如何在fluent中设置多相流
- 格式:doc
- 大小:276.00 KB
- 文档页数:25
设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。
记住这里给出的仅是与一般多相流计算相关的步骤。
有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。
1)选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。
Define Models
Multiphase...
2)从材料库中复制描述每相的材料。
Define Materials...
如果你使用的材料在库中没有,应创建一种新材料。
!!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.)
3)定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions)
Define Phases...
4)(仅对欧拉模型)如果流动是紊流,定义多相紊流模型。
Define Models
Viscous...
5)如果体积力存在,turn on gravity and specify the gravitational acceleration.
Define Operating Conditions...
6)指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。
Define Boundary Conditions...
7)设置模拟具体的解参数
Solve Controls
Solution...
8)初始化解和为第二相设定初始体积份额。
Solve Initialize
Patch...
9)计算求解和检查结果
*欧拉多相流模拟的附加指南(Additional Guidelines for Eulerian Multiphase Simulations)一旦你决定了欧拉多相流模型适合你的问题,你应当考虑求解你的多相流问题的需求计算能力。
要求的计算能力很强的依赖于所求解的输运方程的个数和耦合程度。
对欧拉多相流模型,有大数量的高度耦合的输运方程,计算的耗费将很高,在设置你的问题前,尽可能减少问题的statement到最简化的可能形式。
在你开始第一次求解尝试,取而代之尽力去求解多相流动的所有的复杂方面,你可以以简单近似地开始并且知道问题定义的最终形式。
简化多相流问题的一些建议列举如下:
1.使用六面体或四边形网格(而不用四面体或三角形网格)。
2.减少相的数目。
你会发现即使简单的近似也会给你的问题提供有用的信息。
3.2选用多相流模型并指定相数(Enabling the Multiphase Model and Specifying the Number of Phases)
为了选VOF, mixture, Eulerian多相流模型,在下选Volume of Fluid, Mixture, or Eulerian as the Model。
Define Models
Multiphase...
如果你选的欧拉模型,输入如下:
•number of phases:为了给多相流计算指定相数,在Number of Phases下输入合适的值。
你最多可以指定20相。
•(optional) cavitation effects:包含气穴影响(Including Cavitation Effects)
对混合的欧拉模型计算,包含气穴影响是可能的。
为了选气穴模型,在Multiphase Model panel中Interphase Mass Transfer下打开Cavitation。
由于气穴影响,接下来你应指定在使用传质计算时的两个参数。
这些参数的指定应当于调查下的流动特征参数相一致:Reynolds number and cavitation number。
在Multiphase Model panel中Cavitation Parameters下面,设置Vaporization Pressure(P V)和Bubble Number Density(η)。
η的默认值是10000,由Kubota et al推荐。
默认的P V值是2367.8,环境温度下水的汽化压力。
3.3定义相概述(Overview of Defining the Phases)
为了定义相(包括它们的材料属性)和相间的相互作用(例如,欧拉模型中的曳力函数),你将使用(Figure ).
Define Phases...
Figure 1: The Phases Panel
这个面板中Phase下的每一项两类之一,如在Type列表中所示:primary-phase指出了所选项是主相,secondary-phase指出所选项是第二相。
指定相之间的相互作用,点击Interaction... button.。
3.3.1 Defining the Primary Phase 定义主相
!!通常,你可以你喜欢的任何方式指定主相和第二相。
考虑你的选择如何影响问题的设置是一种很好的主意,特别是在复杂的问题中。
例如,对区域一部分中的一相,如果你计划patch其初始体积份额为1,指定这个相为第二相更方便。
同样,如果一相是可压缩的,为了提高解的稳定性,建议你指定它为主相。
!!记住,只能有一相是可压缩的。
确定你没有选择可压缩材料(也就是对密度使用可压缩理想气体定律的材料)为多于一相的。
1)Select phase-1 in the Phase list.
2)Click Set..., and the (Figure ) will open.
Figure 2: The Primary Phase Panel
3)In the Primary Phase panel, enter a Name for the phase.
4)Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down list.
5)Define the material properties for the Phase Material.
➢Click Edit..., and the Material panel will open.
➢In the Material panel, check the properties, and modify them if necessary.
!! If you make changes to the properties, remember to click Change before closing the Material panel.
