当前位置:文档之家› 74LS192芯片总结

74LS192芯片总结

74LS192芯片总结
74LS192芯片总结

74LS192引脚图管脚及功能表

74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:

(a)引脚排列 (b) 逻辑符号

图中:为置数端,为加计数端,为减计数端,为非同步进位输出端,为非同步借位输出端,P0、P1、P2、P3为计数器输入端,为清除端,Q0、Q1、Q2、Q3为数据输出端。

其功能表如下:

例如:用74LS192芯片设计出三十进制计数器

用 192 采用级联法做成 3*10 的一个芯片满十进一另一个芯片到3 即0011的时候提供清零脉冲恢复到0000 详见图

友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

系列芯片功能表汇总

系列芯片功能表汇总

————————————————————————————————作者:————————————————————————————————日期: ?

74系列标准数字电路功能表——中文资料 名称类别功能 7400TTL 2输入端四与非门 7401 TTL 集电极开路2输入端四与非门 7402 TTL2输入端四或非门 7403TTL集电极开路2输入端四与非门 7404TTL六反相器 7405TTL 集电极开路六反相器 7406 TTL 集电极开路六反相高压驱动器 7407TTL 集电极开路六正相高压驱动器 7408 TTL2输入端四与门 7409TTL集电极开路2输入端四与门 7410 TTL 3输入端3与非门 74107 TTL 带清除主从双J-K触发器 74109 TTL带预置清除正触发双J-K触发器 7411TTL 3输入端3与门 74112 TTL 带预置清除负触发双J-K触发器 7412 TTL 开路输出3输入端三与非门 74121TTL 单稳态多谐振荡器 74122 TTL 可再触发单稳态多谐振荡器 74123 TTL 双可再触发单稳态多谐振荡器 74125TTL三态输出高有效四总线缓冲门 74126 TTL三态输出低有效四总线缓冲门 7413 TTL4输入端双与非施密特触发器 74132 TTL 2输入端四与非施密特触发器 74133 TTL 13输入端与非门 74136 TTL 四异或门 74138 TTL 3-8线译码器/复工器 74139 TTL 双2-4线译码器/复工器 7414 TTL 六反相施密特触发器 74145TTL BCD—十进制译码/驱动器 7415 TTL 开路输出3输入端三与门 74150 TTL 16选1数据选择/多路开关 74151 TTL 8选1数据选择器 74153TTL双4选1数据选择器 74154TTL 4线—16线译码器 74155 TTL 图腾柱输出译码器/分配器 74156 TTL 开路输出译码器/分配器 74157 TTL 同相输出四2选1数据选择器 74158TTL 反相输出四2选1数据选择器 7416 TTL 开路输出六反相缓冲/驱动器

集成电路版图复习课答案总结

1、描述集成电路工艺技术水平的五个技术指标及其物理含义 ⑴集成度(Integration Level):以一个IC芯片所包含的元件(晶体管或门/数)来衡量,(包括有源和无源元件)。 ⑵特征尺寸 (Feature Size) /(Critical Dimension):特征尺寸定义为器件中最小线条宽度(对MOS器件而言,通常指器件栅电极所决定的沟道几何长度),也可定义为最小线条宽度与线条间距之和的一半。 ⑶晶片直径(Wafer Diameter):当前的主流晶圆的尺寸为12寸(300mm),正在向18寸(450mm)晶圆迈进。 ⑷芯片面积(Chip Area):随着集成度的提高,每芯片所包含的晶体管数不断增多,平均芯片面积也随之增大。 ⑸封装(Package):指把硅片上的电路管脚,用导线接引到外部接头处,以便于其它器件连接。封装形式是指安装半导体集成电路芯片用的外壳。 2、简述集成电路发展的摩尔定律。 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律。当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍 3、集成电路常用的材料有哪些? 集成电路中常用的材料有三类:半导体材料,如Si、Ge、GaAs?以及InP?等;绝缘体材料,如SiO2、SiON?和Si3N4?等;金属材料,如铝、金、钨以及铜等。

4、集成电路按工艺器件类型和结构形式分为哪几类,各有什么特点。 双极集成电路:主要由双极晶体管构成(NPN型双极集成电路、PNP型双极集成电路)。优点是速度高、驱动能力强,缺点是功耗较大、集成度较低。 CMOS集成电路:主要由NMOS、PMOS构成CMOS电路,功耗低、集成度高,随着特征尺寸的缩小,速度也可以很高。 BiCMOS集成电路:同时包括双极和CMOS晶体管的集成电路为BiCMOS集成电路,综合了双极和CMOS器件两者的优点,但制作工艺复杂。 5、解释基本概念: 微电子、集成电路、集成度、场区、有源区、阱、外延 微电子:微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和。微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及微电子系统的电子学分支。 集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能。 集成度:集成电路的集成度是指单块芯片上所容纳的元件数目。

