当前位置:文档之家› 污泥基吸附剂对铅离子的吸附性能与机理研究

污泥基吸附剂对铅离子的吸附性能与机理研究

污泥基吸附剂对铅离子的吸附性能与机理研究
污泥基吸附剂对铅离子的吸附性能与机理研究

污泥基吸附剂对铅离子的吸附性能与机理研究

发表时间:2018-05-28T15:44:55.297Z 来源:《建筑学研究前沿》2017年第35期作者:张凯杰邢兆洁林勇澍[导读] 以某污水处理厂污泥为制备原料,采用化学活化法(ZnCl2为活化剂),制备污泥基吸附剂。

山东农业大学山东省泰安市 271018 摘要:以某污水处理厂污泥为制备原料,采用化学活化法(ZnCl2为活化剂),制备污泥基吸附剂。以铅离子为目标污染物进行去除实验,考察了活化剂浓度、固液比、热解温度、热解时间等对制备污泥基吸附性能的影响。通过spss第三类平方和分析实验,结果表明其对制备产物污泥基吸附剂性能的影响程度大小依次为:热解温度>热解时间>氯化锌浓度>固液比。由spss估计平均值可得污泥基催化剂的最佳制备条件为ZnCl2的浓度3.5mol/L、热解温度为500℃、热解时间为60min、固液比为1:2。关键词:剩余污泥,化学活化,ZnCl2,污泥基吸附剂,Pb2+去除率在城市化和工业化快速发展的今天,污水厂污泥的产生、储存、处理及资源化利用过程中均可能危害环境。同时伴随着污泥海洋处理的禁止以及严格填埋标准、农用标准的制定与实施,污泥的管理已经成为一个世界性的社会和环境问题。采用传统的处置方法,如土地填埋、焚烧等方式进行处理,相对于当今越来越严格化的环境标准,显然是不合适的。同时,随着资源短缺的加剧,人们开始寻找新的资源,而污泥由于其有机物、营养元素含量高等优点而日益受到关注。因此,如何解决污泥问题,并使其化废为宝,是一个具有重要意义的课题。

活性污泥是指活性污泥法处理工艺中,二沉池产生的沉淀物,扣除回流的那部分,剩余的部分称为剩余活性污泥。其中含有大量的水分、有机物、N、P等营养元素,以及重金属、病原菌等有害物质,同时富含有机碳,成分、产量高且易于获得,在适当条件下通过热解,可以使之转化为活性炭。

活性炭由于其独特的物理化学结构,其具有很强的吸附性能,同时也是理想的催化剂载体,被经常用于环境污染治理,是一种环保型吸附剂。但是,目前来看,商品活性炭通常由价格昂贵的原材料制备,诸如木材、稻壳或者煤炭、沥青等,生产成本较高,限制了其应用范围。于是,由剩余污泥制备污泥基活性炭催化剂的方法,因为原材料充足易得、价格低廉、绿色无害,成本低于商品活性炭,又为污泥的最终处置提供了一种资源化利用的新途径,而日益受到青睐。

其过程为污泥经过干燥脱水、粉碎和筛滤等过程变为细小的污泥颗粒,然后采用化学药品浸渍法,对该颗粒在一定温度下进行活化。之后进行烘干,再在空气中暴露一段时间后,在惰性环境下热解。最后再经过进一步的处理后,即制得高效的炭质催化剂。其制备过程与化学活化法制备污泥吸附剂大致相同,其主要区别就在于活化剂成分的不同。而活化剂的成分是决定此类催化剂效果的首要因素。

研究以剩余活性污泥为催化剂载体,ZnCl2作为活化剂活性组分,联合单因素实验研究活化方法、污泥与活化剂的比例(固液比)、热解温度、热解时间等,对研究所制备的吸附剂对Pb2+去除率的影响,确定最佳制备工艺,并对催化剂进行了应用分析及前景展望。旨在制备一种污泥基活性炭吸附剂剂,为剩余污泥的资源化再利用提供一种新思路。 1实验部分 1.1材料和仪器

剩余污泥粉末、ZnCl2溶液1、浓盐酸2、Pb(NO3)2溶液(30mg/L)。 101A-2型电热鼓风干燥箱、GSL-1500X型真空管式高温烧结炉、THZ-82水浴恒温振荡器、TAS-999石墨原子吸收分光光度计、80-1型离心机。

1.2 污泥基吸附剂的制备

取某污水处理厂污泥脱水车间的剩余污泥,先将污泥放入烘箱中,在110℃温度下恒温干燥脱水24h,直至烘干为止。然后将烘干的污泥放入粉碎机,1min取出研碎的干泥,用100目筛子筛滤,筛分出来的样品放入干燥器中干燥待用。

将粉末污泥与活化剂ZnCl2 溶液在坩埚内混合,将配好的混合液充分搅拌均匀后放入烘箱烘干活化7-8小时,待混合物完全干燥后取出,研磨至粉末状放入管式电阻炉中热解活化。活化主要是利用气体进行碳的氧化反应,由于碳化物的表面受到侵蚀,使炭化物孔隙结构更加发达的过程。在活化的过程中,下面两个阶段是同时发生的:新微孔的生成或闭塞孔的打开;细孔的扩大;相邻细孔的合并。

高温热解3-5小时后取出,取出后放在研钵中进行研磨,之后用500mL 10%浓盐酸酸洗,酸洗完成后用纯水清洗至pH为7。经过酸洗的活性炭催化剂孔隙率大大增加。干燥后研磨过筛,此时得到的活性炭即为成品活性炭吸附剂。