6)Click OK in the Primary Phase panel.
3.3.2Defining a Non-Granular Secondary Phase定义非颗粒(即液体或气体)第二相
1)Select the phase (e.g., phase-2) in the Phase list.
2)Click Set..., and the (Figure ) will open.
Figure 3: The Secondary Phase Panel for a Non-Granular Phase
3)In the Secondary Phase panel, enter a Name for the phase.
4)Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down list.
5)Define the material properties for the Phase Material, following the same procedure you used to set the material
properties for the primary phase.
6)In the Secondary Phase panel, specify the Diameter of the bubbles or droplets of this phase.You can specify a
constant value, or use a user-defined function. See the separate UDF Manual for details about user-defined functions. 7)Click OK in the Secondary Phase panel.
3.3.3 Defining a Granular Secondary Phase 定义颗粒第二相
1)Select the phase (e.g., phase-2) in the Phase list.
2)Click Set..., and the (Figure ) will open.
3)In the Secondary Phase panel, enter a Name for the phase.
4)Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down list.
5)Define the material properties for the Phase Material, following the same procedure you used to set the material
properties for the primary phase. For a granular phase (which must be placed in the fluid materials category).
!! You need to specify only the density;you can ignore the values for the other properties, since they will not be used.In the Secondary Phase panel.
6) Enable the Granular option.
7) (optional) Enable the Packed Bed option if you want to freeze the velocity field for the granular phase.
!!Note that when you select the packed bed option for a phase, you should also use the fixed velocity option with a value of zero for all velocity components for all interior cell zones for that phase.
8)Specify the Granular Temperature Model. Choose either the default Phase Property option or the Partial
Differential Equation option.
Figure 4: The Secondary Phase Panel for a Granular Phase
9)In the Secondary Phase dialog box, specify the following properties of the particles of this phase:
➢Diameter specifies the diameter of the particles. You can select constant in the drop-down list and specify a constant value, or select user-defined to use a user-defined function.
➢Granular Viscosity specifies the kinetic part of the granular viscosity of the particles (μs,kin ). You can select constant (the default) in the drop-down list and specify a constant value, select syamlal-obrien to compute the value , select gidaspow to compute the value , or select user-defined to use a user-defined function.
➢Granular Bulk Viscosity specifies the solids bulk viscosity (λq). You can select constant (the default) in the drop-down list and specify a constant value, select lun-et-al to compute the value , or select user-defined to use a user-defined function.
➢Frictional Viscosity specifies a shear viscosity based on the viscous-plastic flow (μs,fr ). By default, the frictional viscosity is neglected, as indicated by the default selection of none in the drop-down list. If you want to include the frictional viscosity, you can select constant and specify a constant value, select schaeffer to compute the value , select johnson-et-al to compute the value, or select user-defined to use a user-defined function.
➢Angle of Internal Friction specifies a constant value for the angle φ used in Schaeffer's expression for frictional viscosity. This parameter is relevant only if you have selected schaeffer or user-defined for the Frictional Viscosity.
➢Frictional Pressure specifies the pressure gradient term, ▽P friction, in the granular-phase momentum equation.
Choose none to exclude frictional pressure from your calculation, johnson-et-al, syamlal-obrien, based-ktgf where the frictional pressure is defined by the kinetic theory. The solids pressure tends to a large value near the packing limit, depending on the model selected for the radial distribution function. You must hook a user-defined function when selecting the user-defined option.
Frictional Modulus is defined as
with G≥0, which is the derived option. You can also specify a user-defined function for the frictional modulus.
➢Friction Packing Limit specifies a threshold volume fraction(开始体积分数)at which the frictional regime becomes dominant. It is assumed that for a maximum packing limit of 0.6, the frictional regime starts at a volume fraction of about 0.5. This is only a general rule of thumb as there may be other factors involved.
➢Granular Conductivity specifies the solids granular conductivity (kθs). You can select syamlal-obrien to compute the value, select gidaspow to compute the value, or select user-defined to use a user-defined function.
!! Note, however, that ANSYS FLUENT currently uses an algebraic relation for the granular temperature. This has been obtained by neglecting convection and diffusion in the transport equation.
➢Granular Temperature specifies temperature for the solids phase and is proportional to the kinetic energy of the
random motion of the particles. Choose either the algebraic, the constant, or user-defined option.