集成电路分析期末复习总结要点

集成电路分析 集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。 集成电路发展:按规模划分,集成电路的发展已经历了哪几代? 参考答案: 按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。它的发展遵循摩尔定律 解释欧姆型接触和肖特基型接触。 参考答案: 半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。 如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。 如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。 、集成电路主要有哪些基本制造工艺。 参考答案: 集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。 光刻工艺: 光刻的作用是什么?列举两种常用曝光方式。 参考答案: 光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。 曝光方式:接触式和非接触式 25、简述光刻工艺步骤。 参考答案: 涂光刻胶,曝光,显影,腐蚀,去光刻胶。 26、光刻胶正胶和负胶的区别是什么? 参考答案: 正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液

中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。常规双极型工艺需要几次光刻?每次光刻分别有什么作用? 参考答案: 需要六次光刻。第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻 第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻 掺杂工艺: 掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。 参考答案: 掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。 掺杂的方法有:热扩散法掺杂和离子注入法掺杂。与热扩散法相比,离子注入法掺杂的优点是:可精确控制杂质分布,掺杂纯度高、均匀性好,容易实现化合物半导体的掺杂等;缺点是:杂质离子对半导体晶格有损伤,这些损伤在某些场合完全消除是无法实现的;很浅的和很深的注入分布都难以得到;对高剂量的注入,离子注入的产率要受到限制;一般离子注入的设备相当昂贵, 试述PN结的空间电荷区是如何形成的。 参考答案: 在PN结中,由于N区中有大量的自由电子,由P区扩散到N区的空穴将逐渐与N区的自由电子复合。同样,由N区扩散到P区的自由电子也将逐渐与P区内的空穴复合。于是在紧靠接触面两边形成了数值相等、符号相反的一层很薄的空间电荷区,称为耗尽层。简述CMOS工艺的基本工艺流程(以1×poly,2×metal N阱为例)。 参考答案: 形成N阱区,确定nMOS和pMOS有源区,场和栅氧化,形成多晶硅并刻蚀成图案,P+扩散,N+扩散,刻蚀接触孔,沉淀第一金属层并刻蚀成图案,沉淀第二金属层并刻蚀成图案,形成钝化玻璃并刻蚀焊盘。 表面贴装技术:电子电路表面组装技术(Surface Mount Technology,SMT), 称为表面贴装或表面安装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。[1]工艺流程简化为:印刷-------贴片-------焊接-------检修 有源区和场区:有源区:硅片上做有源器件的区域。(就是有些阱区。或者说是采用STI等隔离技术,隔离开的区域)。有源区主要针对MOS而言,不同掺杂可形成n或p型有源区。有源区分为源区和漏区(掺杂类型相同)在进行互联

在各个领域中常用芯片汇总(2)(精)

在各个领域中常用芯片汇总 1. 音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334,4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2. 音频放大芯片4558,833,此二芯片都是双运放。为什么不用324等运放个人觉得应该是对音频的频率响应比较好。 3. 74HC244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4. 373和374,地址锁存器,一个电平触发,一个沿触发。373用在单片机p0地址锁存,当然是扩展外部ram的时候用到62256。374有时候也用在锁数码管内容显示。 5. max232和max202,有些为了节约成本就用max202,主要是驱动能力的限制。 6. 网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7. amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8. 164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9. sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。 10. 网卡控制芯片ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。 11. 24位AD:CS5532,LPC2413效果还可以 12. 仪表运放:ITL114,不过据说功耗有点大 13. 音频功放:一般用LM368 14. 音量控制IC. PT2257/9. 15. PCM双向解/编码ADC/DAC CW6691.

Si4463芯片使用小结

Si4463芯片使用小结 一、芯片介绍 Silicon Labs 的Si4463芯片 是高性能的低电流收发器,其覆盖 了119MHz 至1050 MHz 的 Sub-1GHz频段。还是 EZRadioPRO 系列的一部分,该系 列包含覆盖各种应用的完整发射 器、接收器和收发器产品线。所有 器件都具有杰出的灵敏度-126 dBm,同时实现了极低的活动和休 眠电流消耗。 二、功能实现 1、引脚说明 Si4463有20个引脚,主要引脚功能可以分为两大类:硬件引脚和软件引脚。硬件引脚 主要由电源、射频部分组成,软件引脚主要分为SPI、芯片使能以及GPIO。硬件引脚在原 理图、PCB设计部分需要注意,此处主要是介绍芯片的程序操作,硬件部分就此带过。下 表列举了si4463的21个引脚(包括芯片正下方的Exposed pad引脚)的具体引脚号和功能 简述: 表1 Si4463引脚简述 Si446x Pin Number Pin Name Pin Function Exposed pad, 18 GND Ground 6, 8 VDD Supply input 2,3 Rxp,Rxn used for Rx 4,7 Tx,TXRamp used for Tx 16,17 Xin,Xout crystal 11 NIRQ Interrupt output, active low 1 SDN Shutdown input, active high 15 NSEL SPI select input 12 SCLK SPI clock input