1.3 Pb2+吸附实验

将原料配比和热解条件不同的成品试样中加入100mL 30mg/LPb2+溶液,置于恒温振荡器(室温25℃)上振荡60min。吸附试验结束后,静置30min后取上清液,然后用滤纸过滤,过滤后取锥形瓶中部液体用石墨原子吸收分光光度计进行波长283.3nm吸光度检测,对应标线,计算每组试样的去除率。统计16组正交试验的实验数据,将结果代入spss进行显著性分析并计算最优制备条件。 2结果与讨论

石灰土与紫色土中铅的等温吸附-解吸特性

石灰土与紫色土中铅的等温吸附-解吸特性 摘要:为了探讨铅在紫色土?石灰土中的环境容量,通过野外采样?室内模拟试验对两种土壤中铅的吸附-解吸特性进行了研究?结果表明,铅在紫色土?石灰土中的吸附平衡均可采用Langmuir?Freundlich和Temkin等温吸附方程来拟合,石灰土以Langmuir方程拟合最佳,而紫色土以Freundlich方程拟合最佳;由Langmuir方程求得石灰土对铅的最大吸附量(19 728.77 mg/kg)大于紫色土对铅的最大吸附量(12 194.68 mg/kg);紫色土?石灰土吸附态铅的解吸量都随着铅吸附量的增大而增大,两种土壤的解吸能力都比较弱?研究可为不同类型土壤的铅污染治理提供理论依据? 关键词:紫色土;石灰土;铅;吸附-解吸 Isothermal Adsorption-desorption Characteristics of Lead in Purple and Calcareous Soil Abstract: In order to probe into the environmental capacity of lead in purple, calcareous soil and provide a theoretical basis for lead pollution of different types of soil. The adsorption-desorption properties of the two kinds of soil to lead were studied through field sampling, laboratory simulation experiments and equilibrium constant oscillation. The results showed that Langmuir, Freundlich and Temkin's adsorption equations could be used to fit adsorption equilibrium of lead in the two kinds of soil. The best fitting was Langmuir's equation in calcareous soil and Freundlich's equation in purple soil, respectively. The maximum adsorption of lead in calcareous soil was bigger than that in purple soil. Besides, the desorption of lead in the two soils increased with the increase of lead adsorption, but the desorption was weak. Key words: calcareous soil; purple soil; lead; adsorption-desorption 土壤是人类赖以生存的环境因素之一,也是重金属元素生物地球化学循环的重要环节?吸附-解吸是重金属元素在土壤生态系统中一种常见的反应过程?铅是土壤中重要的重金属污染元素之一,通过食物链的层层积累,土壤中的铅最终危害人体健康?外源铅进入土壤后,与土体进行一系列的物理化学反应而逐渐达到动态平衡,其在不同土壤中的吸附?解吸特性因土壤性质?环境因素的不同而存在很大的差异[1,2]?有研究表明,铅在土壤中的化学行为,特别是吸附与解吸特性,控制着铅的迁移转化过程和植物对铅的吸收[3,4]?近年来,随着农业生产中农药和化肥的大量使用,汽车尾气的大量排放,城市污水及垃圾处理不当等诸多因素,导致土壤中的铅含量急剧增加,土壤的铅污染现象越来越普遍[5,6]?土壤铅污染直接导致了作物的产量和品质降低并直接或间接地危害人的身体健康,因此研究土壤对铅的吸附-解吸特性,对寻求有效控制土壤中重金属环境行为的对策具有重要意义?关