➢Solids Pressure specifies the pressure gradient term, ▽P s , in the granular-phase momentum equation. Choose either the lun-et-al, the syamlal-obrien, the ma-ahmadi, none, or a user-defined option.
➢Radial Distribution specifies a correction factor that modifies the probability of collisions between grains when the solid granular phase becomes dense. Choose either the lun-et-al, the syamlal-obrien, the ma-ahmadi, the arastoopour, or a user-defined option.
➢Elasticity Modulus is defined as
with .
➢Packing Limit specifies the maximum volume fraction for the granular phase (αs,max ). For mono dispersed spheres, the packing limit is about 0.63, which is the default value in ANSYS FLUENT. In poly dispersed cases, however, smaller spheres can fill the small gaps between larger spheres, so you may need to increase the maximum packing limit.
10)Click OK in the Secondary Phase dialog box.
3.3.4 Defining the Interfacial Area Concentration
To define the interfacial area concentration on the secondary phase in the Eulerian model, perform the following steps:
1)Select the phase (e.g., phase-2) in the Phases list.
2)Click Edit... to open the .
3)In the Secondary Phase dialog box, enter a Name for the phase.
4)Specify which material the phase contains by choosing the appropriate material in the Phase Material drop-down list.
5)Define the material properties for the Phase Material.
6)Enable the Interfacial Area Concentration option. Make sure the Granular option is disabled for the Interfacial
Area Concentration option to be visible in the interface.
7)In the Secondary Phase dialog box, specify the following properties of the particles of this phase:
➢Diameter specifies the diameter of the particles or bubbles. You can select constant in the drop-down list and specify
a constant value, or select user-defined to use a user-defined function. See the separate for details about user-defined
functions. The Diameter recommended setting is sauter-mean, allowing for the effects of the interfacial area concentration values to be considered for mass, momentum and heat transfer across the interface between phases.
➢Packing Limit specifies the maximum volume fraction for the particle/bubble phase.
➢Growth Rate allows you to specify the particle growth rate (m/s). You can select none, constant, or user-defined from the drop-down list. If you select constant, specify a value in the adjacent field. If you have a user-defined function (UDF) that you want to use to model the growth rate, you can choose the user-defined option and specify the appropriate UDF.
➢Coalescence Kernal and Breakage Kernel allows you to specify the coalescence and breakage kernels. You can select none, constant, hibiki-ishii, ishii-kim, or user-defined.
In addition to specifying the hibiki-ishii and ishii-kim as the coalescence and breakage kernels, you can also tune the properties of these two models by using the
/define/phases/iac-expert/hibiki-ishii-model and
/define/phases/iac-expert/ishii-kim-model text commands.
For the Hibiki-Ishii model, you can specify the following parameters:Coefficient Gamma_c, Coefficient K_c, Coefficient Gamma_b, Coefficient K_b, alpha_max
For the Ishii-Kim model, you can specify the following parameters:Coefficient Crc, Coefficient Cwe, Coefficient C, Coefficient Cti, alpha_max
3.3.5 Defining the Interaction Between Phases
对颗粒和非颗粒流动,你必须指定在动量交换系数的计算中使用的曳力函数。
对颗粒流,你也必须指定颗粒碰撞的归还系数(restitution coefficients)。
为颗粒和非颗粒流动包含可选的升力和虚拟质量力(下面描述)也是可能的。
为指定这些参数,click Interaction... to open the(Figure ).
1)Specifying the Drag Function
FLUENT允许你为一对相指定曳力函数,步骤如下:
a)Click the Drag tab to display the Drag Function inputs.
b)对每一对相,从下面相应的列表中选择合适的曳力函数。
(1)Select schiller-naumann to use the fluid-fluid drag function. The Schiller and Naumann model is the default method, and it is acceptable for general use in all fluid-fluid multiphase calculations.
(2)Select morsi-alexander to use the fluid-fluid drag function. The Morsi and Alexander model is the most complete, adjusting the function definition frequently over a large range of Reynolds numbers, but
calculations with this model may be less stable than with the other models.
(3)Select symmetric to use the fluid-fluid drag function described. The symmetric model is recommended for flows in which the secondary (dispersed) phase in one region of the domain becomes the primary
(continuous) phase in another. For example, if air is injected into the bottom of a container filled halfway
with water, the air is the dispersed phase in the bottom half of the container; in the top half of the container,
the air is the continuous phase.
