当前位置:文档之家› 离网型风力发电机性能测试系统概述

离网型风力发电机性能测试系统概述

离网型风力发电机性能测试系统概述
离网型风力发电机性能测试系统概述

面加载:F

=49N、Fy=21N、Fz=10N。刀片采用45号钢,弹性模量为2.082×105,泊松比为0.3。在Pro/E里面建立

模型后导入ANSYS,生成的几何模型如图10(这种刀片两边可以交换使用),划分网格后如图11所示,加载求解后的应力分布如图12。可以看出应力的最大值

为31.269MPa,远小于材料的屈服极限!

=355MPa,变形最大值为0.017647mm,刀片切割是可靠的。从应力图还可以看出在受力点有应力集中的现象,可在刀尖采用一过渡圆弧来减少应力集中现象。

3结束语

本文用三维建模软件Pro/engineer建立了小型甘蔗收获机的关键部件—台架的虚拟模型,利用动力学仿真软件ADAMS和有限元分析软件ANSYS,对其中的一些结构和零件进行了仿真分析和结构静力学分析,分析其可行性和实用性,为后续研究提供了一些有用的参数。虚拟样机技术是一项崭新的技术,在我国农业机械相对落后的情况下,在我国农业现代化的步伐中,这一技术具有很大的研究和应用价值。

参考文献:

[1]孙秀花.小型甘蔗联合收获机运动学、动力学虚拟仿真研究[D].广西大学硕士学位论文,2005.6.

_____________

来稿日期:2005年9月29日

基金项目1:国家自然科学基金(编号50365001)

基金项目2:广西壮族自治区科技攻关项目(编号0235008-5)蒋礼斌硕士研究生广西大学机械工程学院530004

南宁市

李尚平教授,博士广西大学机械工程学院

杜俊鹏硕士研究生广西大学机械工程学院

陈伟叙副教授,硕士广西大学机械工程学院

摘要:本文为离网型风力发电机虚拟仪器性能测试原理的研究,利用相应的软件LabVIEW及相关配套硬件设备,设计了风力机基本性能参数的测试系统。在考虑到强电、弱电信号传输分开,内部供电电源与信号线路隔离以及信号屏蔽等问题,设计出了测试机箱方案。通过在实验室实验,测得了风力发电机的转速与风力发电机功率的数据,从而做出了一条转速与功率的关系曲线,为评估和改进风力发电机的性能提供依据。

关键词:风力发电;虚拟仪器;LabVIEW;特性曲线;性能测试

中图分类号:TK83

文献标识码:A

文章编号:1006-7205(2006)02-0079-03

ResearchingofaPerformanceTestingSystemPrinciplefortheSmallSizeWindTurbineGenerator//GAOXue-feng,WANGTao,SHENBing-yun,LIUZhi-zhang,HEZhen

Abstract:BasedontheVisualinstrumentstechnology,thispaperismainlyabouttheresearchingofaperformancetestingsystemprincipleforthesmallsizeWindTurbineGenerator.Thisperfor-mancetestingsystemisbasedonthevirtualinstruments(VI)andrelativehardware.Consideringdetachstrongandfeebleelectrici-tysignal,insideelectricitysupplyandsignalwire,wedevisethetestingmachinebox.Throughexperimentinthelab,testtheda-tumofWTGrotatespeedandpower,andmakeoutthecurveofrotatespeedandpower.WecanestimatetheperformanceoftheWTGandimproveitaccordingtotheresults.

Keywords:WindTurbineGenerator(WTG);VirtualInstruments(VI);LabVIEW;characteristiccurveperformancemeasurementsystem

0前言

随着能源危机的出现和环境的日益恶化,被称为绿色能源的风能越来越受到世界各国的广泛重视。自然界中的风能资源是极其巨大的,据世界气象组织(WMO)估计,整个地球上总风能约为3×1017kW,其中可以利用的风能约为2×1010kW,是地球上可资利用的水能总量的20倍左右。风力发电是利用风能的一个很好的途径。在开发和改进风力发电机,更好的利用风能资源的进程中,我们需要对风力发电机本身及与风力发电机相关的一些参数作准确测试,作为改进风力发电机性能的必要依据。