14 SDI SPI data input 13 SDO SPI data output 9 GPIO0 GPIO 10 GPIO1 GPIO 19 GPIO2 GPIO 20 GPIO3 GPIO 2、功能实现 1)SPI操作 芯片的12-15脚为SPI引脚,最大支持速率达到10MHz.芯片支持标准的SPI总线协议,操作方便。 整个芯片的所有SPI操作都可以分成两种方式:写命令和读数据。SPI操作最需要注意的一点是芯片状态,因为芯片不可能随时随地处在SPI就绪状态,所以每次操作SPI时必须读取芯片的当前状态(CTS),确保操作成功。 图CTS读取流程 写命令的流程如下: 图写命令 Si4463至少有28条命令ID,每个命令都有不同的含义,有的可以直接操作芯片执行各项功能,有的可以读取芯片各种状态。上述的读取CTS也是其中一种命令。命令内容详情可参阅Siliconlabs官方文档“AN633.pdf” 读数据流程如下:

【专业文档】总结芯片功能.doc

总结芯片功能 线性稳压块:2951、LP2951、m5236、2950 开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48U I/O芯片:PC97338、PC87391、PC87392、pc87393、SMSC系列:FDC7N869、FDC37N958、LPC47N227、LPC47N267 系统供电芯片:MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC1402、LTC1628 CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897 供电芯片搭配使用:ADP3203/ADP3415、ADP3410/ADP3421、ADP3410/ADP3422 充电芯片:MAX1645、MAX745、MAX1772、MAX1773、ADP3806、TC490/591、MB3887、MB3878、MAX1908 ,LT1505G CPU温度控制芯片:MAX1617、MAX1020A、AD1030A、CM8500 MAX1989 显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001A 搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440 网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-119 声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552TS、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942 PC卡芯片:R5C551、R5C552、R5C476、R54472 PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564A COM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583 键盘芯片:H8C/2471、H8/3434、H8/3431、PC87570、PC87591 键盘芯片:具有开机功能:H8/3434、H8/3437、H8/2147、H8/2149、H8/2161、H8/2168、PC87570、PC87591、H8S/XXX M38857、M38867、M38869 笔记本IO芯片大全PC87591S(VPCQ01)/PC 87591L(VPC01)/PC 97317IBW/PC 87393 VGJ

HUB芯片总结

英文bonding,意译为“芯片打线”邦定是芯片生产工艺中一种打线的方 式,一般用于封装前将芯片内部电路用金线与封装管脚连接,一般bonding后(即电路与管脚连接后)用黑色胶体将芯片封装,同时采用先进的外封装技术COB(Chip On Board),这种工艺的流程是将已经测试好的晶圆植入到特制的电路板上,然后用金线将晶圆电路连接到电路板上,再将融化后具有特殊保护功能的有机材料覆盖到晶圆上来完成芯片的后期封装。此种工艺使用在廉价的产品生产中。在后期的诸多外来因素影响下都会导致此产品诸多品质问题。 观点一:其实邦定这种工艺抗震动和抗潮湿能力极差,寿命短比较短。究其 原因:邦定厂不可能有集成电路封装厂那么好的温湿度、空气净化、防静电条件,邦定的电路板也不可能有集成电路基板的稳定,检测条件也有限。而且芯片一般是来自台湾的一些二流晶圆厂 观点二:邦定封装方式的好处是制成品在防腐、抗震及稳定性方面, 相对于传统SMT贴片方式要高很多。目前大量应用的 SMT贴片技术是将芯片的管脚焊接在电路板上,这种生产工艺不太适合移动存储类产品的加工,在封装的测试中存在虚焊、假焊、漏焊等问题,在日常使用过程中由于线路板上的焊点长期暴露在空气中受到潮湿、静电、物理磨损、微酸腐蚀等自然和人为因素影响,导致产品容易出现短路、断路、甚至烧毁等情况。而邦定芯片是将芯片内部电路通过金线与电路板封装管脚连接,再用具有特殊保护功能的有机材料精密覆盖,完成后期封装,芯片完全受到有机材料的保护,与外界隔离,不存在潮湿、静电、腐蚀情况的发生;同时,有机材料通过高温融化,覆盖到芯片上之后经过仪器烘干,与芯片之间无缝连接,完全杜绝芯片的物理磨损,稳定性更高。 邦定1 板的类型:纤维板——坚实耐用 纸板———比较便宜的板子,很脆,易折断 HUB主要芯片方案:主要品牌慧荣、擎泰、联盛安国、创惟 创惟GL850G简介:拥有低耗电、温度低及接脚数减少等产品特性。它支援4个下游连接埠,采用48pin LQFP封装,可完全支援USB 2.0/1.1规格,因此无论是与主机端或是与其他USB设备介面的传输连接(高速/全速/低速设备传输)皆能完全相容。GL850G同时拥有过载保护功能,提供良好的EMI/ESD处理,亦提供self-power及bus-power 自动侦测模式,使用者将无需作重新插拔的动作。

