当前位置:文档之家› 镀锌钢管的焊接特点及焊接工艺-焊接工艺的特点

镀锌钢管的焊接特点及焊接工艺-焊接工艺的特点

镀锌钢管的焊接特点及焊接工艺-焊接工艺的特点
镀锌钢管的焊接特点及焊接工艺-焊接工艺的特点

镀锌钢管的焊接特点及焊接工艺

镀锌钢管因为它有着耐腐蚀性能和使用寿命长的双重优点,并且镀锌管价格相应的也比较低廉,所以现在它的使用率也是越来越高了,但是的使用者在焊接镀锌管时并不注意,导致了一些不必要的麻烦,那么镀锌管在焊接时我们都应该注意些什么问题呢?

一、前提就要打磨

必须把焊接处的镀锌层打磨掉,否则会产生气泡、沙眼、假焊等。还会使焊缝变脆,刚性下降。

二、镀锌钢的焊接特点

镀锌钢一般是在低碳钢外镀一层锌,镀锌层一般在20um厚。锌

的熔点在419°C,沸点908°C左右。在焊接中,锌熔化成液体浮在熔池表面或在焊缝根部位置。锌在铁中具有较大固溶度,锌液体会沿晶界深入浸蚀焊缝金属,低熔点锌形成“液体金属脆化”。

同时,锌与铁可形成金属间脆性化合物,这些脆性相使焊缝金属塑性降低,在拉应力作用下而产生裂纹。

如果焊接角焊缝,尤其是T形接头的角焊缝最容易产生穿透裂纹。

镀锌钢焊接时,坡口表面及边缘处的锌层,在电弧热作用下,产生氧化、熔化、蒸发以至挥发出白色烟尘和蒸汽,极易引起焊缝气孔。

由于氧化而形成的ZnO,其熔点较高,约1800°C以上,若在焊接过程中参数偏小,将引起ZnO夹渣,同时。由于Zn成为脱氧剂。产生FeO-MnO或FeO-MnO-SiO2低熔点氧化物夹渣。其次,由于锌的蒸发,挥发出大量的白色烟尘,对人体有刺激、伤害作用,因此,必须把焊接处的镀锌层打磨处理掉。

