当前位置:文档之家› 双金属温度计测量结果不确定度评定

双金属温度计测量结果不确定度评定

双金属温度计测量结果不确定度评定
双金属温度计测量结果不确定度评定

双金属温度计测量结果不确定度评定

1 依据文件

1.1《JJF1059-1999测量不确定度评定与表示》; 1.2《JJG226-2001双金属温度计检定规程》;

2 检定/校准方法

2.1 测量的环境条件:温度:(15~35)℃,相对湿度:≤85%RH 。

2.2 测量标准及其主要技术要求:标准水银温度计;恒温水槽、恒温油槽、低温槽:工作区域最大温差0.2℃,工作区域水平温差0.1℃。

2.3被测对象及其主要性能:

下面以测量范围为(0~300)℃、准确度等级为1.5级、分度值为5.0℃的双金属温度计为被测对象,双金属温度计在(0~300)℃范围内误差不超过±(a%×量程)℃,即误差不超过4.5℃。测量300℃这一温度点的测量结果不确定度。

2.4评定结果的使用:本测量不确定度评定可直接用于重复性条件下和复现性条件下的测量结果。 3 数学模型

()A T t y +-=

式中: y ——双金属温度计在300℃点的示值误差; t ——双金属温度计在测量时的示值; T ——标准水银温度计的示值;

A ——标准水银温度计在300℃的修正值。 4 方差和灵敏度系数 4.1 灵敏度系数:

1/1=??=t y c 1/2-=??=T y c 1/3-=??=A y c 4.2 方差公式:()()()A u T u t u y u c 222)(++= 5 输入量标准不确定度()y u c 评定 5.1 输入量t 的标准不确定度)(t u 评定:

输入量t 的标准不确定度主要来源:被检双金属温度计的示值估读引入的标准不确定度

)(1t u ,示值重复性引入的标准不确定度)(2t u 。

5.1.1 被检双金属温度计的示值估读引入的标准不确定度)(1t u ,用B 类标准不确定度评定。由于双金属温度计的示值估读到其分度值的1/10,即0.5℃,则不确定度区间半宽为0.5℃,按均匀分布处理,包含因子3=K ,其标准不确定度C t u 29.03/5.0)(1==。 估计其不可靠性为10%,则自由度=)(1t v (10%)-2/2 = 50。

5.1.2 被检双金属温度计的示值重复性引入的标准度)(2t u ,用A 类标准不确定度评定:

对一支测量范围为(0~300)℃、准确度等级为1.5级、分度值为5.0℃的被检双金属温度计在300℃温度各进行10次重复性测量(均在正行程上进行),得到测量列(℃): 299.0, 298.5, 298.5, 299.0, 299.0, 298.5, 298.5, 299.0, 299.5, 300.0。

单次实验标准差:()

1

1010

1

2

--=

∑=i i

x x S =0.50℃

()2t u =S =0.50℃ 自由度()811109)(2=-?=t v

因为,)(1t u 和()2t u 是互不相关的,所以 ()()()=+=2212t u t u t u 0.58℃ 自由度

()()114)()

()()(224

114

4=+=t v t u t v t u t u t v 5.2 输入量T 的标准不确定度)(T u 的评定:

5.2.1 标准水银温度计的示值估读引入的标准不确定度)(1T u ,标准水银温度计的示值应估读到分度值的1/10。即0.01℃,则不确定度区间半宽为0.01℃,因为数值很小,可忽略不计。 5.2.2 恒温槽温度波动引入的标准不确定度)(2T u ,恒温槽温度波动在读数过程中其变化最大不超过0.1℃,其分布为反正弦分布,包含因子2=K ,其标准不确定度:

()()C T u 04.02/2/1.02==

估计其不可靠性为20%,则自由度()()122/%2022==-T v

5.2.3 恒温槽温场不均匀性引入的标准不确定度()3T u ,用B 类标准不确定度评定。恒温槽在300℃其温场的最大温差不超过0.2℃,其分布为均匀分布,包含 因子3=K ,其标准不确定度为()()C T u 0