(4)Select wen-yu to use the fluid-solid drag function. The Wen and Yu model is applicable for dilute phase flows, in which the total secondary phase volume fraction is significantly lower than that of the primary
phase.
(5)Select gidaspow to use the fluid-solid drag function. The Gidaspow model is recommended for dense fluidized beds.
(6)Select syamlal-obrien to use the fluid-solid drag function. The Syamlal-O'Brien model is recommended for use in conjunction with the Syamlal-O'Brien model for granular viscosity.
(7)Select syamlal-obrien-symmetric to use the solid-solid drag function. The symmetric Syamlal-O'Brien model is appropriate for a pair of solid phases.
(8)Select constant to specify a constant value for the drag function, and then specify the value in the text field.
(9)Select user-defined to use a user-defined function for the drag function (see the separate UDF Manual for details).
(10)If you want to temporarily ignore the interaction between two phases, select none.
Figure 5: The Phase Interaction Panel for the Eulerian Model
2)Specifying the Restitution Coefficients (Granular Flow Only)
对颗粒流,你必须为颗粒间的碰撞指定归还系数(e Is and e ss)。
除了为每一对颗粒相之间的碰撞指定归还系数外,你也得为同相颗粒之间的碰撞指定归还系数。
步骤如下:
➢Click the Collisions tab to display the Restitution Coefficient inputs.
➢For each pair of phases, specify a constant restitution coefficient. All restitution coefficients are equal to 0.9 by default.
3)Including the Lift Force
对颗粒和非颗粒流,在第二相颗粒、液滴、或气泡中包含升力(F lift)的影响是可能的。
这些升力作用于颗粒、液滴或气泡主要是由于主相流场中的速度梯度。
在大多数情形下,升力与曳力相比是不重要的,因此没必要包含它,如果升力重要(也就是说,如果相很快分离),你可以包含这个影响。
!!注意对大颗粒,升力更重要,但是FLUENT模型假设粒子直径远小于粒子间距离。
这样对接近充满的颗粒(closely packed particles)或者小颗粒,包含升力是不合适的。
包含升力影响的步骤如下:
a)Click the Lift tab to display the Lift Coefficient inputs.
b)对每一对相,从下面相应的列表中选择合适的指定方法。
注意,既然作用于颗粒、液滴或气泡的升力主要是由
于主相流场中的速度梯度,你不必为存在于两个第二相间的每对相指定升力系数;只对存在于第二相和主相之间的每对相指定升力系数。
➢Select none (the default) to ignore the effect of lift forces.
➢Select constant to specify a constant lift coefficient, and then specify the value in the text field.
➢Select user-defined to use a user-defined function for the lift coefficient (see the separate UDF Manual for details).
4)Including the Virtual Mass Force
对颗粒和非颗粒流,当第二相相对于主相加速时包含存在的虚拟质量力(F vm)是可能的。
当第二相的密度远小于主相的密度时虚拟质量的影响是重要的(也就是对瞬态泡状柱流(transient bubble column))。
包含虚拟质量力的影响,turn on the Virtual Mass option in the Phase Interaction panel.
虚拟质量力的影响被包含在所有第二相内;使它仅为颗粒相是不可能的。
5)Including Body Force(包含体积力)
在许多情况下,相的运动部分是由于重力的影响。
为了包含这个体积力,应在Operating Conditions panel下选择Gravity并且指定Gravitational Acceleration.
Define Operating Conditions...
对于VOF计算,你应当在Operating Conditions panel下选择Specified Operating Density,并且在Operating Density下为最轻相设置密度。
(这种排除了水力静压的积累,提高了round-off精度为动量平衡)。
如果任何一相都是可压缩的,设置Operating Density为零。
!!对于涉及体积力的VOF 和mixture计算,建议你在Multiphase Model panel下为Body Force Formulation
选择Implicit Body Force.这种处理通过解决压力梯度和动量方程中体积力的部分平衡提高了解的收敛。
3.4 为Eulerian多相流计算选择紊流模型
如果你使用Eulerian模型求解紊流,你必须在三种紊流模型中选择一种模型(在Viscous Model panel, Figure 6)。
步骤如下:
1.Select k-epsilon under Model.