超声波焊接技术

1.超声焊接 2. 振动焊接振动焊接是摩擦焊接过程,其间被焊接的制件在压力下磨擦到一起直到生成的磨擦和剪切热量使接触面达到充分熔融状态。一旦熔融膜已经形成渗入到足够深的沓接区域,相对运动停止,在压力作用下焊缝冷却并固化。振动焊接的材料因素与超声焊接类似 3. 旋转焊接旋熔式塑胶熔接是将塑胶工件相互摩擦所产生之热力,使塑胶工件接触面产生熔解,在靠外在压力、驱动促使上下工件旋转凝固为一体,而定位旋熔是在设定时间旋转,瞬间停在设定的位置上,成为永久性的熔合。旋转熔接机对于超音波范围以外圆形塑胶,适用于不易熔接塑胶,且韧性较高之圆形产品,如:脱水容器,汽机车滤油杯,喷水接头,热水瓶气胆,保温杯,球状玩具,油漆筒,保温锅,过滤心,浮标等。藉高速振动旋转磨擦生热原理,使塑胶加工物熔接表面熔解而达到熔接的效果。 旋转焊接用来连接具有旋转对称接合表面的制件,它属磨擦焊接工艺。是连接可大可小的圆柱形热塑性塑 料制件的最有效的工艺。用旋转焊接技术组装的制件常常具有与周边垂直的连接板等特征。它的生要加工变量 是相对剪切速率、焊接压力和焊接时间。旋转焊接的接头强度取决于材料、接头设计和所用的加工条件;多数 热塑性塑料可达到强的气密封接焊缝。旋转焊接对透射性能不好的材料特别合适。 4. 热板焊接主要通过一个由温度控制的加热板来焊接塑料件。焊接时,加热板置于两个塑料件之间,当工件紧贴住加热板时,塑料开始熔化。在一段预先设置好的加热时间过去之后,工件表面的塑料将达到一定的熔化程度,此时工件向两边分开,加热板移开,随后两片工件并合在一起,当热板停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能超越于原材料强度,整个焊接过程完成。 5. 感应焊接电磁焊接(电感焊接)是利用能达到熔化温度的电感能量连接热塑性制件的方法。也被称作特种插入焊接,此间磁致旋光聚合插入物被一个高频电磁场加热。 6. 接触(电阻)焊电导线或条带被直接放入接头界面,电线连接在电路中且用电阻损失直接加热。热量通过导热性传递给相邻的塑料材料,因此塑性固体在局部区域软化或溶化。断电后,焊接区或冷却,压力使啮合制件彼此接触。设备要求最低,焊接过程简单且速度快,特别适合于焊接很大的制件。但需要损失加热电线,焊接后电线保留在原位,增加了加工成本,且电线的存在也对成品的焊缝强度有不利影响。 7. 热气焊接又称热风焊接。压缩空气或惰性气体(通常为氮气)通常焊枪口的加热器加热到所需温度,喷到塑料表面及焊条上,使得二者熔融后在不大的压力下结合的方法。对氧有敏感性的塑料(如聚酰胺等)应使用惰性气体作为加热介质,其他塑料一般用经过滤的空气即可。气体以及零件必须干燥、无灰尘和油脂 8. 挤出焊接挤出焊接是由热气焊接发展而来的焊接方法。主要较大片型结构的自动焊接。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 1 技术特征 1.1材质规格:304( 相当于0Cr18Ni9) 1.2工作介质: 水软水 1.3设计压力: 2工作压力:5Kg/CM1.42试验压力: 7.5Kg/CM1.52 本工程编制依据2.1 F43C技术文件. 2.2 国标GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 2.3 国标GB50235-97《工业金属管道施工及验收规范》 2.4 本公司焊接工艺评定报告:HG1 3 焊工 3.1 焊工应具有“锅炉压力容器压力管道焊工考试规则”规定的焊工考试合格证。 3.2 焊工进入现场后应按GB50236-98规定先进行焊接实际操作考试合格,经总包方认可发证后方能担任本项目的焊接工作。 4 焊接检验 4.1焊接检验人员应熟悉F43C技术文件及有关国标和本工艺。 4.2对管材焊材按规定进行检验、填表验收。 对违反者进行教育帮,对焊工是否执行本工艺进行全面监督检查4.3.. 助得以改正。对严重违反者或教育不改者有权令其停止焊接工作。以

确保焊接质量。 4.4 做好本工艺第7条“焊接后检查和管理工作”。 4.5 邀请和欢迎总包方和监理方检查人员检查焊接质量。 5 焊前准备 5.1.1 管材、焊材必须具有符合规定的合格证明,并与实物核对无误。 5.1.2 管材型号为304级相当等于我国的0Cr18Ni9规格标准。按项目图纸规定。 5.1.3 不锈钢焊丝型号规格为:H0Cr20Ni10Ti φ2.5mm φ2.0mm 5.1.4 不锈钢电焊条型号规格:A132 φ3.2mm φ2.5mm 5.1.5 铈钨电极型号规格:WCe-20 φ2.0mm 5.1.6 氩气纯度为99.99%。 5.2 焊件准备 5.2.1 焊接口的分布位置必须符合国标GB50235-97和GB50236-98规范的规定。 5.2.2 管道为V型坡口,对接接头、组对应符合图1要求: 注:间隙3.5~4mm为焊接时的数据,组对点固焊时,应适当大于此数据,以补收缩。 .. . 图1.焊口组对数据