6.03/2/2.03==。 估计其不可靠性为20%,则自由度()()122/%202

3==-T v 。

因为,()2T u 和()3T u 是互不相关的,所以

()()()07.03222=+=T u T u T u ℃

自由度

()()()()()()

18334

2244=+=T v T u T v T u T u T v 5.3 输入量A 的标准不确定度()A u 的评定:

5.3.1 标准水银温度计修正值引入的标准不确定度()1A u ,用B 类标准不确定度评定。从标准水银温度计检定规程中可知在300℃时的示值检定结果的扩展不确定度0.06℃,置信概率为99%,包含因子k =2.58,其标准不确定度()02.058.2/0

6.01==A u ℃。自由度∞→v 。 5.3.2 标准温度计在周期内不作零位修正所引入的标准不确定度,用B 类标准不确定度评定。标准温度计在周期内不作零位修正所引入的误差为0.08℃,该误差分布均于分布,包含因子

3=K ,其标准不确定度()05.03/08.02==A u ℃。 估计其不可靠性为20%,则自由度()()122/%2022==-A v 。 因为,()1A u 和()2A u 是互不相关的,所以输入量A 的标准不确定度

()()()C A u A u A u 05.02212=+=

自由度: ()()()()()()

12224

114

4=+=A v A u A v A u A u A v 6 合成标准不确定度 6.1 标准不确定度汇总表

i ——误差或不确定度来源的序号;

i X ——第i 个自变量或输入估计值;

i a ——i X 的误差分散区间半宽,极限误差或扩展不确定度; i k ——覆盖因子或置信因子;

()i i k a X u /1=——输入B 类标准不确定度;若用统计方法获得时,称为A 类标准不确定度;

i c ——灵敏度系数

()i i i X u c y u =)(——输出标准不确定度分量;

i v ——自由度

6.2 合成标准不确定度计算

以上所分析的各项标准不确定度分量是互不相关的,所以其合成标准不确定度为:

()()()A u T u t u y u c 222)(++==0.59℃

7 有效自由度

()()[

]

∑=

i

i i c

eff u c y u νν/44

=125

8 扩展不确定度

扩展不确定度的计算:()y u k U c ?= 则: ()=?=y u k U c 2.0×0.59≈1.2℃

9 根据以上同样的方法,对不同分度值的双金属温度计在不同测量温度点上不确 定度评定如下表所示。

ISO17025:2017实验室-测量不确定度评定程序

页次第 69 页共 6页文件名称测量不确定度评定程序发布日期2019年1月1日 1 目的 对测量结果不确定度进行合理的评估,科学表达检测结果。 2 范围 本程序适用于客户有要求时、新的或者修订的测试方法验证确认时、当报告值与合格临界值接近时需评定不确定度并在报告中注明。 3 职责 3.1 检测人员根据扩展不确定度评定的适用范围,按规定在记录和报告中给出测量结果的不确定度。 3.2 检测组组长负责审核测量不确定度评定过程和结果报告。 3.3 技术负责人负责批准测量不确定度评定报告。 4 工作程序 4.1 测量不确定度的来源 4.1.1 对被测量的定义不完善或不完整。 4.1.2 实现被测量定义的方法不理想。 4.1.3 取样的代表性不够,即被测量的样本不能代表所定义的被测量。 4.1.4 对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。 4.1.5对模拟仪器的读数存在认为偏差(偏移)。 4.1.6测量仪器的分辨力或鉴定力不够。 4.1.7赋予测量标准和测量物质的值不准。 4.1.8用于数据计算的常量和其他参量不准。 4.1.9测量方法和测量程序的近似性和假定性。 4.1.10 抽样的影响。