全面易懂的芯片制造个人经验总结

第 4 章芯片制造概述 本章介绍芯片生产工艺的概况。(1)通过在器件表面生成电路元件的工艺顺序,来阐述4种最基本的平面制造工艺。(2)解释从电路功能设计图到光刻掩膜版生产的电路设计过程。(3)阐述了晶圆和器件的相关特性与术语。 4.1 晶圆生产的目标 芯片的制造,分为4个阶段:原料制作、单晶生长和晶圆的制造、集成电路晶圆的生产、集成电路的封装。 前两个阶段已经在前面第3章涉及。本章讲述的是第3个阶段,集成电路晶圆生产的基础知识。 集成电路晶圆生产(wafer fabrication)是在晶圆表面上和表面制造出半导体器件的一系列生产过程。 整个制造过程从硅单晶抛光片开始,到晶圆上包含了数以百计的集成电路芯片。 晶圆生产的阶段 4.2 晶圆术语 下图列举了一片成品晶圆。

晶圆术语 晶圆表面各部分的名称如下: (1)器件或叫芯片(Chip,die,device,circuit,microchip,bar):这是指在晶圆表面占大部分面积的微芯片掩膜。 (2)街区或锯切线(Scribe lines,saw lines,streets,avenues):在晶圆上用来分隔不同芯片之间的街区。街区通常是空白的,但有些公司在街区放置对准靶,或测试的结构。 (3)工程试验芯片(Engineering die,test die):这些芯片与正式器件(或称电路芯片)不同。它包括特殊的器件和电路模块用于对晶圆生产工艺的电性测试。 (4)边缘芯片(Edge die):在晶圆的边缘上的一些掩膜残缺不全的芯片。由于单个芯片尺寸增大而造成的更多边缘浪费会由采用更大直径晶圆所弥补。 推动半导体工业向更大直径晶圆发展的动力之一就是为了减少边缘芯片所占的面积。 (5)晶圆的晶面(Wafer Crystal Plane):图中的剖面标明了器件下面的晶格构造。此图中显示的器件边缘与晶格构造的方

FPGA配置芯片的网上汇总(较杂,需自己总结)

FPGA配置芯片 1.Altera FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式。 AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EPCS4配置器件专供AS模式,目前只支持Cyclone系列。使用Altera串行配置器件来完成。Cyclone期间处于主动地位,配置期间处于从属地位。配置数据通过DATA0引脚送入FPGA。配置数据被同步在DCLK 输入上,1个时钟周期传送1位数据。(见附图) PS则由外部计算机或控制器控制配置过程。通过加强型配置器件(EPC16,EPC8,EPC4)等配置器件来完成,在PS配置期间,配置数据从外部储存部件,通过DATA0引脚送入FPGA。配置数据在DCLK 上升沿锁存,1个时钟周期传送1位数据。(见附图) JTAG接口是一个业界标准,主要用于芯片测试等功能,使用IEEE Std 1149.1联合边界扫描接口引脚,支持JAM STAPL标准,可以使用Altera下载电缆或主控器来完成。 FPGA在正常工作时,它的配置数据存储在SRAM中,加电时须重新下载。在实验系统中,通常用计算机或控制器进行调试,因此可以使用PS。在实用系统中,多数情况下必须由FPGA主动引导配置操作过程,这时FPGA将主动从外围专用存储芯片中获得配置数据,而此芯片中fpga配置信息是用普通编程器将设计所得的pof格式的文件烧录进去。 专用配置器件:epc型号的存储器 常用配置器件:epc2,epc1,epc4,epc8,epc1441(现在好象已经被逐步淘汰了)等 对于cyclone cycloneII系列器件,ALTERA还提供了针对AS方式的配置器件,EPCS系列.如EPCS1,EPCS4配置器件也是串行配置的.注意,他们只适用于cyclone系列. 除了AS和PS等单BIT配置外,现在的一些器件已经支持PPS,FPS等一些并行配置方式,提升配置了配置速度。当然所外挂的电路也和PS有一些区别。还有处理器配置比如JRUNNER 等等,如果需要再baidu吧,至少不下十种。比如Altera公司的配置方式主要有Passive Serial(PS),Active Serial(AS),Fast Passive Parallel(FPP),Passive Parallel Synchronous(PPS),Passive Parallel Asynchronous(PPA),Passive Serial Asynchronous(PSA),JTAG等七种配置方式,其中Cyclone支持的配置方式有PS,AS,JTAG三种. 对FPGA芯片的配置中,可以采用AS模式的方法,如果采用EPCS的芯片,通过一条下载线进行烧写的话,那么开始的"nCONFIG,nSTATUS"应该上拉,要是考虑多种配置模式,可以采用跳线设计。让配置方式在跳线中切换,上拉电阻的阻值可以采用10K 在PS模式下tip:如果你用电缆线配置板上的FPGA芯片,而这个FPGA芯片已经有配置芯片在板上,那你就必须隔离缆线与配置芯片的信号.(祥见下图).一般平时调试时不会把配置芯片焊上的,这时候用缆线下载程序.只有在调试完成以后,才把程序烧在配置芯片中, 然后将芯片焊上.或者配置芯片就是可以方便取下焊上的那种.这样出了问题还可以方便地调试. 在AS模式下tip: 用过一块板子用的AS下载,配置芯片一直是焊在板子上的,原来AS方式在用线缆对配置芯片进行下载的时候,会自动禁止对FPGA的配置,而PS方式需要电路上隔离。 一般是用jtag配置epc2和flex10k,然后epc2用ps方式配置flex10k.这样用比较好.(这是我在网上看到的,可以这样用吗?怀疑中)望达人告知.