超声波焊接技术

哈尔滨工业大学 金属工艺学课程论文 题目:超声波金属焊接技术的综合介绍 院系:能源科学与工程学院 专业:能源与动力工程

班级: 1502403 学号: 1150240325 姓名:石嘉成 超声波金属焊接技术的综合介绍 石嘉成1 (1.哈尔滨工业大学能源科学与工程学院) 摘要:本文主要介绍特种焊接中的超声波金属焊接技术,将从超声波焊金属接技术的应用背景、工艺过程、特点及实际应用情况及最新发展等发面展开介绍。通过文献的查阅得到了以下的结论:超声波焊接的应用越来越广泛,它具有能耗低、压力小、速度快、稳定性高、程序简便、精度高等优点,虽然对仪器的要求较高导致成本较高,但是仍不失为一种很有前景的焊接技术。 关键词:超声波焊接;金属;工艺过程;文献查阅

1.超声波金属焊接技术应用背景 超声波金属焊接起源于1950年的美国1。超声波金属焊接在电子工业、电器制造、新材料的制备、航空航天及核能工业、食品包装盒、高级零件的密封技术方面都有很广泛的应用,加上其节能、环保、操作方便等突出优点,对于我国建设资源节约型、环境友好型的现代化社会,超声波金属焊接将发挥很大的促进作用2。 2.超声波焊接技术的原理及工艺过程 2.1超声波金属焊接技术的原理 超声波金属焊接主要过程是被夹持在一起的两块工件受到硬砧和焊接端头之间的静压力,将超声波能量传输给工件顶部,维持短暂的时间,待结合表面之间的摩擦破碎氧化膜和其它沾污,每个表面上暴露出清洁新生的金属,从而使两个表面相互结合。一旦两表面处于一个原于间距内,就会产生金属型结合,由于超声波清理作用是连续的,就没有时间来形成阻碍原于接近的新氧化膜。完成最终的冶金结合时,无电弧和飞溅,无焊缝金属的熔化,铸造组织无熔化,厚度变形也很小3。 2.2超声波金属焊接技术的工艺过程 如图1所示,超声波焊接过程分为4个阶段: 第1阶段:焊头与零件接触,施压并开始振动。摩擦发热量熔化导能筋,熔液流入结合面。随着两零件之间距离的减少,焊接位移量(两零件之间由于熔体流动产生的距离减小值)开始增加。起初焊接位移量快速增加,然后在熔化的导能筋铺展并接触下零件表面时放慢增速。在固态摩擦阶段,发热是由于两表面之间的摩擦能和零件中的内摩擦产生的。摩擦发热使聚合物材料升温至其熔点。发热量取决于作用频率、振幅和压力4。

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

低合金钢(16Mn)焊接工艺特点

低合金钢(16Mn)在钢结构中的焊接工艺特点 摘要:低合金钢(16Mn)中,16Mnq与Q345是最典型的两种钢材,分别运用于桥梁与建筑钢结构。如何采用正确的焊接工艺来保证该类钢材的焊接质量,是本文讨论的重点。 关键词:钢结构低合金钢单面焊双面成形焊接工艺层状撕裂 在承重钢结构中,经常采用掺加合金元素的低合金钢,其强度高于碳素结构钢,它的强度增加不是靠增加含碳量,而是靠加入合金元素的程度。所以,其韧性并不降低。低合金钢(16Mn)的综合性能较好,在钢结构领域已广泛使用。 1:16Mnq钢焊接工艺 16Mnq钢是广泛运用于钢桥梁的低合金钢, 该钢材以热轧状态交货化学成分与力学性能见表1,2: 表1 表2 由碳当量公式:Ceq(%)=C+1/6Mn+1/24Si可知该钢焊接性接近中碳钢,因而在施焊过程中要防止因淬硬带来的微裂纹等缺陷。 1.1 单面焊双面成形 图1 单面焊双面成形示意图 (1:二氧化碳气体保护打底焊 2:二氧化碳气体保护中间层焊 3;埋弧直动焊盖面)