页次 第 70 页 共 6页 文件名称 测量不确定度评定程序 发布日期 2019年1月1日 4.1.11在表面上看来完全相同的条件下,被测量重复观测值的变化。 4.2 测量不确定度的评定方法 4.2.1 检测组根据随机取出的样本做重复性测试所获得的结果信息,来推断关于总体性质时,应采用A 类不确定度评定方法,用符号A u 表示,其评定流程如下: A 类评定开始 对被测量X 进行n 次独立观测得到 一系列测得值 (i=1,2,…,n )i x 计算被测量的最佳估计值x 1 1n i i x x n ==∑计算实验标准偏差() k s x 计算A 类标准不确定度() A u x ()()() k A s x u x s x n == 4.2.2 检测组根据经验、资料或其他信息评估时,应采用B 类不确定度评定方法,用符号B u 表示,B 类不确定度评定的信息来源有以下六项: 4.2.2.1 以前的观测数据。 4.2.2.2 对有关技术资料和测量仪器特性的了解和经验。 4.2.2.3 相关部门提供的技术说明文件。 4.2.2.4 校准证书或其他文件提供的数据,准确度的等别或级别,包括目前暂

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

测量不确定度评定程序

1 目的 对检验方法和结果的测量不确定度进行评定和报告,进一步提高评价检验结果的可信程度,以满足客户与认可准则的要求。 2 适用范围 适用于检验中心开展的标准或非标准方法的检验结果的测量不确定度评定。 3 职责 3.1技术负责人负责测量不确定度的评定。 3.2技术负责人负责不确定度的评定的培训,以确保其在实验室检测活动中的运用水平; 3.3 检测员负责协助提供不确定度评定所需的检测数据; 4 控制程序 4.1 测量不确定评定检验项目的选择 4.1.1可能的情况下,实验室应对所有被测量进行不确定来源分析和评定,以确保测量结果的可信程度。 4.1.2技术负责人确定进行测量不确定评定的检验项目,确定进行评定的原则如下: a)当检验项目仅为定性分析时,不进行测量不确定度的评定。 b)对于公认的检验方法,检验项目已给出相应的测量不确定度及其来源时,可以不进行测量不确定度的评定。 c)除上述两种情况,各检验领域中关键、典型和重要的检验项目,均应进行测量不确定度的评定。 d)在评定测量不确定度时,对给定条件下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。 e)当顾客对检验项目的测量不确定度提出要求时,应进行测量不确定度的评定。 f)在微生物检测领域,某些情况下,一些检测无法从计量学和统计学角度对测量不确定度进行有效而严格的评估,这时至少应通过分析方法,考虑它们对于检测结果的重要性,列出各主要的不确定分量,并作出合理的评估。有时在重复性和再现性数据的基础上估算不确定度也是合适的。 4.2测量不确定度的评定方法 本程序拟规定两种方法对测量不确定度进行评定。一种是GUM 法,另一种是top-down 评定方法。 Ⅰ 测量不确定度评定与表示 GUM 法 4.2.1 列出测量不确定度的来源 用GUM 法评定测量不确定度的一般流程见下图1。 图1 用GUM 法评定测量不确定度的一般流程

测量不确定度评定举例

测量不确定度评定举例 A.3.1 量块的校准 通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。 1).校准方法 标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度 L s 与长度差d 之和。即: L=L s +d 实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。 2)测量模型 长度差d 在考虑到影响量后为:d =L (1+?? )-L s (1+?s ?s ) 所以被校量的测量模型为: 此模型为非线性函数,可将此式按泰勒级数展开: L =ΛΛ+-++)(θαθαs s s s L d L 忽略高次项后得到近似的线性函数式: )(θαθα-++=s s s s L d L L () 式中:L —被校量块长度; L s —标准量块在20℃时的长度,由标准量块的校准证书给出; ? —被校量块的热膨胀系数; ?s —标准量块的热膨胀系数; ? —被校量块的温度与20℃参考温度的差值; ?s —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(),由此,数学模型可改写成: = ][θαδαθδs s s l d l +-+ () 测量模型中输入量??与?s 以及??与?不相关了。 特别要注意:在此式中的??和??是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。由于??和??是近似为零,所以被测量的估计值可以由下式得到: L =L s +d () 3).测量不确定度分析 根据测量模型, 即: l = ][θαδαθδs s s l d l +-+ 由于各输入量间不相关,所以合成标准不确定度的计算公式为: )()()()()()()(222222222222θδαδθαδδθαθ αu c u c u c u c d u c l u c l u s d s s c s +++++= () 式中灵敏系数为: 1)(11=+-=??= =θαδαθδs s s l f c c , 由此可见,灵敏系数c 3和c 4为零,也就是说明?s 及? 的不确定度对测量结果的不确定度没有影响。合成标准不确定度公式可写成: )()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= () 4).标准不确定度分量的评定 ○ 1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度评定程序文件