2.Select the desired k-epsilon Model and any other related parameters, as described for single-phase calculations.
3.Under k-epsilon Multiphase Model, indicate the desired multiphase turbulence model:
•Select Mixture to use the mixture turbulence model. This is the default model.
•Select Dispersed to use the dispersed turbulence model. This model is applicable when there is clearly one primary continuous phase and the rest are dispersed dilute secondary phases.
•Select Per Phase to use a k- turbulence model for each phase. This model is appropriate when the turbulence transfer among the phases plays a dominant role
*包含源项(Including Source Terms)
默认情形,相间动量,κ、ε源项不包含在计算中。
如果你想包含这些源项中的任一项,你可以使用multiphase-options command in the define/models/viscous/multiphase-turbulence/text menu。
注意:包含这些项明显减慢收敛速度。
如果你要寻找额外的精度,你应首先求的没有这些源项的解,接着包含上这些源项计算。
大多数情形下这些源项可以忽略。
Figure 6: The Viscous Model Panel for an Eulerian Multiphase Calculation
3.5 设置边界条件
多相流边界条件的设置在Boundary Conditions panel (Figure 7)中进行,但是设置多相流边界条件的步骤与单相流模型有些不同。
你必须分别为各个相设置一些条件,而其他的条件是所有相(也就是mixture)所共享的,如下有详细的描述。
3.5.1Define Boundary Conditions... 混合相(mixture)和各个单相的边界条件
Figure 7: The Boundary Conditions Panel
如果你使用的是Eulerian模型,你必须为每一个区域类型指定的条件列举如下并总结在表1, 2, 3和4。
注:具体的紊流参数取决于你使用的三个多相紊流模型,说明在表2-4中。
★对于exhaust fan, outlet vent, or pressure outlet, 如果你使用层流模型或使用混合紊流模型(默认的多相紊流模型),没有条件为主相设置。
对于每个第二相,你必须设置volume fraction为常数,型线或者UDF。
如果相是颗粒的(granular),你也
必须设置颗粒温度(granular tempreture).
如果你使用的混合紊流模型,你必须为mixture指定紊流边界条件;如果你使用的是分散(dispersed)
紊流模型,你必须为主相设置它们;如果你使用的是per-phase紊流模型,你必须为主相和第二相设置
它们。
所有其他条件都是为mixture设置的。
★对于velocity inlet,你必须为每一相指定速度。
对于第二相,你必须设置volume fraction(如上所述)。
如果相是颗粒的(granular),你也必须设置颗粒温
度(granular temperature).
如果你使用的是mixture紊流模型,你必须为mixture设置紊流边界条件;如果你使用的是分散(dispersed)
紊流模型,你必须为主相指定它们;如果你使用的是per-phase紊流模型,你必须为主相和第二相设置
它们。
所有其他的条件都是为mixture 设置的。
★对于axis, outflow, periodic, solid, or symmetry zone, 所有条件都是为mixture设置的;没有条件为单相设置。
★对于wall zone, shear 条件为单相指定;所有其他条件为mixture指定。
★对于fluid zone, 所有source terms和fixed values都是为单相设置的,除非你使用的是mixture紊流模型或dispersed紊流模型。
如果你使用的是mixture紊流模型,紊流的source terms和fixed values为mixture
设置;如果你使用的是dispersed紊流模型,他们只为主相设置。
如果fluid zone 不是多孔的,所有其他条件都是为mixture设置。
如果fluid zone 是多孔的,你将为混合相选择Porous Zone在Fluid面板下。
Porosity inputs(if relevant)
也是为混合相指定的。
而Resistance coefficients和direction vectors分别为每一相指定。
所有其他条件都
是为混合相指定的。
注:pressure far-field,fan, porous jump and radiator 边界在使用Eulerian模型时是无效的。
3.5.2 设置边界条件的步骤
你需要给每一个边界执行的步骤如下:
1)在Boundary Conditions面板的Zone列表中选择边界;
2)如果必要,在这个边界上为mixture设置条件。
(见上述有关的需要为mixture设置条件的信息)。
(a)In the Phase drop-down list, select mixture.
(b)If the current Type for this zone is correct, click Set… to open the corresponding panel(e.g., the Pressure Inlet panel); otherwise, choose the correct zone type in the Type list, confirm the change(when prompted), and the corresponding panel will open automatically.