1.1.1 板缝间隙 通过焊接工艺试验发现: 当板缝间隙过窄,小于6毫米时,则二氧化碳气体保护打底焊焊丝无法摆动,焊缝反面成型不规则,反面余高过高。 当板缝间隙大于8毫米时,则显过宽,容易产生夹渣与边缘未融合以及焊缝收缩量大现象。同时,板缝间隙过宽,二氧化碳气体保护焊丝摆动大,焊缝融敷金属受二氧化碳气体保护效果差,焊工也难于控制其面焊接质量。板缝间隙过宽,还会造成埋弧直动焊一次盖面不能彻底盖住,造成偏焊,达不到焊接质量要求。 当板缝间隙处于6~8毫米时,再配合适当的运条方法,则能避免上述问题出现,达到焊接质量要求。 1.1.2 打底层数和运条方法 对于8~14毫米间板厚,如果只进行一层二氧化碳气体保护打底焊,则易造成埋弧直动焊盖面时烧穿。所以,需采取两层二氧化碳气体保护打底。 但当板薄且运条方式不正确,又易造成打底焊焊缝高于母材,对埋弧直动焊盖面带来困难。 在实际施焊过程中,第一道二氧化碳气体保护打底焊需采用前月牙形右焊法,见图2。 图2 前月牙形右焊法 此种运条方法易保证焊接时不断弧,焊丝突然送进时,不对陶瓷衬垫造成破坏。 第二道二氧化碳气体保护打底焊需采用后月牙左焊法,见图3。 图3 后月牙左焊法 此种运条方法易保证埋弧直动焊盖面所需深度,也易避免坡口边缘产生夹渣和未融合。 1.1.3 接头处理方法 由于16Mnq钢淬硬带来的微裂纹趋向大,易出现弧坑裂纹与缩孔。 在收弧时,要采用慢收弧方法,并对这种冷接头采取打磨处理,将弧坑微裂纹与缩孔磨出,并将端部打磨成1:5的斜坡。 当要进行下次施焊时,要对其预热处理。 对于端部和收尾,要求每条焊缝必须安置与正式焊缝同材质同坡口的引熄弧板。同时,焊接

超声波焊接件的工艺设计

超声波焊接件的工艺设计 作者:欣宇机械来源:本站原创日期:2014-5-5 17:32:38 点击:6943 属于:行业新闻超声波焊接件的工艺设计-东莞市欣宇超声波机械有限公司 在超声波焊接行业中,很多客户都不知道塑料件焊接,焊接产品优良不只是跟材质,超声波选择机型功率有关系,最容易被忽略的一点是:超声波焊接件的工艺设计,塑料焊接件需要设计有超声线,焊接出来的产品才是比较完美的。那么,超声波焊接件的工艺设计是怎么样的呢?要怎么设计呢?很多客户初步使用超声波焊接,都会对个问题不了解,今天,欣宇小陈为大家讲解:超声波焊接件的工艺设计,希望对朋友有所帮助! 超声波塑料件的结构设计必须首先考虑如下几点: 1.是否需要水密、气密。 2.是否需要完美的外观。 3.是否适合焊头加工要求。 4.焊缝的大小(即要考虑所需强度)。 5.避免塑料熔化或合成物的溢出。 超声波焊接质量获得原因: 1.材质 2.上下表面的位置和松紧度 3.焊头与塑料件的妆触面 4.顺畅的焊接路径 5.塑料件的结构 6.焊接线的位置和设计 7.焊接面的大小 8.底模的支持 为了获得完美的、可重复的超声波熔焊方式,必须遵循三个主要设计方向: 1.围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。 2.最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。 3.找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。 下面就对超声波塑料件设计中的要点进行分类举例说明: 超声波整体塑料件的结构 1.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为 2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑

焊接的工艺特点及流程介绍

可通过与波峰焊的比较来了解选择性焊接的工艺特点。两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。在焊接前也必须预先涂敷助焊剂。与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。另外选择性焊接仅适用于插装元件的焊接。选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。微孔喷射式绝对不会弄污焊点之外的区域。微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。使用者可根据具体的情况来安排选择性焊接的工艺流程。焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。选择性拖焊工艺是在单个小焊嘴焊锡波上完成的。拖焊工艺适用于在PCB上非常紧密的空间上进行焊接。例如:个别的焊点或引脚,单排引脚能进行拖焊工艺。PCB以不同的速度及角度在焊嘴的焊锡波上移动达到最佳的焊接质量。为保证焊接工艺的稳定,焊嘴的内径小于6mm。焊锡溶液的流向被确定后,为不同的焊接需要,焊嘴按不同方向安装并优化。机械手可从不同方向,即0°~12°间不同角度接近焊锡波,于是用户能在电子组件上焊接各种器件,对大多数器件,建议倾斜角为10°。与浸焊工艺相比,拖焊工艺的焊锡溶液及PCB板的运动,使得在进行焊接时的热转换效率就比浸焊工艺好。然而,形成焊缝连接所需要的热量由焊锡波传递,但单焊嘴的焊锡波质量小,只有焊锡波的温度相对高,才能达到拖焊工艺的要求。例:焊锡温度为275℃~300℃,拖拉速度10mm/s~25mm/s通常是可以接受的。在焊接区域供氮,以防止焊锡波氧化,焊锡波消除了氧化,使得拖焊工艺避免桥接缺陷的产生,这个优点增加了拖焊工艺的稳定性与可靠性。https://www.doczj.com/doc/e38797513.html,机器具有高精度和高灵活性的特性,模块结构设计的系统可以完全按照客户特殊生产要求来定制,并且可升级满足今后生产发展的需求。机械手的运动半径可覆盖助焊剂喷嘴、预热和焊锡嘴,因而同一台设备可完成不同的焊接工艺。机器特有的同步制程可以大大缩短单板制程周期。机械手具备的能力使这种选择焊具有高精度和高质量焊接的特性。首先是机械手高度稳定的精确定位能力(±0.05mm),保证了每块板生产的参数高度重复一致;其次是机械手的5维运动使得PCB能够以任何优化的角度和方位接触锡面,获得最佳焊接质量。机械手夹板装置上安装的锡波高度测针,由钛合金制成,在程序控制下可定期测量锡波高度,通过调节锡泵转速来控制锡波高度,以保证工艺稳定性。尽管具有上述这么多优点,单嘴焊锡波拖焊工艺也存在不足:焊接时间是在焊剂喷涂、预热和焊接三个工序中时间最长的。并且由于焊点是一个一个的拖焊,随着焊点数的增加,焊接时间会大幅增加,在焊接效率上是无法与传统波峰焊工艺相比的。但情况正发生着改变,多焊嘴设计可最大限度地提高产量,例如,采用双焊接喷嘴可以使产量提高一倍,对助焊剂也同样

CrMo钢管焊接工艺

15CrMo钢管焊接工艺 焊接工艺 方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,TiG焊打底。E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。 方案Ⅱ:采用ER80S-B2L焊丝,TiG焊打底。E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。 焊丝和焊条的化学成分及力学性能见表1。 表1 焊接材料的化学成分和力学性能 型号 C Mn Si Cr Ni Mo S P δb/Mpa δ,% ; ER80S-B2L ≤ . < ≤≤≤500 25 ; E8018-B2 ≤≤ 550 19 ; E309Mo-16≤~~~~≤≤ 550 25 ; 焊前准备 试件采用15CrMo钢管,规格为φ325×25,坡口型式及尺寸见图1。

焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。 试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。 焊条烘烤规范 焊条型号烘烤温度保温时间 E8018-B2 300 ℃ 2h E309Mo-16 150 ℃ 工艺参数 按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式: To=350√[C](℃)式中,To——预热温度,℃。 [C]=[C]x [C]p [C]p=[C]x [C]x=C (Mn Cr)/9 Ni/18 7Mo/90 式中, [C]x——成分碳当量; [C]p——尺寸碳当量; S——试件厚度(本文中S=25mm); [C]x=C (Mn Cr)/9 7/90Mo= [C]p= 则To=138℃

超声波焊接机的工作原理

超声波焊接机的工作原理 超音波焊接机的工作原理是: 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。 超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。 1、气动传动系统 包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。 工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。 2、控制系统 控制系统由时间继电器或集成电路时间定时器组成。主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