1 目的 为评价中心检测/校准结果的可信程度,规范测量不确定度的评 定与表达方法,科学、合理、准确的进行测量不确定度评定 2 应用范围 适用于中心检测/校准结果的测量不确定度的评定与表示。 3 职责 3.1 技术负责人负责测量不确定度评定工作。 3.2 技术科组织实施测量不确定度的评定,负责拟定有关检测项目测量不确定度评定的作业指导书,指导测试人员控制各标准方法规定的影响量,编写《不确定度评定报告》,负责对检测结果测量不确定度报告的验证。 3.3 检测人员严格遵守方法标准和规范化作业技术,认真检查原始记录和检测结果。 4 程序 4.1化验中心采用公认的检测方法时应遵守该方法对不确定度的表述。 4.2化验中心采用非标准方法或偏离的标准方法时,应重新进行确认,并对方法的测量不确定度进行评定。 4.3由技术负责人组织或指定有关技术人员(可包括监督员、检测人员、设备责任人等)进行测量不确定度的评定工作。 4.4不确定度评定和报告根据JJF1059-2012《测量不确定度评定与表示》来实施。具体步骤如下: XX 公司化验中心 程序文件 第01版 第0次修订 第 页 共 页 测定不确定度评定程序 文 号 YYH/CX28-2014 颁布日期 2014年3月14日

4.1.1建立不确定度的数学模型 建立被测对象与其他对其有影响量的函数关系。以通过这些量的不确定度给出被测对象的不确定。 4.1.2确定不确定度的来源,找出构成不确定度的主要分量。 分析测试领域的测量不确定度的来源一般有以下几种: a.被测量量的定义不完整; b.被测样品代表性不够,即样品不能完全代表所定义的被测对象; c.复现被测量的测量方法不够理想; d.对测量过程受环境影响的认识不恰如其分,或对环境的测量与控制不完善; e.读数存在人为偏移; f.测量仪器的计量性能的局限性(如分辨率、灵敏度、稳定性、噪音水平等影 响,以及自动分析仪器的滞后影响和仪器检定校准中的不确定度); g.测量标准和标准物质的不确定度; h.引用的数据或其它参量的不确定度; i.包括在检测方法和程序中某些近似和假设,某些不恰当的校准模式选择,以及数据计算中的舍、入影响; j.测试过程中的随机影响等。 在确定这些影响不确定度的因素对总不确定度的贡献时,还要考虑这些因素相互之间的影响。 4.1.3量化不确定度分量 要对每一个不确定度来源通过测量或估计进行量化。首先估计每一个分量对合成不确定度的贡献,排除不重要的分量。可用下面几种方法进行量化: a.通过实验进行定量; b.使用标准物质进行定量; c.基于以前的结果或数据的估计进行定量; d.基于判断进行定量。 4.1.4计算合成标准不确定度 根据JJF1059-2012中第4、5、6节规定的方法,通过确定A类和B类标准不确