铅离子的生物吸附动力学及吸附热力学研究

酶的条件和酶性质[J].微生物学报,1988,28(2):136-142. [8]张心平,张善稿,田竹.环状糊精葡萄糖基转移酶产生菌的初步鉴定及其产酶条件[J].南开大学学报:自然科学,1993,(2):63-68. [9]Bradford M M.A rapi d and sensi ti ve method for the quantitati on of micro -gram quantities of protein utilizing the principle of protei n -dye bindi ng[J].Analytical Biochemistry ,1976,72(1-2):248-254. [10]Laemmli U K.Cleavage of Structural Proteins during the As semble of the Head of Bacteriophage T 4[J].Nature ,1970,227(5259):680-685. [11]Lee M H,Yang S J,Kim J W.Characteriz ation of a thermostable cyclo -dextrin glucanotransferas e from Pyrococc us furiosus D SM3638[J ].Extremo -philes ,2007,11(3):537-541. [12]赵新帅,王占坤,祁庆生.环糊精糖基转移酶产物专一性改造:难题与挑战[J].生物工程学报,2007,23(2):181-188. [13]Kim Y H,Bae K H,Ki m T J.Effec t on produc t specificity of cyclodextri n glyc os yltransferas e by si te-di rected mutagenesis [J ].B iochem Mol .Biol .Int ,1997,41(2):227-234. 铅离子的生物吸附动力学及吸附热力学研究 倪晓宇,吴涓 * (安徽大学生命科学学院,安徽合肥230039) 摘要:目的:研究非活性深红酵母(Rhodotorula rubra )对重金属离子Pb 2+的生物吸附热力学和动力学特性。方法:采用恒温摇床振荡吸附的实验方法,研究Pb 2+生物吸附的动力学和热力学,并以适当的数学模型对实验数据进行拟合;对吸附前后的酵母进行红外光谱及X 射线光电子能谱分析。结果:在20e ~45e 温度范围内,吸附5min 时即达到了饱和吸附量的80%以上,2h 左右达到平衡;深红酵母对Pb 2+的生物吸附过程适宜用Elovich 方程来描述;由二级动力学方程计算的生物吸附活化能为21.56kJ P mol;生物吸附平衡可用Langmuir 等温式、Freundlich 等温式及Dubinin-Radushkevich 等温式来描述,拟合相关系数均接近0.99; Langmuir 方程计算所得$H 0 为13.93kJ P mol 。结论:深红酵母对Pb 2+的生物吸附是非均相的扩散过程,由快速吸附和慢速吸附两个阶段组成,以物理吸附为主,并伴随有化学吸附。 关键词:深红酵母;生物吸附;Pb 2+;吸附动力学;吸附热力学 中图分类号:X703 文献标识码:A 文章编号:1004-311X(2008)02-0029-04 Study of Biosorption Kinetics and Thermodynamics of Lead NI Xiao-yu,W U Juan (Ins ti tute of Life Sciences,Anhui Univers ity,Hefei 230039,China) Abstract :Objective :The biosorption thermodynamics and kinetics of heavy metal ion Pb 2+by unactive Rhodotorula rubra were studied.Method :The biosorp tion kinetics and thermodynamics experi ments of Pb 2+were done in shaker under constant temperature.And the data were fitted using appropriate models.Infrared spectral and X-ray photoelectron analyses were conducted in order to compare the yeast before and after biosorption.Result :In the range of 20e -45e ,the 80%of the saturation adsorption capacity was reached in 5min and the adsorption equilibriu m was reached in 2h.The biosorp tion kinetics data could be fi tted using Elovich eq uation best of all;the adsorpti on activate energy of 21.56kJ P mol could be calculated using second-order kinetics equation.The biosorption equilibrium could be described well using Langmui r ,Freundlich and Dubinin -Radushkevich adsorption isotherms,all the fitting coefficients approaching 0.99,and $H 0was 13.93kJ P mol by using Langmuir equation.C on -clusion :Biosorp tion of Pb 2+ by R .rubr a was a process of unsymmetrical phase diffusi on,including a rapid course and a followed slower course.Physical adsorption played a leading functi on and chemical adsorption was also involved in this process,but not the major mechanism.Key words :Rhodotorula rubra ;biosorp tion;Pb 2+;adsorption ki netics;adsorp tion thermodynamics 收稿日期:2007-11-13;修回日期:2007-11-28基金项目:安徽省自然科学基金项目资助(070413132) 作者简介:倪晓宇(1979-),男,硕士生;*通讯作者:吴涓(1969-),女,博士,副教授,从事水污染控制工程、环境微生物研究,发表论文12篇,SCI 收录5篇,E-mai l:wujuan@https://www.doczj.com/doc/e3565030.html, 。 生物吸附法处理重金属废水与传统方法相比具有许多优点,其原材料来源丰富、品种多、成本低;吸附设备简单,易操作;而且速度快、吸附量大、选择性好,在处理低浓度废水时尤其有效,解吸后的生物材料还可以进行再次吸附[1-3]。酵母是一类重要的工业微生物,在食品和饮料工业中应用广泛,利用生产中的废弃酵母作为吸附材料,能够大大降低成本,实现以废治废的目的,因而具有广阔的应用前景[4-7]。 虽然有关重金属生物吸附的报道很多[4-9],但有关Pb 2+ 的生物吸附动力学及热力学的报道尚不多见。本文研究了深红酵母(Rhodotorula rubra )对重金属离子Pb 2+的生物吸附行为,探讨了吸附时间、吸附温度及Pb 2+初始浓度等因素对吸附的影响,并着重对生物吸附动力学、生物吸附热力学及生物吸附平衡等进行了研究,揭示生物吸附的本质。 1 材料与方法 1.1 材料 1.1.1 实验材料 实验中所用菌种为本实验室所保存的深红酵母(Rhodotorula rubra )。1.1.2 试剂 HCl 、HNO 3、Pb 粉、六次甲基四胺均为分析纯,购自国药集团化学试剂有限公司;牛肉膏、蛋白胨、酵母膏、葡萄糖、琼脂 粉等生化试剂多为分析纯,购自中国医药(集团)上海化学试剂公司;二甲酚橙(分析纯,天津市博迪化工有限公司);十六烷基三甲基溴化铵(分析纯,天津市光复精细化工研究所)。1.1.3 仪器 LRH-250A 生化培养箱(广东省医疗器械厂);ZHWY -100B 恒温培养摇床(上海智斌分析仪器制造有限公司);WF -Z UV-2100紫外可见分光光度计(上海尤尼柯仪器有限公司);TGL-18R 冷冻高速离心机(珠海黑马医学仪器有限公司);ZDX-35BI 座式自动电热压力蒸汽灭菌器(上海申安医疗器械厂);FA2004N 电子天平(上海民桥精密科学仪器有限公司);傅立叶变换红外光谱仪Nexus-870(Nicolet 公司);电子能谱仪ESCALAB MK 11(英国VG 科学仪器公司)等。1.2 方法 1.2.1 吸附实验 准确移取一定浓度的铅溶液50mL 于250mL 容量瓶中,加入适量的酵母,在恒温摇床上振荡吸附(150r P min)一定时间后,取样离心(10000r P min,5min),取上清液分析其中残留的Pb 2+浓度。 1.2.2 Pb 2+的分析 采用722型分光光度计,以二甲酚橙为显色剂,十六烷基三甲基溴化铵为表面活性剂在560n m 波长下测定溶液中Pb 2+的浓度[10,11]。1.2.3 计算方法 Q e =(C 0-C e )@V P W (1)R =(C 0-C e )P C 0@100(2) Q e 为平衡吸附量(mg P g),C 0为Pb 2+ 初始浓度(mg P L);C e

