ=30°,台帽长B =17.54m (计算宽度b 1=17.24m ),桩间距为6.1m , 桩径d =1.5m ,耳墙宽0.3m ,台后填土高H=5.0m 。填土容重r =18.0 km/m 3,台帽背墙高为h1=1.2+1.83=3.03m ,桥台帽梁截面尺寸为b ×h =1.8×1.2m 。桥跨上部构造为25m 小箱梁,上构恒载、桥跨活载产生的弯矩与台后土压力产生的弯矩方向相反,其值越小对结果越为不利,桥台位移计算时未考虑上述荷载产生的弯矩(最不利计算)。 搭板及台后活载产生的弯矩需计算,方法为由汽车荷载换算成等代均布土层厚度: h =r bl G 0∑ 式中,0l 为破坏棱体长度,b 为台帽长, 当台背竖直时,0l =Htg θ,H=5.0m 。 由tg θ=-tg ω+))((αωω?tg tg tg ctg -+=0.653,其中045=++=αδ?ω 得 0l =5×0.653=3.265m 在破坏棱体长度范围内并排放三辆重车,车后轮重为2×140=280,三辆车并排折减系数为0.78,得∑G =3×280×0.78=655.2KN 搭板产生的重力∑G =0.35×3.265×14.25×25=407.1KN 所以 得:活载h =655.2/(17.24×3.265×18)=0.647m 搭板h =407.1/(17.24×3.265×18)/2=0.201m 计算时,把活载h 和搭板h 合计到p 1、p 2即考虑了搭板和台后活载引起对桥台的主动土压力。 二、计算 桩径d =1.5m (台后填土高H=5.0m ) 土压力系数: 台后填土内摩擦夹角φ=30° 填土表面与水平面的夹角β=0°(台后填土水平) 桥台背墙与垂直面的夹角α=0°(背墙竖直) 台背或背墙与填土的夹角 δ= φ/2 =15°

1—桩基础设计任务书

桩基础设计 一、设计任务 某厂房桩基础设计 二、设计资料 该厂房上部结构荷载设计值为轴力N=7460KN,弯矩M=840KN?M,柱截面尺寸为600mm×800mm。建筑场地位于城郊,土层分布情况及各土层的物理、力学指标如表1所示。地下水位离地表0.5m,从各测点的静力触探结果看场地土具有不均匀性,东部区域的P S平均值要高于西部,局部地区有明浜,埋深将近2m。 1、地基各土层的分布及物理力学性质指标,见表1; 表1 各土层的物理、力学指标 2、桩侧及桩端极限摩阻力标准值,见表2: 表2 桩侧、桩端极限摩阻力的标准值 注:由于桩尖进入持力层深度较浅,考虑到持力层有一定起伏,表中第⑥层土仅计桩端阻力。

三、设计内容 1.桩基持力层、桩型、承台埋深选择; 2.确定单桩承载力; 3.桩身结构设计和计算; 4.确定桩数和承台尺寸; 5.承台设计计算; 6.绘制单桩及承台配筋图。 四、设计要求 要求完成全部的设计内容,完成设计计算报告书一份,报告插图及设计图纸应手工绘制完成。 五、参考资料 (1)《高层建筑基础设计》,陈国兴主编,中国建筑工业出版社,2000. (2)《高层建筑基础分析与设计》,宰金珉、宰金璋主编,中国建筑工业出版社,1993. (3)《地基基础设计手册》,沈杰编,上海科学技术出版社,1998. (4)《桩基工程手册》,桩基工程手册编委会,中国建筑工业出版社,1995. (5)《简明建筑基础计算与设计手册》,张季容、朱向荣编著,中国建筑工业出版社,1997. (6)《桩基础设计指南》,林天健、熊厚金、王利群编著,中国建筑工业出版社,1999. (7)《高层建筑设计与施工》,何广乾、陈祥福、徐至钧主编,科学出版社,1994. (8)《桩基础设计与计算》,刘金砺,中国建筑工业出版社,1990.