74系列芯片小总结

74HC/LS/HCT/F系列芯片的区别: 1、LS是低功耗肖特基,HC是高速COMS。LS的速度比HC略快。HCT输入输出与LS兼容,但是功耗低;F是高速肖特基电路; 2、LS是TTL电平,HC是COMS电平。 3、LS输入开路为高电平,HC输入不允许开路, hc 一般都要求有上下拉电阻来确定输入端无效时的电平。LS 却没有这个要求。 4、LS输出下拉强上拉弱,HC上拉下拉相同。 5、工作电压不同,LS只能用5V,而HC一般为2V到6V;而HCT的工作电压一般为4.5V~5.5V。 6、电平不同。LS是TTL电平,其低电平和高电平分别为0.8和V2.4,而CMOS 在工作电压为5V时分别为0.3V和3.6V,所以CMOS可以驱动TTL,但反过来是不行的。 7、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS 的高低电平均为5mA。 8、CMOS器件抗静电能力差,易发生栓锁问题,所以CMOS的输入脚不能直接接电源。 74系列集成电路大致可分为6大类: 74××(标准型) 74LS××(低功耗肖特基) 74S××(肖特基) 74ALS××(先进低功耗肖特基) 74AS××(先进肖特基) 74F××(高速) 近年来还出现了高速CMOS电路的74系列,该系列可分为3大类: HC为COMS工作电平 HCT为TTL工作电平,可与74LS系列互换使用 HCU适用于无缓冲级的CMOS电路 这9种74系列产品,只要后边的标号相同,其逻辑功能和管脚排列就相同。根据不同的条件和要求可选择不同类型的74系列产品,比如电路的供电电压为3V就应选择74HC系列的产品系列电平典型传输延迟ns最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功能上是一样的。74LSxx 的使用说明如果找不到的话,可参阅74xx或74HCxx的使用说明。 有些资料里包含了几种芯片,如74HC161资料里包含了74HC160、74HC161、

《集成电路原理与设计》重点内容总结

集成电路原理与设计重点容总结 第一章 绪论 摩尔定律:(P4) 集成度大约是每18个月翻一番或者集成度每三年4倍的增长规律就是世界上公认的摩尔定律。 集成度提高原因: 倍;二是芯片面积不断增大,大约每三年增大1.5倍;三是器件和电路结构的不断改进。 等比例缩小定律:(种类 优缺点)(P7-8) 1.恒定电场等比例缩小规律(简称CE 定律) a.器件的所有尺寸都等比例缩小K 倍,电源电压也要缩小K 倍,衬底掺杂浓度增大K 倍,保证器件部的电场不变。 b.集成度提高K 2倍,速度提高K 倍,功耗降低K 2倍。 c.改变电源电压标准,使用不方便。阈值电压降低,增加了泄漏功耗。 2.恒定电压等比例缩小规律(简称CV 定律) a.保持电源电压和阈值电压不变,器件的所有几何尺寸都缩小K 倍,衬底掺杂浓度增加K 2倍。 b.集成度提高K 2倍,速度提高K 2倍。 c.功耗增大K 倍。部电场强度增大,载流子漂移速度饱和,限制器件驱动电流的增加。 3.准恒定电场等比例缩小规则(QCE) 器件尺寸将缩小K 倍,衬底掺杂浓度增加lK (1