铅的基本性质

重金属铅的污染与防治 64090225 张建伟 铅是一种常见的毒物,其神经毒性早在1个世纪以前就已证实。随着现代化工业、交通业的发展和铅在各领域的广泛使用,环境铅污染日趋严重,对人体造成很大的危害。本文就铅污染及其防治做一个简单的介绍。 一铅的基本性质 1 铅为带蓝色的银白色重金属,熔点327.502°C,沸点1740°C,质地柔软,抗张强度小。 2 金属铅在空气中受到氧、水和二氧化碳作用,其表面会很快氧化生成保护薄膜; 3 在加热下,铅能很快与氧、硫、卤素化合; 4 铅与冷盐酸、冷硫酸几乎不起作用,能与热或浓盐酸、硫酸反应; 5 铅与稀硝酸反应,但与浓硝酸不反应;铅能缓慢溶于强碱性溶液。 6 铅主要用于制造铅蓄电池;铅合金可用于铸铅字,做焊锡;铅还用来制造放射性辐射、X射线的防护设备;铅及其化合物对人体有较大毒性,并可在人体内积累。 7 没有氧化层的铅色泽光亮,密度高,硬度非常低,延伸性很强。它的导电性能相当低,抗腐蚀性能很高,因此它往往用来作为装腐蚀力强的物质(比如硫酸)的容器。 二铅在介质中的存在形式 1 水中的铅 天然水中铅主要以Pb2+状态存在,其含量和形态明显地受CO32-、SO42-、OH-和Cl-等含量的影响,铅可以Pb(OH)2、Pb(OH)3-、PbCl2等多种形态存在。(1)吸附腐殖质对铅离子的吸附;粘土矿物质对铅离子的吸附等。 (2)溶解沉淀铅离子与相应的阴离子生成难溶化合物,大大限制了铅在水体中的扩散范围,使铅主要富集于排污口附近的底泥中,降低了铅离子在水中的迁移能力。 2 空气中的铅 来源其一是铅作业行业排出的大量含铅废气,如印刷业、机械制造业、金属冶炼业,蓄电池制造业等。 其二汽车尾气会排出大量的含铅废气,主要来自汽油中防爆剂四乙基铅。 其三家庭墙壁装饰所用的含铅涂料和油漆,可造成居室内铅污染 3 土壤中的铅 (1)来源自然原因:风化岩石中的矿物,例如方铅矿、闪锌矿。 人为原因:大气降尘、污泥、城市垃圾的土地利用、采矿和金属加工业。 (2)土壤中铅对生物的影响: 低浓度的铅对某种植物的生长起促进作用,而高浓度的铅除了在作物的食用部位积累残毒外,还表现为幼苗萎缩、生产缓慢,产量下降甚至绝收。通过植物

铅离子双印迹吸附剂的制备及其在原子吸收光谱法测定水中痕量铅中的应用

铅离子双印迹吸附剂的制备及其在原子吸收光谱法测定水中痕量铅中的应用 王丽敏,李英华 (吉林化工学院资源与环境学院,吉林132022) 摘 要:采用分子印迹技术,以3-疏基丙基三甲氧基硅烷为功能单体,铅离子和十六烷基三甲基溴化铵(CTMAB)为双模板形式络合体系,并加入由四乙氧基硅烷和甲醇所形成的溶胶,用氢氧化钠作催化剂制得铅离子双印迹吸附剂。经红外光谱法和氮气吸附-脱附系统对此吸附剂的结构特征及表面性能进行表征和分析。结果表明:在印迹吸附剂中除去铅(Ⅱ)离子模板后,恢复了-SH官能团;CTMAB的存在具有提高表面积和孔径的倾向。此双印迹吸附剂在静态条件下,对铅(Ⅱ)离子的吸附经10min,吸附率达95%。吸附容量达545.6mg·g-1。在镉(Ⅱ)离子共存下,相对选择性系数为192。用0.5mol·L-1硝酸溶液5mL即可从吸附剂上洗脱94.4%铅(Ⅱ)。 以此吸附剂作为萃取材料分离富集了环境水样中痕量铅(Ⅱ),洗脱后用原子吸收光谱法测定其中铅(Ⅱ)量,测定值的回收率在104%~106%之间。 关键词:双印迹吸附剂;铅(Ⅱ)离子;选择性分离和富集;固相萃取 中图分类号:O657.31 文献标志码:A 文章编号:1001-4020(2014)05-0589-05 Pre p aration of a Novel Bi-im p rinted Adsorbent for Pb(Ⅱ)and Its A pp lication to FAAS Determination of Trace Amount of Lead in Water Sam p le W ANG Li-min,LI Yin g-hua (De p artment o f Resource and Environics,Jilin Universit y o f Chemical Technolo gy,Jilin132022,China) Abstract:Anovelbi-imprintedadsorbentforPb(Ⅱ)(abbr.asPb-BIA)waspreparedbythemolecularimprintingtechniqueusingMPSasfunctionalisomer,Pb(Ⅱ)-ionandCTMABaspatternplates,TEOS(inCH3OH)assolandNaOHsolutionascatalyst.ItsstructuralfeaturesandsurfacepropertieswerecharacterisedandstudiedbyFT-IRSandASAP2010system.ItwasshownthatintheBIA,Pb(Ⅱ)-patternplatewasremovedandfunctionalgroupof-SHwasresumed,andthatitssurfaceareaandborediameterwereraisedbythepresenceofCTMAB.Itwasfoundthatunderstaticcondition,rateofadsorptionofPb(Ⅱ)bytheBIAattainedto95%in10min;themaximumadsorptioncapacitywasfoundtobe545.6mg·g-1;andtherelativeselectivitycoefficientfoundwas192inthepresenceofCd(Ⅱ).RateofdesorptionofPb(Ⅱ)fromBIAattainedto94.4%whenelutedwith5mLof0.5mol·L-1HNO3solution.TheBIAwasusedasextractantinSPEforseparationandenrichmentoftracesofPb(Ⅱ)inanenviromentalwatersample,andPb(Ⅱ)waselutedfromthecolumn,anddeterminedbyFAAS.Valuesofrecoverywerefoundintherangeof104%to106%. Ke y words:Bi-imprintedadsorbent;Pb(Ⅱ)ion;Selectiveseparationandenrichment;Solidphaseextraction 收稿日期:2013-10-12 作者简介:王丽敏(1970-),女,吉林通榆人,副教授,博士,研 究方向为环境分析技术和环境化学。E-mail:lmw10000@126. com 铅在自然界中广泛存在,对生物体的每个系统都有影响。儿童血铅水平达到100μg·L-1会对健康产生不利影响。环境中的铅主要来源于各种工业生产,如铅的冶炼、铅电池的回收、含铅涂料的生产 · 985 ·