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

评定测量不确定度程序

评定测量不确定度程序 1.目的 合理地赋予被测量值的分散性。 2.范围 适用于本公司开展检测项目的检测不确定度评定。 3.职责 3.1技术负责人是本程序实施的负责人。 3.2检测室是本程序的实施部门。 4.程序 4.1评定要求 4.1.1自制方法的检测项目、自校仪器设备的检测参数要进行不确定度评定;客户要求出具检测结果的测量不确定度时,在有能力的条件下要提供检测结果的不确定度。 4.1.2在公认的检测方法规定了测量不确定度主要来源值的极限,并规定了计算结果的表示形式,只要遵守该检测方法和报告的要求,不需要重新评定测量不确定度。 4.1.3由于检测方法的性质,在某些情况下,会妨碍对测量不确定度进行严密的计量学和统计学上的有效计算,要找出不确定度的所有分量并作出合理评定。 4.1.4测量不确定度评定所需的精度取决于:检测方法要求、客户要求及确定符合某规范所依据的限量范围。评价测量不确定度时,不考虑检测样品预计的远期特性。 4.1.5对已评定的方法进行某些更改,要重新进行评定。 4.2 测量不确定度评定

4.2.1 成立以技术负责人为组长,以相关岗位监督人员、检测方法使用人员、自制方法编制人员以及检测方法所用仪器设备责任人为成员的评估小组。必要时,聘请有关专家参加。 4.2.2 根据国家计量技术规范《测量不确定度评定与表示》,实施本检测公司的不确定度评定工作。 4.2.3 检测公司负责起草“XXX(方法)XXX(项目)不确定度评定与表述规程”,自制方法编制人员负责起草“XXX(自制方法)XXX(项目)不确定度评定与表述规程”,起草的不确定度评定程序经评定小组审定通过后,由技术负责人批准发布。 4.2.4检测人员根据客户要求,使用“XXX(方法,自制方法)XXX(项目)不确定度评定与表述规程”对测量结果进行不确定度评定和表述,并填写《测量不确定度评定报告》此报告经校核人员核对后,作原始记录保存。 4.2.5《检测报告》中测量不确定度的说明 A除非采用国际上公认的检测方法,可以按该方法的测量结果表示形式外,在检测完成后应给出完整的测量结果Y Y=y±U B应给出获得扩展不确定度U时的标准不确定值UC和包含因子k。 5.质量记录 《测量不确定度评定报告》

秒表测量误差测量不确定度的评估

6.6 秒表测量误差测量不确定度的评估 6.6.1 概述 6.6.1.1测量依据:JJG237-2010《秒表检定规程》 6.6.1.2 计量标准:主要计量标准为时间检定仪,时间间隔测量范围(1~99999)s 。 表1 实验室的计量标准器和配套设备 6.6.1.3被校对象: 表2 被校准的机械秒表和电子秒表的分类 6.6.1.4 测量方法: 6.6.1.4.1 机械秒表测量误差的测量方法:按被校机械秒表的秒度盘和分度盘的满刻度值两个校准点进行校准,对每一被校准测量点测量3次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 0T T T i i -=? (1) {}Max i T T ?=? (2) 式中: i T —— 每次的测量值; 0T —— 时间检定仪给出的标准值; i T ?—— 每次测量得到的测量误差; T ?—— 校准结果给出的测量误差。 6.6.1.4.2 电子秒表测量误差的测量方法:对电子秒表的测量误差选择10s 、10min 、1h 三个校准点进行校准,对10s 、10min 两个受校点测量3次,1h 受校点测量2次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 6.6.1.5环境条件 1) 环境温度:(20±5)℃,校准过程中温度变化不超过2℃;相对湿度(65±15)%; 2) 周围无影响仪器正常工作的电磁干扰和机械振动; 3) 电源电压在额定电压的±10%,50Hz 。 6.6.2数学模型