1系统概述

开发的测试系统采用了当前流行的虚拟仪器测试技术,可以实现对被测风力发电机实时实地的数据采集、监控以及数据分析和处理。被测数据包括大气压

离网型风力发电机性能测试系统概述高雪峰,王涛,沈炳耘,刘志璋,何桢

力、大气温度、直流电流、直流电压、频率、风速、扭矩等。

整个测试系统的开发包括硬件组配和软件编程两部分。对于系统硬件部分,依据中华人民共和国国家质量监督检验检疫总局发布的《离网型风力发电机组》最新国家标准对性能测试部分的要求,根据各待测参量的特点,选择合适的传感器、变送器,并依据测试所采集信号的特点选择能够满足信号要求的数据采集卡,遵照电气规范,组配测试仪。考虑到本套设备应能在野外连续作业,选用的计算机是稳定性和可靠性较高、操作简单、携带方便、性价比高笔记本电脑软件部分是利用当前广为使用的LabVIEW编写程序,实现对数据采集的控制、显示和存储。

测试时,各路模拟标准信号(4 ̄20mA电流信号或0 ̄5V电压信号)经相应的变送器采集变送传输,通过数据采集卡上已经设定的信号通道传递给笔记本电

脑,实验数据由软件处理后作结果显示,同时以Excel电子表格文件存储于电脑硬盘。最后,利用Excel软件的数学计算、分析处理功能得到实验结果。通过Excel计算出风力机的发电功率并绘制出各参数曲线图形。通过对大气温度、湿度、大气压、风速等实验数据的分析和处理,计算出风能的功率;利用电流和电压参数的分析、处理,计算出风力发电机的输出功率。通过两个参数的比值从而得到评估风力机的转换效率及风力机的性能。

2系统硬件设计技术方案

本课题采用基于PC机的数据采集系统(DataAcquisition,简称DAQ)来完成测试研究,建立在计算机和DAQ设备基础上的虚拟仪器系统具有多性能、高功能、集成化、网络化、性价比高和使用维护方便等特点。本测试系统由笔记本电脑、数据采集卡、各类传感器、变送器等组成,如图1所示。各路信号通过相应的变送器,以标准电信号形式输入DAQcard―6024E型多功能数据采集卡,通过数据采集卡上对应通道的运算功能

,输出并存储测试结果。图

1数据采集流程

6024E型多功能数据采集卡是NI公司生产的一种低价位数据采集卡,使用E系列技术可靠的传输数据,根据硬件的驱动不同,数据传输到硬盘的速度可达到200Kb/s。它具有16个模拟输入通道,8个数字输入/输出通道,完全满足我们测试的要求。传感器、变送器亦根据规范的要求选择合适的型号。

在采集的参数中,进入直流电流、直流电压、交变频率变送器的信号是从风力发电机直接出来的实际电流、实际电压信号,供电电源交流220V也是强电信号。但是大气温度变送器、大气压力变送器和风速、扭矩传感器等则是弱电信号。为避免信号干扰,在考虑到强电、弱电信号传输分开,内部供电电源与信号线路隔离以及信号屏蔽等问题,及对这些问题的分析、实践处理之后,设计出了下面测试机箱方案(如图2)。

图2测试机箱外观测试机箱内部结构

3系统软件设计技术方案

3.1应用程序

基于LabVIEW环境的风力发电机测试程序具有将来自传感器的信号采集、存储、处理和显示的功能,所以程序总体上包括数据采集、数据存储(将数据存入Excel表格文件)、数据处理等几个模块。数据采集包括通道控制、触发控制、设置采样参数。数据处理及参数分析包括计算模拟参数的实际值,与发电机性能有关的参数计算和性能曲线的显示。应用程序结构框图如图3。

图3应用程序结构框图

LabVIEW程序的编写包含前面板和流程图。前面板就是图形化用户界面,用于设置输入数值和观察输出量。在前面板中,用户可以使用各种图标,如旋钮、按钮、实时趋势图和事后记录图等,就像真实的仪器面板一样。每个前面板都有一个框图程序与之对应,框图程序用图形化语言编写,可以把它理解成传统编程语言程序中的源代码。流程图是一种算法图形描述工具。它用一些几何图框表示各种类型的操