【CN109939661A】一种可吸附固定重金属铅离子的吸附剂及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910198662.7 (22)申请日 2019.03.15 (71)申请人 农业农村部环境保护科研监测所 地址 300191 天津市南开区复康路31号 申请人 新疆农业大学 (72)发明人 孙约兵 闫翠侠 徐应明  迪娜·吐尔生江 王林 梁学峰  (74)专利代理机构 北京鼎佳达知识产权代理事 务所(普通合伙) 11348 代理人 王伟锋 刘铁生 (51)Int.Cl. B01J 20/30(2006.01) B01J 20/20(2006.01) C09K 17/02(2006.01) B09C 1/00(2006.01) (54)发明名称 一种可吸附固定重金属铅离子的吸附剂及 其制备方法和应用 (57)摘要 本发明是关于一种可吸附固定重金属铅离 子的吸附剂及其制备方法和应用,其制备方法, 包括:将新鲜的鸡粪收集后,自然风干,进行除 杂、粉碎、过筛、烘干;将所述烘干后的鸡粪装入 坩埚中,再放入马弗炉中,进行炭化,得到可吸附 固定重金属铅离子的吸附剂。本发明先对鸡粪进 行简单的预处理,然后在低氧条件下炭化即可得 到可吸附固定重金属铅离子的吸附剂,该制备方 法具有工艺简单,原料来源广泛、成本低廉、安全 性高、利废环保等优势。本发明选择鸡粪为原材 料,经过炭化制备成鸡粪生物炭吸附剂,对重金 属Pb 2+的吸附效果较好。本发明提出了“以废治 废”的治理污染新思路,很好的达到利废环保的 作用。权利要求书1页 说明书7页 附图5页CN 109939661 A 2019.06.28 C N 109939661 A

铅的性质

一、铅的性质 铅是最软的重金属,呈灰白色。熔点低(327.4℃)、密度大(11.68克/厘米3)、展性好、延性差。对电和热的传导性能不好。高温下易挥发。 铅在空气中表面能生成氧化铅膜,在潮湿和含有二氧化碳的空气中,表面生成碱式碳酸铅膜,这两种化合物,均能阻止铅的继续氧化。铅是两性金属,既能生成铅酸盐,又能与盐酸、硫酸作用生成 PbCl2和PbSO4的表面膜。因其膜几乎不再溶解,而能起到阻止继续被腐蚀的钝化作用。铅还具有吸收放射线的性能。 自然界中含铅的矿物,主要有方铅矿和白铅矿。以方铅矿分布最广,开采最多。目前,铅的生产方法,仍沿用传统的工艺流程,即由采选、烧结焙烧、还原熔炼、火法精炼及电解精炼等几个环节构成的提取过程。八十年代以来开始工业应用的直接炼铅方法主要有氧气底吹炼铅法和基夫赛特炼铅法。铅能与锑、锡、铋等配制成各种合金。 二、二氧化铅 PbO2 (又称过氧化铅、铅酸酐)分子量239.19 棕褐或暗褐色(显微)结晶或(重质)粉末。是四价铅的氧化物,不是二价铅的过氧化物。晶体结构属斜方晶系。受光的作用分解成四氧化三铅和氧。熔点290℃/分解;相对密度(水=1)9.36~9.38g/cm3。稳定性:稳定;危险标记:11(氧化剂)。有毒! 不溶于水和醇,微溶于乙酸、氢氧化钠水溶液。缓慢溶于硝酸和醋酸铵,迅速溶于盐酸(溶于稀盐酸)、硝酸与过氧化氢溶液。加热到290℃易分解,生成氧和三氧化二铅。更高温度下生成氧和四氧化三铅。为强氧化剂。与强碱加热生成高铅酸盐。与有机物接触易燃。 二氧化铅系两性氧化物,酸性比碱性强。跟强碱共热生成铅酸盐。有强氧化性。跟硫酸共热生成硫酸铅、氧气和水。跟盐酸共热,生成二氯化铅、氯气和水。跟硫、磷等可燃物混和研磨引起发火。 二氧化铅电极是良好的阳极材料,可代替铂阳极。由硝酸使四氧化三铅分解[Pb3O4+ 4HNO3→PbO2 + 2Pb(NO3)2 + O2]或由漂白粉与碱性的氢氧化铅溶液作用而制得。用熔融的氯酸钾或硝酸盐氧化一氧化铅,或用次氯酸钠氧化亚铅酸盐可制得二氧化铅。 采用差热分析法,恒流放电法和循环伏安法研究了氢损失对于a-PbO2和β-PbO2的电化学性质的影响。电化学形成的PbO2的热分解表明PbO2中存在两种类型的结构水:一种是吸附在PbO2颗粒表面的物理吸附水,可在较低温度下消失;另一种是位于PbO2晶格内部的化学结构水,只能在较高温度下失去。铅酸电池中PbO2还原反应主要由扩散过程控制,物理吸附水的损失对容量影响不大,而化学结构水的损失导致了容量的严重衰减。 製備二氧化鉛披覆鈍性金屬電極之方法,其將鈍性屬於含硝酸鉛、硝酸銅、醋酸鉛和醋酸銅之電鍍液中進行電鍍,該電鍍液中添加了適量之非離子型或陰離子型界面活性劑及/或可以改變電解液性質的有機添加劑,以改良析出二氧化鉛的電化學特性。電極材料(尤其是陽極),都必須具有良好的機械性、導電性、抗蝕性、經濟性及電化觸媒效應。傳統上,陽極材料大多採用鉛、鐵、鐵矽合金、磁鐵礦、鎳、白金及石墨等,而這些材料有些微不符合前面所述的電極特性條件。自1967年不溶性陽極的專利被提出後,由於不溶性陽極的特性優異,幾乎取代了以往的石墨、白金等傳統陽極,而使得電化學工業有了很大的改變與進步,也因為如此世界各國有許多學者專家,不斷的對具導電性的氧化物從事研究。爾後就有一系列不同底材及不同氧化物被覆之研究,底材以鈍性金屬為主,例如T i、T a、N b、Z r等,而氧化物則有R u O2、I r O2、