{}Max i T T T 0-=? (3) 式中: T ? —— 机械秒表、电子秒表走时示值测量误差; i T —— 被校机械秒表、电子秒表每次走时测量值; 0T —— 时间检定仪给出的标准时间间隔值。 i —— 测量次数, 一般为3次, 当电子秒表测量1h 点时, 为2次。 6.6.3不确定度传播率 )()()(02 222212T u c T u c T u i c +=? 式中,灵敏系数1/1=???=i T T c ,1/02=???=T T c 。 6.6.4机械秒表、电子秒表测量误差标准不确定度的评定 6.6.4.1 输入量T 0的标准不确定度 标准设备时间检定仪标准装置的扩展不确定度为U 0=1.55×10-6×T+0.0092s, k =2 则将校准点3s ,对应的标准时间T 0的扩展不确定度为 U 0=1.55×10-6×3s+0.0092s=0.0092s ,k=2 ;则该标准引起的标准不确定度 分量为:s s k U T u 0046.02 0092.0)(00== =。 6.6.4.2 输入量T i 的标准不确定度 以被校机械秒表、分辨力0.01s 、校准点3s 为例 1)示值重复性引起的不确定度:校准3s 测量点,共进行3次的重复测量,极差为0.005s, 则单次测量的重复性为: s s s d R T s n i 0030.000295.0693 .1005.0)(≈=== 。 因测量误差为取最大的单次测量误差, 则A 类标准不确定度分量为单次测量的重复性为:s T s T u i i 0030.0)()(1==。 2)读数误差引起的不确定度: 由被校准机械秒表的分辨力引起的,采用B 类标准不确定度评定。已知分辨力为0.01s ,则不确定度区间半宽度为0.005s ,按均分布计算, s s T u i 00289.03 005.0)(2== 由于重复性分量包含了人员读数引入的不确定度分量,为避免重复计算,只计算最大影响量)(1i T u ,舍弃)(2i T u 。 6.6.5合成标准不确定度 6.6.5.1主要标准不确定度汇总表3

测量不确定度评定程序文件

1目的 为本中心合理评定测量结果的不确定度提供依据,使测量不确定度评定方法符合国际和国相关技术规、标准的规定。 2适用围 适用于与本中心所有检测项目有关参量测量结果的不确定度评定与表示。 3职责 3.1副主任 a)负责批准测量不确定度评定报告; b)批准对外公布实验室能力时的测量不确定度。 3.2技术负责人 a)制定实验室测量不确定度评定总体计划,提出中心测量不确定度评定的总 体要求; b)组织审核、验证项目测量不确定度评定报告。 3.3检测项目负责人 a)负责项目有关参量的测量不确定度评定,编写评定报告初稿。 4程序 4.1技术负责人制定年度培训计划,聘请专家讲授JJF1059-1999《测量不确定度 评定与表示指南》,使检测人员理解测量不确定度评定的基本知识和方法。办公室协助技术负责人具体实施培训计划,负责培训容和考核结果的记录、归档。 4.2测量不确定度评定步骤(详细评定步骤参见本程序附录1) 说明测量系统时要给出如下信息:①所用检测仪器型号、资产编号、技术指 标;②校准/检定证书号、校准/检定日期和校准/检定实验室明名称。 4.2.1根据检测项目依据的技术标准/规/规程,明确被测量,简述被测量定义、测量方法和测量过程。 4.2.2画出测量系统方框图 4.2.3给出测量不确定度评定数学模型。