MTK芯片总结

MTK故障终结 目前联发科技已开发出MT6205、MT6217、MT6218、MT6219、MT6226、MT6227、MT6228等系列平台其中 MT6205、MT6217、MT6218、MT6219、MT6226、MT6227、MT6228均为基带芯片,所有芯片均采用ARM7的核。 MT6305、MT6305B为电源管理芯片。 MT6129为RF芯片 RF3146(7×7mm)、RF3146D(双频)、RF3166(6×6mm)为RFMD的PA。 MT6205为最早的方案,只有GSM的基本功能,不支持GPRS、WAP、MP3等功能。(2003年MP) MT6218为在MT6205基础上增加GPRS、WAP、MP3功能。MT6217为MT6218的cost down方案,与MT6128 PIN TO PIN,只是软件不同而已,另外MT6217支持16bit 数据。(2004年MP) MT6219为MT6218上增加内置AIT的1.3M camera处理IC,增加MP4功能。8bit 数据。(2005年MP) MT6226为MT6219 cost 升级产品,内置0.3M 摄相处理IC,支持GPRS、WAP、MP3、MP4等,内部配置比MT6219优化及改善,比如配蓝牙是可用很便宜的芯片CSR的BC03模块USD3即可支持数据传输(如听立体声MP3等)功能。 MT6226M为MT6226高配置设计,内置的是1.3M摄像处理IC。(2006年MP) MT6227与MT6226功能基本一样,PIN TO PIN,只是内置的是2.0M 摄像处理IC。(2006年MP) MT6228比MT6227增加TV OUT功能,内置3.0M 摄像处理IC,支持支持GPRS、WAP、MP3、MP4。(2006年MP) 从MT6226后软件均可支持网络摄像头功能,也就是说你的机子可以用于QQ视频。MTK芯片工作简解

杰理蓝牙芯片ic方案学习总结

杰理mp3蓝牙芯片方案介绍 一、简介 智能手机的火爆催生了蓝牙ic的应用越来越广,而插卡mp3蓝牙方案的选择成了困扰工程师一个最头痛的问题,这里笔者前段时间研究的蓝牙芯片,写出来给大家参考学习 二、AC109N系列芯片的特点 ●小型封装SOP16。生产加工方便 ●支持USB设备、TF卡、FM、AUX、FLASH。 ●支持遥控功能 ●按键稳定支持10个,上一曲、下一曲 ●可以扩展玩具方案、插卡音箱方案 下面举例最低成本的方案,即AC1082 1、AC1082的管脚说明以及资源 三、AC309N系列芯片的特点 1、目前3系列的芯片出货量偏低,所以价格是相对比较高一点,目前3系列出货的芯片就只有两款,分别是AC3090和AC3094 2、系列芯片的特点是支持录音和WMA解码,其它的和1系列基本一样。另外3系列的芯片支持SPI方案,也就是支持“歌词显示”方案。其实杰里的歌词显示方案做得并不好,做得最好的还是炬力的 3、这个系列的方案不推荐朋友们关注,因为这个已经退出接近4年了,后面迟早会停产的 四、AC319N系列芯片的特点 1、目前AC319N系列芯片的用量还不是很大,也不算便宜,基本上都只是一些大客户再用, 2、此系列的芯片主要争对的是车机,以及复读机之类的方案, 3、因为此款芯片的特点是可录音,不支持WMA格式的解码,支持播放变速变调等等特点

五、AC410N系列芯片的特点 1、此系列的芯片是一个过渡期的产品,目前已经停产了,不建议朋友们关注 2、支持蓝牙2.1版本的,但是RF需要外加别人的芯片,主流的如:BK3515、RDA5876之类的芯片。 3、此系列的芯片有新的方案替代,也就是杰里的AC460N系列芯片,这里就不做详细的介绍 六、AC46N系列芯片的特点 此系列的芯片是杰里最新的蓝牙方案,也是杰里目前花精力最多的芯片方案。此系列为单芯片蓝牙方案,支持插卡和蓝牙单芯片完成,市场优势比较大 付上原理图,是不是很简洁,生产也是极其方便的 这个同时是目前的主流