钢管焊接施工工艺

焊接钢管施工工艺 2010/9/14 13:48:28 焊接钢管施工工艺的流程:5.1 焊缝间隙的控制将带钢送入焊管机组,经多道轧辊滚压,带钢逐渐卷起,形成有开口间隙的圆形管坯,调整挤压辊的压下量,使焊缝间隙控制在1~3mm,并使焊口两端齐平。如间隙过大,则造成邻近效应减少,涡流热量不足,焊缝晶间接合不良而产生未熔合或开裂。如间隙过小则造成邻近效应增大,焊接热量过大,造成焊缝烧损;或者焊缝经挤压、滚压后形成深坑,影响焊缝表面质量。 5.2 焊接温度控制焊接温度主要受高频涡流热功率的影响,根据公式(2)可知,高频涡流热功率主要受电流频率的影响,涡流热功率与电流激励频率的平方成正比;而电流激励频率又受激励电压、电流和电容、电感的影响。激励频率公式为: f=1/[2π(CL)1/2]...(1) 式中:f-激励频率(Hz);C-激励回路中的电容(F),电容=电量/电压;L-激励回路中的电感,电感=磁通量/电流上式可知,激励频率与激励回路中的电容、电感平方根成反比、或者与电压、电流的平方根成正比,只要改变回路中的电容、电感或电压、电流即可改变激励频率的大小,从而达到控制焊接温度的目的。对于低碳钢,焊接温度控制在1250~1460℃,可满足管壁厚3~5mm焊透要求。另外,焊接温度亦可通过调节焊接速度来实现。当输入热量不足时,被加热的焊缝边缘达不到焊接温度,金属组织仍然保持固态,形成未熔合或未焊透;当输入热时不足时,被加热的焊缝边缘超过焊接温度,产生过烧或熔滴,使焊缝形成熔洞。 5.3 挤压力的控制管坯的两个边缘加热到焊接温度后,在挤压辊的挤压下,形成共同的金属晶粒互相渗透、结晶,最终形成牢固的焊缝。若挤压力过小,形成共同晶体的数量就小,焊缝金属强度下降,受力后会产生开裂;如果挤压力过大,将会使熔融状态的金属被挤出焊缝,不但降低了焊缝强度,而且会产生大量的内外毛刺,甚至造成焊接搭缝等缺陷。 5.4 高频感应圈位置的调控高频感应圈应尽量接近挤压辊位置。若感应圈距挤压辊较远时,有效加热时间较长,热影响区较宽,焊缝强度下降;反之,焊缝边缘加热不足,挤压后成型不良。 5.5 阻抗器是一个或一组焊管专用磁棒,阻抗器的截面积通常应不小于钢管内径截面积的70%,其作用是使感应圈、管坯焊缝边缘与磁棒形成一个电磁感应回路,产生邻近效应,涡流热量集中在管坯焊缝边缘附近,使管坯边缘加热到焊接温度。阻抗器用一根钢丝拖动在管坯内,其中心位置应相对固定在接近挤压辊中心位置。开机时,由于管坯快速运动,阻抗器受管坯内壁的磨擦而损耗较大,需要经常更换。 5.6 焊缝经焊接和挤压后会产生焊疤,需要清除。清除方法是在机架上固定刀具,靠焊管的快速运动,将焊疤刮平。焊管内部的毛刺一般不清除。 5.7 工艺举例现以焊制φ32×2mm 直缝焊管为例,简述其工艺参数:带钢规格:2×98mm 带宽按中径展开加少量成型余量钢材材质:Q235A 输入励磁电压:150V 励磁电流:1.5A 频率:50Hz 输出直流电压:11.5kV 直流电流:4A 频率:120000Hz 焊接速度:50米/分钟参数调节:根据焊接线能量的变化及时调节输出电压和焊接速度。参数固定后一般不用调整。 这样的焊接钢管施工的工艺焊接时产生的线能量小,对母材热影响区影响程度也小。多丝焊接后道焊丝对前道焊丝可起到消除焊接时产生应力的作用,从而对钢管的机械性能有所改善。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 Document number:BGCG-0857-BTDO-0089-2022