几种吸附剂对水中铅离子的吸附性能介绍

几种吸附剂对水中铅离子的吸附性能介绍 [摘要]本文总结了吸附除铅技术的优势,对几种吸附材料对水中铅离子的吸附性能进行介绍,并对吸附除铅技术的前景进行了展望。 [关键词]吸附铅改性 铅是自然界分布很广的元素之一,在工农业生产中有着非常广泛的用途。铅和可溶性铅盐都有毒性,铅的主要污染源是蓄电池、冶炼、五金、机械、涂料和电镀工业等部门的排放废水。目前铅是危害最为严重的重金属离子之一,不容忽视。目前国内传统的处理铅离子的方法有:化学沉淀法,电解法,离子交换法,液膜法[1]等,但是这些方法受到原料的限制,处理的费用比较高,操作比较复杂而且会存在二次污染。难以得到广泛的应用。吸附去除法由于设备简单、占地面积小、操作容易、效果稳定、处理后废水可循环使用、可再生使用等优点而被广泛应用。目前国内外对低浓度含铅地下水的去除主要还是以吸附去除法为主,创新点主要是研究出高效环保的吸附剂[2]。 1不同吸附剂对水中铅离子吸附性能研究 1.1活性炭作为吸附剂 活性炭由于来源广泛、价格低廉、吸附性能好、易再生,在处理低浓度含铅地下水领域得到广泛的应用[3]。杨骏等[4]采用两种煤质活性炭对不同浓度铅离子废水进行吸附研究,获得了铅离子在活性炭上的扩散传质系统。肖乐勤等[5]采用HNO3和H2O2氧化改性后的活性炭纤维进行了铅离子吸附研究,结果表明:活性炭纤维的表面酸性基团由提高至2.89mmol·g/L,饱和吸附量较改性前提高了130%。曹福亮等[6]研究了银杏活性炭对水中铅离子的吸附效果,结果表明:银杏活性炭对铅的吸附量在200mg/g左右,吸附量受PH,离子浓度等因素的影响。李坤权等[7]采用磷酸分别棉秆和互花米草混进行活化,制备了植物基活性炭,两种活性炭对水中铅的吸附量分别为119mg/g和111mg/g。 1.2沸石作为吸附剂 沸石对水中铅离子的吸附效果较好,价格低。可大规模用于铅离子吸附性的研究。李雪峰等[8]采用ZSM-5沸石对水中铅离子进行吸附研究,结果表明:当沸石用量为40g/L时,铅离子的去除率可到到95%以上。施平平等[9]纳米级X-型沸石分子筛对水中铅离子进行吸附研究,结果显示,该材料最大吸附量达150 mg/g,吸附平衡时间为5min。沸石是较好的吸附材料,且无法再生后,还可作为生产水泥的原材料,进行二次利用。 1.3硅藻土用作吸附剂 硅藻土质轻、多孔、相对密度小、空隙率高、吸附能力强,储量丰富,是较