Linux芯片总结

基于Cortex-M3内核的STM32嵌入式处理器的学习报告 一、Cortex-M3内核概述: Cortex‐M3是一个32位处理器内核,它内部的数据路径是32位的,寄存器是32位的,存储器接口也是32位的。CM3采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问并行不悖。Cortex-M3采用ARMv7-M构架,不仅支持Thumb-2指令集,而且拥有很多新特性。较之ARM7-TDMI,Cortex-M3 拥有更强劲的性能、更高的代码密度、位带操作、可嵌套中断、低成本、低功耗等众多优势。 CM3提供一个可选的MPU,而且在需要的情况下也可以使用外部的cache;另外在CM3中,Both小端模式和大端模式都是支持的。CM3内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。另外,它为支持更高级的调试,还有其它可选组件,包括指令跟踪和多种类型的调试接口。 二、Cortex-M3内核配置 ARMCortex-M3采用哈佛结构,并选择了适合于微控制器应用的三级流水线,但增加了分支预测功能,可以预取分支目标地址的指令,使分支延迟减少到一个时钟周期。针对业界对ARM处理器中断响应的问题,Cortex-M3首次在内核上集成了嵌套向量中断控制器(NVIC)。Cortex-M3的中断延迟只有12个时钟周期(ARM7需要24-42个周期);Cortex-M3还使用尾链技术,使得背靠背中断的响应只需要6个时钟周期(ARM7需要大于30个周期)。Cortex-M3采用了基于栈的异常模式,使得芯片初始化的封装更为简单。 Cortex-M3加入了类似于8位处理器的内核低功耗模式,支持3种功耗管理模式:通过一条指令立即睡眠、异常/中断退出时睡眠和深度睡眠,使整个芯片的功耗控制更为有效。 CM3 拥有通用寄存器R0‐R15以及一些特殊功能寄存器。R0‐R12是最通用的,但是绝大多数的16位指令只能使用R0‐R7(低组寄存器),而32位的 Thumb ‐2指令则可以访问所有通用寄存器,特殊功能寄存器有预定义的功能,而且必须通过专用的指令来访问。Cortex‐M3中的特殊功能寄存器包括:程序状态寄存器组(PSRs或xPSR)、中断屏蔽寄存器组、控制寄存器(CONTROL)。 三、Cortex-M3的性能与特点 ①Cortex-M3的许多指令都是单周期的——包括乘法相关指令。并且从整 体性能上看,Cortex-M3基于ARMv7-M架构优于绝大多数的内核; ②支持Thumb-2指令集,为编程带来了更多的灵活性,Cortex-M3的代码 密度更高,对存储器的需求更少; ③Cortex-M3有先进的中断处理功能,其内建的嵌套向量中断控制器支持 多达240条外部中断输入,向量化的中断功能剧烈地缩短了中断延迟, 因为不需要软件去判断中断源,而且中断的嵌套也是在硬件水平上实现 的,不需要软件代码来实现;

微机原理芯片总结

图说微机芯片 1.8088/8086 这两种CPU的主要区别,归纳起来有以下几方面: 1.外部数据总线位数的差别:8086CPU的外部数据总线有16位,在一个总线周期内可输入/输出一个字(16位数据),使系统处理数据和对中断响应的速度得以加快;而8088 CPU的外部数据总线为8位,在一个总线周期内只能输入/输出一个字节(8位数据)。也正因为如此,8088被称为准16位处理器。 2.指令队列容量的差别:8086CPU的指令队列可容纳6个字节,且在每个总线周期中从存储器中取出2个字节的指令代码填入指令队列,这可提高取指操作和其它操作的并行率,从而提高系统工作速度;而8088CPU的指令队列只能容纳4个字节,且在每个总线周期中只能取一个字节的指令代码,从而增长了总线取指令的时间,在一定条件下可能影响取指令操作和其它操作的并行率。 3.引脚特性的差别:两种CPU的引脚功能是相同的,但有以下几点不同: (1) AD15~AD0的定义不同:在8086中都定义为地址/数据复用总线;而在8088中,由于只需用8条数据总线,因此,对应予8086的AD15~AD8这8条引脚,只作地址线使用。 (2)34号引脚的定义不同:在8086中定义为BHE信号;而在8088中定义为SS0,它与DT/R,IO/M一起用作最小方式下的周期状态信号。 (3)28号引脚的相位不同:在8086中为M/IO;而在8088中被倒相,改为IO/M,以便与8080/8085系统的总线结构兼容。

2.常用总线支持芯片(828X) 其中,8282是地址锁存器,与ALE信号相关8284为时钟发生器 8286为并行双向总线驱动器 8288为总线控制器

全面易懂的芯片制造个人经验总结

第4 章芯片制造概述 本章介绍芯片生产工艺的概况。(1)通过在器件表面生成电路元件的工艺顺序,来阐述4种最基本的平面制造工艺。(2)解释从电路功能设计图到光刻掩膜版生产的电路设计过程。(3)阐述了晶圆和器件的相关特性与术语。 4.1 晶圆生产的目标 芯片的制造,分为4个阶段:原料制作、单晶生长和晶圆的制造、集成电路晶圆的生产、集成电路的封装。 前两个阶段已经在前面第3章涉及。本章讲述的是第3个阶段,集成电路晶圆生产的基础知识。 集成电路晶圆生产(wafer fabrication)是在晶圆表面上和表面内制造出半导体器件的一系列生产过程。 整个制造过程从硅单晶抛光片开始,到晶圆上包含了数以百计的集成电路芯片。 晶圆生产的阶段 4.2 晶圆术语 下图列举了一片成品晶圆。