摘要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。 1 案例分析 0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG 焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。 0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。 2 焊接方法及焊前准备 焊接方法 材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。 2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。 2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。 2.2.4 管内充氩气保护。 3 TIG焊工艺 焊接参数 采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。 操作方法 3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。 3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

下向焊工艺的特点及技术【最新版】

下向焊工艺的特点及技术 其焊接特点是,在管道水平放置固定不动的情况下,焊接热源从顶部中心开始垂直向下焊接,一直到底部中心。其焊接部位的先后顺序是:平焊、立平焊、立焊、仰立焊、仰焊。下向焊焊接工艺采用纤维素下向焊焊条,这种焊条以其独特的药皮配方设计,与传统的由下向上施焊方法相比,其优点主要表现在: (1)焊接速度快,生产效率高。因该种焊条铁水浓度低,不淌渣,比由下向上施焊提高效率50%。 (2)焊接质量好,纤维素焊条焊接的焊缝根部成形饱满,电弧吹力大,穿透均匀,焊道背面成形美观,抗风能力强,适于野外作业。 (3)减少焊接材料的消耗,与传统的由下向上焊接方法相比焊条消耗量减少20%-30%。 (4)焊接一次合格率可达90%以上。 下向焊焊接中易产生的缺陷及其防止措施如下: 1焊接中易产生的缺陷

1.1 夹渣产生的原因 (1)打底焊后清根不彻底,致使在快速热焊时,未能使根部熔渣完全溢出。 (2)打底焊清根的方法不当,使根部焊道两侧沟槽过深,呈现“W”状。在快速热焊时,流到深槽的熔渣来不及溢出而形成夹渣。 (3)在6点钟位置收弧过快也易产生夹渣。 1.2 气孔产生的原因 (1)盖面焊时,熔池过热,吸覆大量的周边空气。 (2)盖面焊时,焊条摆动幅度太大,熔池保护不良。 (3)根部间隙过小,容易产生根部针形气泡。 (4)焊条未在规定时间内用完或长时间暴露在空气中。 1.3 裂纹产产的原因

(1)如果施工地段起伏较大,土墩未及时垫到位,使管子处在受力状态,在焊接收弧点(尤其是6点钟位置)易出现应力裂纹。 (2)在焊接过程中,如过早松开或撤离对口器,致使熔池中的铁水未来得及凝固好,在焊接收弧处容易产生裂纹。 (3)焊工在6点钟位置采用直线熄弧等不当的收弧方法,致使熔池未填满形成弧坑而出现弧坑裂纹。 1.4 内凹产生的原因 (1)对口间隙过大。 (2)打底焊时焊条送人深度不够。 (3)焊接电流过大,热焊时在5-7点钟位置运弧太慢。 2针对易产生的缺陷所应采取的措施 根据工程用的管材和焊材要求,对每次工程要作好焊接工艺评定,编写好焊接工艺操作规程,并要求电焊工严格按焊接工艺规程要