水中铅离子检测

氨基凹土修饰电极示差脉冲阳极溶出法测定铅离子 1前言 1.1 重金属污染 若金属元素的原子密度超过每立方厘米五克,即可认为其是重金属。如铜、铅、锌、镉、铁、锰等,均属于重金属,共有四十五种。若水体内排入的重金属物质,无法结合自净能力将其净化,而最终导致水体的性质、组成等发生改变,影响水体内生物生长,并对人的健康、生活产生不良影响的,即属于水环境重金属污染。在工业、农业快速发展的同时,许多污染物被排入河流内,其中也包含重金属,最终导致水质恶化,也由此产生了一系列严重后果。不论是在何种环境中,重金属污染物的降解都极为困难,并且能够积累在植物、动物体内,并结合食物链不断富集,最终进入人体,对人体健康产生危害,这类污染物也是对人体产生最大危害的一种污染物。 1.2水环境中重金属的检测技术方法研究与发展 重金属污染能够不断富集,并最终对动植物、人体以及环境产生一定负面影响,具备潜在的危险性,因此这也是一个不容忽视的问题。工业污染是重金属污染的主要来源,企业的排放要达标,管理要严格,最为关键的是当前国家的管理机制尚未健全,仍需继续完善。在水环境监测工作方面,重金属检测工作能够为此提供一定依据。近年来,伴随着多种分析仪器的开发,重金属检测也逐步体现出准确性、灵敏度高等优势。 当前,对重金属进行检测的电化学方法主要有:伏安法、极谱法、电位分析法和电导分析法。 1.3 对铅离子的研究 铅可通过皮肤、消化道、呼吸道进入体内与多种器官亲和,对神经、血液、消化、心脑血管、泌尿等多个系统造成损害,严重影响体内新陈代谢,堵塞金属离子代谢通道,造成低钙、低锌、低铁,且导致补充困难。因此研究一种简单、准确和灵敏度高的铅测定方法具有重要意义。 目前铅的主要检测方法有:原子吸收光谱法,电感耦合等离子体原子发射光谱法,电感耦合等离子体质谱法,X射线荧光光谱法,分光光度法等。化学修饰电极测定重金属离子的方法也有报道,如植酸钠或石墨烯修饰玻碳电极测定铅,多壁碳纳米管修饰电极测定镉等,但这些方法的线性范围较窄,检出限较高。 凹土即凹凸棒粘土的简称,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。凹土的化学式为Mg5Si8O20(HO)2(OH2)4·4H2O,它的表面有可交换阳离子和活性羟基,同时拥有较大的表面积和较好的机械强度。因此,原始的凹土可作为重金属离子的吸附剂,有研究表明用有机试剂(例如:氨丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷)修饰凹土表面可以提高凹土的吸附能力和吸附选择性。 因此本文选取3-氨丙基三乙氧基硅烷(简称AEPTMS)来修饰电极。 2 实验部分 2.1 粘土矿物、化学试剂和化学仪器 精制凹凸棒粘土(粒径小于2 微米,)——简称凹土,是一种稀有非金属矿产资源,它是一种层链状结构的含水富镁铝硅酸盐粘土矿物。 化学试剂:Pb(NO3)2(99%,分析纯),H2SO4(98%),Pb(NO3)2 (99%,分析纯),H2SO4(98%),HCl(36%),NaCl(99.5%),HNO3(63%),K3[Fe(CN)6],Ru(NH3)6Cl3,In(NO3)3.H2O(99.99%),Cd(NO3)2·4H2O(98%),Cu(NO3)2·xH2O(99.99%),T l NO3(99.9%),Hg(NO3)2·H2O(≥99.99%),

污泥基吸附剂对铅离子的吸附性能与机理研究

污泥基吸附剂对铅离子的吸附性能与机理研究 发表时间:2018-05-28T15:44:55.297Z 来源:《建筑学研究前沿》2017年第35期作者:张凯杰邢兆洁林勇澍[导读] 以某污水处理厂污泥为制备原料,采用化学活化法(ZnCl2为活化剂),制备污泥基吸附剂。 山东农业大学山东省泰安市 271018 摘要:以某污水处理厂污泥为制备原料,采用化学活化法(ZnCl2为活化剂),制备污泥基吸附剂。以铅离子为目标污染物进行去除实验,考察了活化剂浓度、固液比、热解温度、热解时间等对制备污泥基吸附性能的影响。通过spss第三类平方和分析实验,结果表明其对制备产物污泥基吸附剂性能的影响程度大小依次为:热解温度>热解时间>氯化锌浓度>固液比。由spss估计平均值可得污泥基催化剂的最佳制备条件为ZnCl2的浓度3.5mol/L、热解温度为500℃、热解时间为60min、固液比为1:2。关键词:剩余污泥,化学活化,ZnCl2,污泥基吸附剂,Pb2+去除率在城市化和工业化快速发展的今天,污水厂污泥的产生、储存、处理及资源化利用过程中均可能危害环境。同时伴随着污泥海洋处理的禁止以及严格填埋标准、农用标准的制定与实施,污泥的管理已经成为一个世界性的社会和环境问题。采用传统的处置方法,如土地填埋、焚烧等方式进行处理,相对于当今越来越严格化的环境标准,显然是不合适的。同时,随着资源短缺的加剧,人们开始寻找新的资源,而污泥由于其有机物、营养元素含量高等优点而日益受到关注。因此,如何解决污泥问题,并使其化废为宝,是一个具有重要意义的课题。 活性污泥是指活性污泥法处理工艺中,二沉池产生的沉淀物,扣除回流的那部分,剩余的部分称为剩余活性污泥。其中含有大量的水分、有机物、N、P等营养元素,以及重金属、病原菌等有害物质,同时富含有机碳,成分、产量高且易于获得,在适当条件下通过热解,可以使之转化为活性炭。 活性炭由于其独特的物理化学结构,其具有很强的吸附性能,同时也是理想的催化剂载体,被经常用于环境污染治理,是一种环保型吸附剂。但是,目前来看,商品活性炭通常由价格昂贵的原材料制备,诸如木材、稻壳或者煤炭、沥青等,生产成本较高,限制了其应用范围。于是,由剩余污泥制备污泥基活性炭催化剂的方法,因为原材料充足易得、价格低廉、绿色无害,成本低于商品活性炭,又为污泥的最终处置提供了一种资源化利用的新途径,而日益受到青睐。 其过程为污泥经过干燥脱水、粉碎和筛滤等过程变为细小的污泥颗粒,然后采用化学药品浸渍法,对该颗粒在一定温度下进行活化。之后进行烘干,再在空气中暴露一段时间后,在惰性环境下热解。最后再经过进一步的处理后,即制得高效的炭质催化剂。其制备过程与化学活化法制备污泥吸附剂大致相同,其主要区别就在于活化剂成分的不同。而活化剂的成分是决定此类催化剂效果的首要因素。 研究以剩余活性污泥为催化剂载体,ZnCl2作为活化剂活性组分,联合单因素实验研究活化方法、污泥与活化剂的比例(固液比)、热解温度、热解时间等,对研究所制备的吸附剂对Pb2+去除率的影响,确定最佳制备工艺,并对催化剂进行了应用分析及前景展望。旨在制备一种污泥基活性炭吸附剂剂,为剩余污泥的资源化再利用提供一种新思路。 1实验部分 1.1材料和仪器 剩余污泥粉末、ZnCl2溶液1、浓盐酸2、Pb(NO3)2溶液(30mg/L)。 101A-2型电热鼓风干燥箱、GSL-1500X型真空管式高温烧结炉、THZ-82水浴恒温振荡器、TAS-999石墨原子吸收分光光度计、80-1型离心机。 1.2 污泥基吸附剂的制备 取某污水处理厂污泥脱水车间的剩余污泥,先将污泥放入烘箱中,在110℃温度下恒温干燥脱水24h,直至烘干为止。然后将烘干的污泥放入粉碎机,1min取出研碎的干泥,用100目筛子筛滤,筛分出来的样品放入干燥器中干燥待用。 将粉末污泥与活化剂ZnCl2 溶液在坩埚内混合,将配好的混合液充分搅拌均匀后放入烘箱烘干活化7-8小时,待混合物完全干燥后取出,研磨至粉末状放入管式电阻炉中热解活化。活化主要是利用气体进行碳的氧化反应,由于碳化物的表面受到侵蚀,使炭化物孔隙结构更加发达的过程。在活化的过程中,下面两个阶段是同时发生的:新微孔的生成或闭塞孔的打开;细孔的扩大;相邻细孔的合并。 高温热解3-5小时后取出,取出后放在研钵中进行研磨,之后用500mL 10%浓盐酸酸洗,酸洗完成后用纯水清洗至pH为7。经过酸洗的活性炭催化剂孔隙率大大增加。干燥后研磨过筛,此时得到的活性炭即为成品活性炭吸附剂。 1.3 Pb2+吸附实验 将原料配比和热解条件不同的成品试样中加入100mL 30mg/LPb2+溶液,置于恒温振荡器(室温25℃)上振荡60min。吸附试验结束后,静置30min后取上清液,然后用滤纸过滤,过滤后取锥形瓶中部液体用石墨原子吸收分光光度计进行波长283.3nm吸光度检测,对应标线,计算每组试样的去除率。统计16组正交试验的实验数据,将结果代入spss进行显著性分析并计算最优制备条件。 2结果与讨论