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

课程设计计算书

XX工程学院 土木工程学院 桥梁工程课程设计任务书 姓名 学号 班级 指导教师

目录 第一章任务书 (3) 1.1目的与要求....................................。。。. (3) 1.2设计题目与技术标准 (3) 1.3设计内容 (3) 1.4归档书写要求 (4) 1.5设计规范与参考资料 (4) 第二章方案介绍............。.. (5) 2.1方案一:60+105+60M的变截面箱型连续梁 (5) 2.2方案二:56.25+110+58.75M斜拉桥 (9) 第三章方案比选 (12) 3.1方案优缺点比选 (12) 3.2结论 (12) 第四章设计总结 (13)

第五章参考文献 (13) 第一章任务书 一、目的与要求 桥梁工程课程设计是土木工程专业道桥方向《桥梁工程》专业课教学环节的重 要组成部分,其目的在于通过桥梁工程课程设计的基本训练,深化掌握本课程的实用 理论与设计计算方法;理解桥梁设计的程序、方法和计算内容;熟悉有关标准规范、 规程在工程设计中的应用及其重要性;能查阅有关设计手册、标准图、参考书,并进 行认真分析研究,为今后独立完成桥梁工程设计打下初步基础。 在课程设计的实践过程中,能使学生巩固和扩大专业知识,掌握本学科的主要 知识,进一步培养学生综合运用所学知识分析和解决实际问题的能力,从而提高学生 的动手能力和综合素质。学生在教师的指导下,综合应用所学结构力学、结构设计原理、桥梁工程等课程知识,按时按量独立完成所规定的设计工作。具体要求如下: 1.根据标准图、技术规范与经验公式,正确拟定各部结构尺寸,合理选择 材料、标号。 2.计算结构在各种荷载与其他因素作用下的内力组合效应,并进行配筋计 算与设计。 3.正确理解《公路桥涵设计规范》有关条文,并在设计中合理运用。 4.加强计算、绘图、文件编制等基本技能的训练。 二、设计题目与技术标准 1.设计题目 预应力混凝土变截面连续箱型梁桥设计 2.技术标准: ⑴桥面净空:按桥面标高+12m ⑵设计荷载:城市主干道A,人群荷载4.0KN/m2 ⑶桥面铺装:表层为4cm厚沥青混凝土,下为8cm厚防水混凝土 ⑷桥面横坡:双向1.5% 三、设计内容 ⑴上部结构横断面布置草图; ⑵荷载横向分布系数计算; ⑶箱梁内力计算与内力组合;

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

桥梁抗震计算实例分析

桥梁抗震计算实例分析 发表时间:2019-10-24T16:10:19.713Z 来源:《科学与技术》2019年第11期作者:俞文翔[导读] 对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。(苏州同尚工程设计咨询有限公司, 江苏苏州215000)摘要:桥梁是交通生命线工程中重要组成部分,地震作为我国主要的自然灾害类型,一旦发生就可能造成极大的破坏,道路桥梁是抗震救 灾的重要通道,必须具备较强的抗震性能。我国地震时常发生,震害强烈,破坏力大。因此,对于我国的公路桥梁工程建筑来说,必须要加强防震措施,减少地震带来的损失。我国安全防灾等相关部门要不断加强公路桥梁质量规范和设计,增进抗震措施的理论发展和实践技术,来保障人民财产在地震灾害中不受较大的损失。关键词:桥梁抗震加强防震措施Anti-seismic calculation and strategy of bridges Yu Wenxiang Abstract:Bridges are an important part of traffic lifeline engineering. Earthquakes, as the main type of natural disasters in China, may cause great damage once they occur. Road and bridge are important passages for earthquake relief and must have strong seismic performance. Earthquakes often occur in China, with strong damage and great destructive force. Therefore, for highway and bridge construction in China, it is necessary to strengthen seismic measures to reduce the losses caused by earthquakes. The relevant departments of safety and disaster prevention in China should constantly strengthen the quality specification and design of highway and bridge, enhance the theoretical development and practical technology of anti-seismic measures, so as to protect people's property from greater losses in earthquake disasters. Keywords: Bridge seismic resistance Strengthen measures of seismic resistance 0 引言 自2008年汶川大地震以来,我国政府高度重视各领域各建筑的抗震防震措施。以在桥梁设计方面,苏州地区抗震设防烈度也由原来的VI度区变成VII度区,所以相应的桥梁的细部抗震设计构造也相应的加强。 1 工程概况 太仓市太浏快速路(陆新路~G346)新建工程路线全长约5.72km。路线西起现状江南路与陆新路交叉口西侧约500m处,向东经陆新路、太仓火车站站前大道、沪通铁路、M1线、新浏线、浏河西部工业区规四路、规划苏张泾路、规三路,终点与G346相接。拟建的石头塘桥跨径为3×16m,上部结构采用钢筋混凝土现浇板、预应力混凝土空心板梁,下部结构采用桩柱式桥台、桩柱式桥墩,基础均采用钻孔灌注桩基础。 2 技术标准 道路等级:一级公路兼顾城市快速路功能。桥梁宽度:同道路。 荷载等级: 公路-I级。 通航要求:无。 抗震设防标准:地震基本烈度为VII度,场地地震动动峰值加速度0.1g,抗震设防类别为B类。结构安全等级:一级。 环境类型:除桩基采用II类其余均采用Ⅰ类。桥梁设计基准期:100年,桥梁结构设计使用年限,大中桥:100年,小桥:50年。 3 桥梁中的抗震设计原理 3.1、静力法 静力法把地震加速度看作是桥梁结构破坏的唯一因素,忽略了结构本身动力特性对结构反应的影响应用存在较大的局限性。事实上只有绝对刚性的物体才能认为在振动过程中各个部分与地震运动具有相同的振动所以只对刚度很大的结构例如重力桥墩、桥台等结构应用静力法近似计算。 3.2、反应谱法 目前我国的公路及铁路桥梁均主要采用反应谱法。反应谱法的思路是对桥梁结构进行动力特性分析(固对各主振动应用谱曲线作某强震记录的最大频率,主振型)地震反应计算最后一般通过统计理论对各主振型最大反应值进行组合,近似求得结构的整体最大反应值。 3.3、动态时程分析法 相比上述2种理论方法而言,动态时程分析法形成较早,通过计算机程序来精准地求解结构反应时程。动态时程分析法具有较强的技术性与复杂性,以构建模型的方式呈现出较高的精准性。综上所述:石头塘桥属于中桥采用B类抗震设计方法,所以由【5】中的6.1.3条桥梁抗震分析方法采用反应谱法。 4 抗震计算实例 4.1、地震动参数汇总如下: 地震动峰值加速度0.15g,IV类场地,特征周期0.65s。桥梁抗震设防分类为乙类,桥梁抗震设计方法为B类,E1地震作用重要性系数为0.35。 4.2、计算模型 石头塘桥立面图如下图所示:

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

施工手册(柱式桥台)(1)

桩柱式桥台施工技 术指导 一、桩柱式桥台施工技术指导 1、施工工序 2、施工方法 3、施工注意事项 4、质检工艺流程、检查项目及标准 5、工程质量通病防治

一、桩柱式桥台施工技术指导 1、施工工序 施工准备→测量放样→基坑开挖→凿除桩头→桩基检测(合格后方可进行下道工序)→基底处理→浇筑垫层→桥台位置放样→绑扎台帽、背墙、耳墙钢筋→安装模板→浇筑混凝土→拆模养生。 2、施工方法 施工准备:施工前做好相关准备工作,保证“三通一平”,施工人员、机械设备、施工材料到位,满足要求。设计图纸及文件经过审核,提出的问题已得到有关部门的回复。桥梁下部构造分项工程开工报告已批复。施工队加密的导线点、水准点已经过工区测量组复核并满足规范要求,施工前向施工队作业人员进行技术交底和安全交底并签字(安全交底需按手印)留底。各项准备就绪后方可开始施工。 测量放样:基坑开挖前,应按施工要求放出开挖控制桩,并用白石灰撒出开挖控制灰线。桩柱式桥台一般设置在挖方段,台前桥宽范围内高出台帽底面的土(石)方必须全部挖平,防止梁底贴地,便于桥台的检修维护。 凿除桩头:第一步,测量人员用水准仪测定桩顶标高,在桩基础深入帽梁 10cm的位置画线, 清理桩基画线部位 的泥土,用红油漆 标出环切位置。

第二步,用切割机沿切割线环切桩头,切割深度以钢筋保护层厚度而定,略小于保护层厚度,不能切割到桩基钢筋。设定切割线的目的是为了在下步施工即人工剥离主筋、声测管包裹 混凝土的施工中,防止 破坏有效桩体(即切割 线以下桩体)。 第三步,风镐剥离其余无效桩体钢筋保护层,露出钢筋、声测管,但不得损坏钢筋和声测管。所有露出的钢筋均向外侧微弯,以便后续施工。 第四步,当全部钢筋凿出后,在环割线以上5~10cm 处水平环向人工凿V型槽。使用钢钎打入V型槽中,来回 反复敲击钢钎,使混凝土在 V型槽处产生一个断裂面, 用起重设备将已断裂脱离 的桩头吊开。用吊车垂直将 桩头吊起运走。采用人工凿平桩头,把桩头四周的浮渣进 行清理。将向外弯曲的钢筋及 进行调直,调成设计桩头外喇 叭口的形式,并把钢筋表面的 浮浆等清洗干净。 桩头凿完后应报与监理验收合格后,再由试验室通知第三方检测单位到现场进行超声波等各项检测结果合格后方可浇筑砼垫层,垫层采用10cm厚C10砼 (设计未

桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3 。承台平面尺寸:长×宽 =7×4.5m 2 ,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

桩基础设计计算书样本

桩基础设计计算书

桩基础设计计算书 1、研究地质勘察报告 1.1地形 拟建建筑场地地势平坦,局部堆有建筑垃圾。 1.2、工程地质条件 自上而下土层一次如下: ① 号土层:素填土,层厚约为 1.5m ,稍湿,松散,承载力特征值 a ak KP f 95= ② 号土层:淤泥质土,层厚 5.5m ,流塑,承载力特征值 a ak KP f 65= ③ 号土层:粉砂,层厚 3.2m ,稍密,承载力特征值a ak KP f 110= ④ 号土层:粉质粘土,层厚 5.8m ,湿,可塑,承载力特征值 a ak KP f 165= ⑤ 号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值 a ak KP f 280= 1.3、 岩土设计参数 岩土设计参数如表1和表2所示。 表1地基承载力岩土物理力学参数

表2桩的极限侧阻力标准值 q和极限端阻力标准值pk q单位KPa sk 1.4水文地质条件 ⑴拟建场区地下水对混凝土结构无腐蚀性。 ⑵地下水位深度:位于地表下4.5m。 1.5 场地条件 建筑物所处场地抗震设防烈度为7度,场地内无可液化沙土、粉土。 1.6 上部结构资料 拟建建筑物为六层钢筋混凝土结构,长30m,宽9.6m。室外地坪标高同自然地面,室内外高差450mm。柱截面尺寸均为 400mm 400mm,横向承重,柱网布置如图所示。

2.选择桩型、桩端持力层、承台埋深 根据地质勘查资料,确定第⑤层粉砂层为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,400mm×400mm桩长为15.7m。桩顶嵌入承台70mm,桩端进持力层1.2m承台埋深

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

最新岩土09092班桩基础课程设计任务书以及指导书汇总

2011年岩土09092班桩基础课程设计任务书以及指导书

岩土工程专业《基础工程》课程设计 任务书 熊智彪 城市建设学院岩土工程系 2011年12月

一、设计目的 《基础工程》课程设计是在学习《土力学》、《钢筋混凝土》和《基础工程》的基础上,应用所学的知识独立完成基础工程的设计任务。其目的是培养学生综合应用基础理论和专业知识的能力,同时培养学生独立分析和解决基础工程设计问题的能力。通过课程设计,对桩基础设计内容和过程有较全面的了解和掌握,熟悉桩基础的设计规范、规程、手册和工具书。 二、设计题目:某综合楼桩基础设计 三、设计资料 1、工程概况 某综合楼,框架结构,柱下拟采用桩基础。柱尺寸400X400,柱网平面布置见图1。室外地坪标高同自然地面,室内外高差450mm。上部结构传至柱底的荷载效应见表1、表2,表中弯矩、水平力的作用方向均为横向。 对于任意一位学生,荷载效应的取值为表内值加学号的后两位乘以10。如某同学学号后两位是21,则该同学在计算①轴交B轴处的柱荷载效应标准组合的取值为:轴向力=1765+21×10=1975 kN,相应的计算弯矩和水平荷载以及荷载效应的基本组合值。 表1 柱底荷载效应标准组合值

表2 柱底荷载效应基本组合值

图1 柱网平面布置 2、工程与水文地质条件 建筑场地平整,地层及物理力学参数见表3。场地抗震设防烈度为7度,场地内砂土不会发生液化现象。拟建场区地下水位深度位于地表下3.5m ,地下水对混凝土结构无腐蚀性。 表3 地基岩土物理力学参数 土层 编号 土的名称 厚度(m ) 孔隙 比e 液性指 数 I L 标准 贯入锤击数N 天然容重γ(kN/m 3) 压缩模量 Es (MPa ) 地基承载力特征值f ak (KPa) 素填 土 1.5 - - - 18.0 5.0 50 淤泥质土 3.3 1.04 1.08 - 17.0 3.8 60 粉砂 6.6 0.81 - 14 19.0 7.5 180 粉质黏土 4.2 0.79 0.74 - 18.5 9.2 230

相关主题
文本预览
相关文档 最新文档