管道焊接工艺

管道焊接工艺 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

上海佳豪船舶工程设计有限公司董-- 摘要: 本文介绍了管道全位置下向焊操作工艺及技术要点,采用本工艺进行施工焊接可提高生产效率,降低焊接成本,焊接质量可*,接头机械性能满足要求,焊缝成形美观,具有较广阔的应用前景。 关键词:管道;下向焊;焊接工艺 Vertical down position welding process and its foreground Abstract: This article introduced the welding operation procedure and main technol ogy of vertical down position weld of pipe. Using this welding process can improve t he welding efficiency and reduce the cost. The welding joint can be qualified in mec hanical property and reduce the cost. The welding joint can be qualified in mechanic al property and figuration. So it have a wide appliance foreground. 1 前言 管道下向焊是从管道上顶部引弧,自上而下进行全位置焊接的操作技术,该方法焊接速度快,焊缝成形美观,焊接质量好,可以节省焊接材料,降低工人的劳动强度,是普通手工电弧焊所不能比拟的,现已较广泛应用于大口径长输管道的焊接,在电力建设中的全位置中低压大径薄壁管的焊接中具有一定的推广价值。 2 焊接材料选用 下向焊通常要选择适当的焊接电流、焊条角度和焊接速度,通过压住电弧直拖向下或稍作摆动来完成焊接。普通焊条易出现下淌铁水和淌渣问题,而采用管道下向焊专用焊条,严格执行焊接规范,则可解决这些问题。 通常下向焊焊条可分为两类:一类为纤维素型,如美国林肯公司的E7010-G、日本日铁公司生产的E6010和E7010-G及国产的天津金桥牌E6010等,该类焊条工艺性能好,气孔敏感性小,低温韧性高,一般应用于输油、输水管道;另一类是低氢型焊条,如德国蒂林公司生产的E8018 -G等,该类焊条焊后焊缝金属韧性好,抗裂性好,广泛应用于输气碳钢管道焊接填充及盖面焊中。 纤维素型焊条焊渣量少,电弧吹力大、挺度足,防止了焊渣及铁水向下淌,而且电弧的穿透力大,特别适用于厚壁容器及钢管的打底层焊接,可以免去铲根等操作,从而提高工作效率,改善劳动条件,但由于其焊缝中氢含量较高,所以对于高压管道的焊接国内目前一般采用纤维素焊条打底加低氢型焊条填充及盖面的焊接工艺。 3 焊前准备 3.1 母材及规格 水平钢管对接母材牌号:20 规格:¢ 133*10 mm 3.2 焊材 纤维素型:AWS E7010 ¢作根部填充层焊接; 低氢型: E8018-G ¢盖层焊接 焊材的烘干 下向焊焊条使用前应按说明书要求进行烘干。一般纤维素型焊条烘干温度为70~80 ,保温, 低氢型焊条烘干温度为350 ~400 ,保温1~2h。 3.4 焊接设备 选用直流焊机,如林肯INVERTIC-I-300 逆变焊机等。 3.5 坡口型式及对口尺寸

超声波金属焊接基础知识

一、超声波金属焊接基础知识 1、原理 超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。 2、焊接优点: 1)、焊接材料不熔融,不脆弱金属特性。 2)、焊接后导电性好,电阻系数极低或近乎零。 3)、对焊接金属表面要求低,氧化或电镀均可焊接。 4)、焊接时间短,不需任何助焊剂、气体、焊料。 5)、焊接无火花,环保安全。 3、超声波金属焊接适用产品: 1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。. 2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。. 3)、电线互熔,偏结成一条与多条互熔。 4)、电线与名种电子元件、接点、连接器互熔。 5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。 6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。 7)、金属管的封尾、切断可水、气密。 4、振幅参数 振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。 5、频率参数 任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。发生器及机械共振频率都有一个谐振工作范围,如一般设定为±0.5 KHz,在此范围内焊接机基本都能正常工作.我们制作每一个焊头时,都会对谐振频率作调整,要求做到谐振频率与设计频率误差小于0.1 KHZ,如 20KHz 焊头,我们焊头的频率会控制在19.90—20.10 KHz,误差为5‰。 6、节点 焊头、变幅杆均被设计为一个工作频率的半波长谐振体,在工作状态下,两个端面的振幅最大,应力最小,而相当于中间位置的节点振幅为零,应力最大。节点位置一般设计为固定位,但通常的固定位设计时厚度要大于3mm,或者是凹槽固定,所以固定位并不是一定为零振幅,这样就会引致一些叫声和一部分的能量损失,对于叫声通常用橡胶圈同其它部件隔离,或采用隔声材料进行屏蔽,能量损失在设计振幅参数时予以考虑。 7、网纹 超声波金属焊接通常会在焊接位表面,底座表面设计网纹,网纹设计的目地在于防止金属件的滑动,尽可

超声波焊接工艺特点

超声波焊接工艺特点 信息来源:www.66csb.cn发布时间:2008-01-23字号:小中大 关键字:超声波焊接超声波 超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。

6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。

相关主题
文本预览
相关文档 最新文档