424根据数学模型和有关信息,列出各不确定度分量的来源,尽可能做到不遗漏不重复,主要来源有(但不限于):所用的参考标准或标准物质(参考物质)、方法和仪器设备、环境条件、被测物品的性能和状态、操作人员等。需要指出,被测物品预计的长期性能所引起的不确定度来源通常不予考虑。 425评定各不确定度分量的标准不确定度:①不确定度A类评定采用统计方法; ②不确定度B类评定采用非统计方法。 合理地评定应依据对方法性能的理解和测量围,并利用以前的经验和资料、文献中确认的数据等。测量不确定度评定所需要的严密程度取决于①检测方法的要求;②客户的要求;③据以作出满足某技术规决定的紧限。 426计算合成标准不确定度。 427确定扩展不确定度和报告测量结果。 4.3测量不确定度报告的审核和批准 4.3.1中心技术负责人对各项目测量不确定度评定报告进行审核。必要时,可委托外单位专家审核。 4.3.2评审后的测量不确定度评定报告和测量不确定度表示意见经中心副主任批准后,作为实验室的受控技术文件打印归档,并作为作业指导书发至有关检测人员执行。 4.3.3检测项目负责人发现有关不确定度分量发生较大变化时,应及时向技术负责人或质量监督员报告并提出修改的具体意见,由技术负责人组织审核批准后实施。 4.4测量不确定度的报告和应用 在下列情况下检测实验室的检测报告(或证书)中应给出有关测量结果不确定度的信息:a)当不确定度与检测结果的有效性或应用有关时; b)客户有要求时; c)当不确定度影响到对技术标准/规限度的符合性时,(即测量结果处于技术标准/规规定的临界值附近时,测量不确定度的区间宽度对判断符合性具有重要影响)。 4.5注意事项

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

实验室测量不确定度评定程序

1目的 为规范和统一测量不确定度的评定方法和程序,证明检测的结果具有可接受的不确定度,特制定本程序。 2适用范围 适用于本公司需要进行不确定度分析的项目。如当用户需要获悉检测项目结果的不确定度时,或当检测数据处于临界状态,有可能影响检测结论时,本公司应给出其测量不确定度。 3职责 3.1检测室负责各项目不确定度评定报告的编写、审核工作。 3.2技术负责人负责测量不确定度评定报告的批准。 3.3综合室负责有关测量不确定度评定报告等相关记录的保存。 4工作程序 4.1检测室提出需进行测量不确定度评定的项目,报技术负责人审批后,组织相关人员对所从事检测项目进行不确定度的计算。不确定度的计算应以不同分析方法所对应的每个检测项目分别计算。 4.2计算不确定度时应将从检测全过程(从样品采集至分析结果的报出)所产生的所有不确定度分量进行计算合成:检测不确定度来源主要有以下几个方面:a)取样的代表性不够; b)检测过程受环境条件的影响因素; c)对检测仪器的读数存在的人为偏移; d)检测仪器的分辨力或鉴别力不够; e)赋予计量标准的值或标准物质的值不准; f)引用于数据计算的常量和其他参量不准; g)检测方法和检测程序的近似性和假定性; h)在完全相同的条件下,重复检测值的变化。

4.3 计算不确定度步骤 1)确定检测项目的数学模型; 2)针对检测项目实施的全过程(从采样至分析结果的报出)的不确定来源,进行统计分析和评定,确定主要不确定度因素,评定标准不确定度分量。 3)针对各项不确定度按JJF1059《测量不确定度评定与表示》和CNACL编写的《检测实验室测量不确定度评定指南》的有关规定进行计算和评定。 4)计算检测项目的合成标准不确定度和扩展不确定度。 5)形成不确定度评定报告。 不确定度的评定流程图见下一页。 4.4不确定度评定报告的批准 技术负责人应组织相关技术人员对不确定度的评定报告进行技术论证,评审通过后,技术负责人批准执行。 4.5不确定度评定报告的管理 4.5.1测量不确定度评定报告是本公司受控的技术文件,按《文件控制和管理程序》进行管理。 4.5.2所有测量不确定度评定报告均应按规定编号,制定目录,由综合室负责保存。 5 相关文件 5.1 **CX-011-2018 《文件控制和管理程序》