(c)In the corresponding panel for the zone type you have selected (e.g., the Pressure Inlet panel, shown in Figure 8), specify the mixture boundary conditions.
Figure 8: The Pressure Inlet Panel for a Mixture
注:仅仅那些适用于所有相的条件,如上所述,将出现在这个面板中。
!!对于VOF计算,如果你在Phase Interaction 面板中选择了Wall Adhesion,你能在wall上指定接触角为每一对相。
接触角(θω)就是壁面和接触面切线的夹角,量度了在Wall面板的成对的列表中第一相的值。
例如,如果你设置oil和air相的接触角在Wall面板中, θω量度在oil相内。
对于所有对默认值是90度,就是没有壁面支持的影响(也就是,接触面垂直于支持面)。
例如,接触角为45度,相当于水沿着容器面爬行,通常是水在玻璃上。
(d)Click OK when you are done setting the mixture boundary conditions.
3)如果必要,在这个边界上为每一相设置条件。
(上述有关必要为每一相设置条件的信息)。
(a)In the Phase drop-down list, select the phase (e.g., water).
!!注意:当你选择了单相中的一个(而不是mixture),只有一类区域出现在Type列表中。
在给定的边界上是不可能指定phase-specific zone类的,这种区域类型是为mixture指定的,它也适用于所有的单相。
(b)Click Set... to open the panel for this phase's conditions (e.g., the Pressure Inlet panel, shown in Figure ).
Figure 9: The Pressure Inlet Panel for a Phase
(c)Specify the conditions for the phase. Note that only those conditions that apply to the individual phase, as described above, will appear in this panel.
(d)Click OK when you are done setting the phase-specific boundary conditions.
3.5.3 复制边界条件的步骤
为多相流动复制边界条件的步骤与在section6.1.5中描述的为单相流动的有些不同。
修改的步骤如下:
1)In the , click the Copy... button. This will open the Copy BCs panel.
2)In the From Zone list, select the zone that has the conditions you want to copy.
3)In the To Zones list, select the zone or zones to which you want to copy the conditions.
4)In the Phase drop-down list, select the phase for which you want to copy the conditions (either mixture or one of
the individual phases).
!! Note that copying the boundary conditions for one phase does not automatically result in the boundary conditions for the other phases and the mixture being copied as well. You need to copy the conditions for each phase on each boundary of interest.
5)Click Copy. FLUENT will set all of the selected phase's (or mixture's) boundary conditions on the zones selected
in the To Zones list to be the same as that phase's conditions on the zone selected in the From Zone list. (You
cannot copy a subset of the conditions, such as only the thermal conditions.)
3.6 设置初始容积比率
一旦你初始化了流动(as described in section 22.13),你就能定义相的初始分布。
对于瞬态模拟,这个分布将作为初始条件在t=0时刻;对于稳态模拟,设置初始分布在计算的早期阶段能提供更多的稳定性。
你可以使用Patch 面板为第二相修订(patch)初始容积比率。
Solve
Initialize Patch...