吸附剂的应用研究现状和进展_杨国华

84 吸附剂的应用研究现状和进展 杨国华1,黄统琳1,姚忠亮3,刘明华1,2 (1.福州大学环境与资源学院,福建 福州 350108; 2.华南理工大学制浆造纸工程国家重点实验室,广东 广州510640; 3.福建师范大学福清分校生物与化学工程系,福建 福清350300) 摘 要:利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。主要对活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等吸附剂的应用研究现状和发展趋势进行综合概述。 关键词:吸附剂;吸附法;研究;综述 基金项目:中国博士后基金资助项目(20070410238)和中国博士后基金特别资助项目(200801239)。 吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求: (1)吸附能力强; (2)吸附选择性好; (3)吸附平衡浓度低; (4)容易再生和再利用; (5)机械强度好; (6)化学性质稳定; (7)来源广; (8)价廉。 一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1] 。本文主要对上述吸附剂的应用研究现状和发展趋势进行综合概述。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物 (如木材、锯木屑、木炭、谷壳、椰子壳、 2009年第6期 2009年6月 化学工程与装备 Chemical Engineering & Equipment

各类吸附剂的机理及其研究进展

各类吸附剂的机理及其研究进展 叶鑫 华东交通大学 摘要:吸附法作为一种重要的处理废水的方法已经得到广泛应用。本文介绍了近年来利用吸附法处理废水的研究进展。根据吸附机理将吸附剂吸附重金属的方法分为化学吸附和物理吸附两大类,并对其研究现状进行了介绍。介绍了活性炭、沸石、壳聚糖、膨润土、生物吸附剂处理废水的研究进展,同时对吸附法处理重金属废水的发展方向进行了展望。利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 关键词:吸附剂;吸附法;研究 吸附剂是指能有效地从气体或液体中吸附其中某些成分的固体物质。常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂。最具代表性的吸附剂是活性炭,吸附性能相当好,但是成本比较高,曾应用在松花江事件中用来吸附水体中的甲苯。吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。 利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。 在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。 在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求:(1)吸附能力强;(2)吸附选择性好;(3)吸附平衡浓度低;(4)容易再生和再利用;(5)机械强度好;(6)化学性质稳定;(7)来源广;(8)价廉。一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1]。本文主要对上述吸附剂的应用研究现状和发展。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物(如木材、锯木屑、木炭、谷壳、椰子壳、稻麦杆、坚果壳、脱脂牛骨、鱼骨等)、煤(泥煤、褐煤、沥青煤、无烟煤等)、石油副产物(石油残渣、石油焦等)、纸浆废物、合成树脂以及其他有机物(如废轮胎)[2]等。但是,活性炭因生产工艺、原料的不同,性能悬殊非常大,用途也不一样,目前工业上使用的活性炭有粒状和粉状两种,其中以粒状为主。与其他吸附剂相比,活性炭具有巨大的比表面积以及微

相关主题
文本预览
相关文档 最新文档