实验室测量不确定度评定程序

研发一部研发三部结构技术部平面设计部技术部 实验室测量不确定度评定程序 制订: 审核: 批准: 品管部 2016年7月8日

改履历

1、目的 为合理的表征测量的分散性,确定测量结果的有效性。 2、范围 本程序适用于检测实验中提供数字结果的检测项目的测量不确定度的评定与表示。 3.职责 3.1 实验室组长:根据检测项目的特点识别并提出评定要求,组织评定和评定结果的评 审工作,组织测量不确定度的验证,批准对外公布实验室能力时的测量不确定度指 标。 3.2 实验工程师:根据各检测项目的特点识别评定要求,组织需要评定的检测项目编写 《测量不确定度评定与表示报告》,会同实验室主管对本部门的评定报告和使用进行 审核。 3.3 实验员:学习和掌握测量不确定度的评定与表示的基础知识和方法,编写本项目测 量不确定度的评定报告,及时发现和反馈会导致测量不确定度发生较大变化的信 息。 3.4 实验室组长应当维护本程序的有效性。 4.工作程序 4.1 实验室主管应组织各实验工程师、实验员就下述情况决定有关项目评定不确定度的 具体要求: 4.1.1 当检测不要求得到数字结果(如仅需作通过或不通过,正或负或其它定性的估 计)则不要求评定测量不确定度。 4.1.2 对于某些广泛公认的检测方法,如果该方法规定了测量不确定度主要来源的极 限值和计算结果的表示形式时,实验室只要遵守该方法和报告结果的方式,即 被认为符合要求可以不编写评定测量不确定度的报告。 4.1.3 由于某些检测方法的性质,决定了无法从计量学和统计学角度对测量不确定度 进行有效而严格的评定,这时应通过分析列出各主要不确定度分量并作出合理 评定,但要确保测量结果报告形式不会造成客户对所给测量不确定度的误解。 4.1.4 除上述三种情况,均应根据检测项目的特点分门别类评定其测量不确定度,如 检测项目包含取样和样品制备,则评定时就应考虑由此引起的不确定度来源, 有的检测样品不能作重复独立测量,就不应考虑重复性对测量不确定度的贡

测量不确定度评定与应用程序

明确测量不确定度的评定方法,出具合理的检测结果。 2 适用范围 适用于实验室各类检测结果的测量不确定度评定。 3 定义 3.1 不确定度:表征赋予被测量值分散性的非负参数。 4 职责 4.1 实验室主任 4.1.1 负责不确定度评定报告的批准,对报告的结论负责。 4.2 质量主管 4.2.1 负责不确定度报告的审核。 4.3 技术主管 4.3.1 组织对检测项目进行测量不确定度评定。 4.4 试验员 4.4.1 填写不确定度原始记录,根据原始记录拟制测量不确定度报告。 5 程序 5.1 概述 将测量方法的依据、环境条件、测量标准(使用的计量器具、仪器设备等)被测对象、测量过程、其他有关的说明等表述清楚。 5.2 建立数学模型

根据测试方法(标准)原理建立输出量(被测量y )与输入量(x 1,x 2….x n )间的函数关系,即建立: ),,(21n x x x f y 5.3 测量不确定度来源的分析 按测量方法和条件对测量不确定度来源进行分析,找出测量不确定度的主要来源。 5.4 标准不确定度分量的评定 5.4.1 对A 类不确定度进行预评定 按照试验方法的要求,对被测物进行n (n ≥10)次测量,通过贝塞尔公式计算出实验标准差s ,即: 1 )(12 n x x s n i i 在日常检测中,若测量结果取观测列任一次x i 值,则对应的标准不确定度为: s x u i )( 若测量结果取n 1次观测列值的平均值x 时,则对应的标准不确定度为: 1 )(n s x u 5.4.2 根据许多已知的信息来评定B 类标准不确定度。如所使用仪器设备的校准证书、检定证书、准确度等级、暂用的极限误差、技术说明书或有关资料提供的数据及其不确定度,还有过去的测量数据、经验等。则B 类标准不确定度为: p k a x u )( a 可从上述的信息中得到,包含因子k p 是根据输入量在区间[-a ,a ]内的概率分布来确定,见表1和表2。

相关主题
文本预览
相关文档 最新文档