如果你想修订容积比率的区域已经作为隔离的单元区被定义,你只能修订那个地方的值。
否则,你可以创建一个包括合适单元的“寄存器”并在这个寄存器中修订值。
4 欧拉模型的求解策略(Solution Strategies for the Eulerian Model)
Calculating an Initial Solution
为了提高收敛性,在求解完整欧拉多相流模型前你可以先获得初始解。
有两种方法你可以用来为欧拉多相流计算获得初始解:
3.启动和求解问题用混合模型(选或不选滑流速度都可)代替欧拉模型。
然后启动欧拉模型,完成设置,采用混合模型的解作为起点继续计算。
4.通常启动欧拉多相流计算,但是仅计算主相的流动。
这样做时,在的Equations下面不选Volume Fraction. 一旦你为主相获得了初始解,打开volume fraction 方程继续为各相计算。
!!注意:没有获得用混合模型或欧拉模型作为欧拉多相流模型的初始解,你不应该使用单相解。
这样做,不能提高收敛性,可能会给流动的收敛带来更多的困难。
Temporarily Ignoring Lift and Virtual Mass Forces
如果你计划在稳态欧拉多相流模拟中包含升力和虚拟质量力,你经常减弱问题的稳定性,这有时发生在计算的早期阶段,是由于暂时忽略了升力和虚拟质量力引起的。
一旦没有这些力的解开始收敛,你可以打断计算,合适地定义这些力,继续计算。
5 一般多相流问题的后处理(Postprocessing General Multiphase Problems)
三种一般的多相流模型中的每一种都提供了一些你能画图和汇报的附加的场函数。
你也可以汇报流动比率为三种模型中单个相,为混合模型和欧拉计算中每一相显示速度矢量。
5.1 可用的后处理变量(Available Postprocessing Variables)
当你使用其中的一种一般多相流模型模型时,几个附加的场函数对后处理好是有用的,这里列举如下。
对欧拉模型的计算你可以产生如下所列项目的图象显示和数据汇报:
•Volume fraction of phase-n (in the Phases... category)
•Density of phase-n (in the Density... category)
•phase-n Velocity Magnitude (in the Velocity... category)
•phase-n Relative Velocity Magnitude (in the Velocity... category)
•phase-n X, Y, Z, etc. Velocity (in the Velocity... category)
•phase-n Relative X, Y, Z, etc. Velocity (in the Velocity... category)
•phase-n Stream Function (in the Velocity... category)
•phase-n Turbulent Viscosity (in the Turbulence... category)
•phase-n Wall Yplus (in the Turbulence... category)
•phase-n Turbulent Kinetic Energy (in the Turbulence... category)
•phase-n Turbulent Dissipation Rate (in the Turbulence... category)
•phase-n Production of k (in the Turbulence... category)
•Molecular Viscosity of phase-n (in the Properties... category)
•Diameter of phase-n (in the Properties... category)
•phase-n Wall Shear Stress (in the Wall Fluxes... category)
•phase-n X, Y, Z Wall Shear Stress (in the Wall Fluxes... category)
•phase-n Skin Friction Coefficient (in the Wall Fluxes... category)
The availability of the turbulence quantities listed above will depend on which multiphase turbulence model you used in the calculation.
!! 注意:如果你读一个Eulerian多相数据文件给FLUENT,在画图和汇报上面所列项目前你必须运行Solver进行一次迭代。
(当你正用FLUENT计算时画图和汇报这些变量,这是不必要的)。
5.2 显示单相的速度矢量(Display Velocity Vectors for Individual Phases)
对混合和欧拉计算,使用Vector panel显示单相的速度矢量是可能的。
Display Vectors...
为了显示特殊相的速度矢量,在Vector Of 下拉列表中选phase-n Velocity (这里phase-n 被感兴趣相的名字所代替,例如,air-bubbles Velocity )。
你也可选Relative phase-n Velocity 来显示相对于移动参考体系的相的速度。
为了显示混合相速度m
(仅与混合模型的计算相关),选择Velocity (or Relative Velocity for the mixture velocity relative to a moving reference frame.)
5.3 报告单相的流量(Report Fluxes for Individual Phase )
当你使用Flux Reports panel 计算通过边界的流量时,你应该指出报告是对混合相的还是对单相的。
Report Fluxes...
选择mixture 在Phase 下拉列表中在面板底部来报告混合相流量,或者选择相的名字来报告所选相的流量。
20.8.4报告单相在壁面上的力(Reporting Forces on Walls for Individual Phase )
对欧拉计算,当你使用Force Reports panel 来计算力或壁面边界上的动量时,你应当指定你想要为之计算力的单相。
Report Forces...
在面板左边的Phase 下拉列表中选择你所要选的相的名字。
20.8.5报告单相的流量比率(Reporting Flow Rates for Individual Phase)
你可以使用report/mass-flow text命令来获得每一相(或混合相)通过每一流动边界上的质量流量比率。
report mass-flow
当你指定感兴趣的相(混合相或者单相),FLUENT将列出每个区域,区域后面跟着是所指定相质量流率所通过的区域。
举例如下:
/report> mf
(mixture water air)
domain id/name [mixture] air
zone 10 (spiral-press-outlet): -1.2330244
zone 3 (pressure-outlet): -9.7560663
zone 11 (spiral-vel-inlet): 0.6150589
zone 8 (spiral-wall): 0
zone 1 (walls): 0
zone 4 (velocity-inlet): 4.9132133
net mass-flow: -5.4608185。