晶圆术语 晶圆表面各部分的名称如下: (1)器件或叫芯片(Chip,die,device,circuit,microchip,bar):这是指在晶圆表面占大部分面积的微芯片掩膜。 (2)街区或锯切线(Scribe lines,saw lines,streets,avenues):在晶圆上用来分隔不同芯片之间的街区。街区通常是空白的,但有些公司在街区内放置对准靶,或测试的结构。 (3)工程试验芯片(Engineering die,test die):这些芯片与正式器件(或称电路芯片)不同。它包括特殊的器件和电路模块用于对晶圆生产工艺的电性测试。 (4)边缘芯片(Edge die):在晶圆的边缘上的一些掩膜残缺不全的芯片。由于单个芯片尺寸增大而造成的更多边缘浪费会由采用更大直径晶圆所弥补。 推动半导体工业向更大直径晶圆发展的动力之一就是为了减少边缘芯片所占的面积。

常用芯片总结

常用芯片总结 1.音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334 4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2.音频放大芯片4558,LM833,5532,此二芯片都是双运放。 3.244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4.373和374,地址锁存器, 5.max232和max202,max3232 TTL电平转换 6.网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7.amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8.74XX164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9.网卡控制芯片CS8900,ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。24位AD:CS5532,LPC2413,ADS1240,ADS1241效果还可以仪表运放:ITL114,不过据说功耗有点大 音频功放:一般用LM368 音量控制IC:PT2257,Pt2259. PCM双向解/编码:ADC/DAC CW6691. cirruslogic公司比较多 2.4G双工通讯RF IC CC2500 1.cat809,max809,这些是电源监控芯片,当低于某一电压以后比如3.07v等出现一个100ms的低电平,实现复位功能。当然这个要求是低复位。max810,cat810等就是出现一个100ms的高电平。还有一些复位芯片,既有高又有低复位输出,同时还有带手动触发复位功能,型号可以查找一下。 2.pericom的pt7v(pi6cx100-27)压控振荡器,脉冲带宽调制。 1、语音编解码TP3054/3057,串行接口,带通滤波。 2、现在用汉仁的网卡变压器HR61101G接在RTL8019AS上,兼容的有VALOR的FL1012、PTT的PM24-1006M。 3、驱动LED点阵用串行TPIC6B595,便宜的兼容型号HM6B595 交换矩正:mt 8816 8*16 双音频译码器:35300 我们原来使用单独的网络变压器,如常用的8515等。现在我们用YDS的一款带网络变压器的RJ45接口。其优点:1.体积仅比普通的RJ45稍微大一点。

开关电源控制芯片总结

SG3525总结 SG3525 电压调节芯片SG3525具体的内部结构如图1所示。其中,脚16为SG3525的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。脚5,脚6,脚7内有一个双门限比较器,内电容充放电电路,加上外接的电阻电容电路共同构成SG3525的振荡器。振荡器还设有外同步输入端(脚3)。脚1及脚2分别为芯片内误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器,直流开环增益为70dB 左右。根据系统的动态、静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络。 图1 3525内部引脚和框图 1. 下面分别阐述其各部分功能:

a 基准电压源: 基准电压源是一个三端稳压电路,其输入电压V CC 可在(8~ 35)V 内变化,通常采用+15V ,其输出电压V ST =5.1V ,精度%1±,采用温度补偿,作为芯片内部电路的电源,也可为芯片外围电路提供标准电源,向外输出电流可达400mA ,没有过流保护电路。 b 振荡电路: 由一个双门限电压均从基准电源取得,其高门限电压V V H 9.3=低门限电压V V L 9.0=,内部横流源向C T 充电,其端压V C 线性上升,构成锯齿波的上升沿,当H C V V =时比较器动作,充电过程结束,上升时间t 1为: T T C R t 67.01= 比较器动作时使放电电路接通,C T 放电,V C 下降并形成锯齿波的下降沿,当L C V V =时比较器动作,放电过程结束,完成一个工作循环,下降时间间t 2为: T D C R t 3.12= 注意:此时间即为死区时间 锯齿波的基本周期T 为: ()T D T C R R t t T 3.167.021+=+= 因为T D R R <

相关主题
文本预览
相关文档 最新文档