第2期

作,在框图内写上简明的文字或符号表示具体的操作,用箭头的流程表示操作的先后顺序。由此可以编写出完整的LabVIEW程序进行数据采集和显示。最后通过Excel对数据进行处理。

3.2仪器接口驱动程序的选择

I/O接口仪器驱动软件完成特定外部硬件设备的扩展、驱动与通讯,NI公司对其所有产品提供了专门的驱动程序库,本系统的数据采集卡选用的是NI

公司的E系列多功能数据采集卡,驱动程序亦为NI公司的NIDAQ7.3版本的驱动。

4数据采集与处理

测取机组的输出功率和风速,用比恩法(Bin)通过

计算绘制特性图线。

测试标准要求,机组正常工作时,从切入风速至切出风速的整个范围内,由计算机同步采集风速、输出电功率、温度、大气压。采样频率不小于每秒钟一次,平均周期不小于30s,不大于60s。本测试试验,采样频率定为每秒钟一次,平均周期定为60s。

1)为了对不同地区条件的风力发电机性能进行有效的对比,要对实测的性能参数进行修正,反映在标准条件(海平面15℃)下的工作状态。对每一区间内的输出功率用下式进行修正:

PS=PT1.226

pT

!"

(1)式中:PS———已经按标准条件修正过的输出功率,W;PT———

未经修正过的输出功率(PT=UI),W;ρT———

实验大气密度,kg/m3。实验大气密度ρT由实测大气压力和气温计算:

PT=1.226288T#+273

!"

p#101.325!"

(2)

式中:T#———实测大气温度,℃;

#———实测大气压力,kPa。2)对相应的风速计算其通过风轮的风功率P1:

p1=π2ρT

R2V3

(3)式中:R———风轮半径,m;

V———

实测风速,m/s。3)PT/P1即为风机效率,由此可得到“

风速-风机功率曲线”和“风速-风机效率曲线”,利用Excel软件描绘出其相互关系,由此可看出风力发电机的优劣。

图4是我们在内蒙古锡林郭勒盟苏尼特右旗对

1kW风力发电机,没有并尾装置时所测到的“风速-风机功率”曲线。通过图4曲线我们可以看出,风力发电机的启动风速为3m/s,在10m/s时达到额定功率

1kW,并且由于没有并尾装置,随着风速的增加,功率

在不断提高。

图4

风速与风机功率关系曲线

5结论

当前新能源开发利用技术越来越受到各国的普

遍重视,人类面临的能源问题形势愈发严峻,不断开发性价比更高的风力发电机有着重大的现实意义。因此,在研究开发以及推广改进风力发电机的工作过程中,对风力发电机性能进行测试,掌握准确性能,并对离网型户用风力发电机使用中部分环节实现自动控制,是十分必要的。

本系统是采用软硬件组态的新型虚拟仪器测试手段构建测试平台开发的一套虚拟仪器测试系统,这对于在自然风况下对风力发电机性能进行测试并改进风机的性能有重要的意义,对于本测试系统以后逐步优化改进也有着较大的参考价值。

参考文献:

[1]苏绍禹.风力发电设计与运行[M].北京:中国电力出版社,2002.

[2]尹烈,刘文洲.风力发电[M].北京:中国电力出版社,2002.[3]何希才.传感器及其应用电路[M].北京:电子工业出版社,2001.[4]AmericanWindEnergyAssociation.StandardPerformanceTestingofWindEnergyConversionSystems.1988.

[5]张鹏举.风电场空气密度对风力机输出功率的影响[].风力

发电论文集,2002,(10).

[6]张延迟,吴刚,姜霞.大型风力发电机组的功率曲线[J].新疆大

学学报,2001,(2).

_____________

来稿日期:2005年6月13日高雪峰博士研究生天津大学

300072天津市

硕士研究生

内蒙古工业大学010062

呼和浩特市

沈炳耘教授,硕士生导师内蒙古工业大学刘志璋教授,博士生导师内蒙古工业大学何

教授,博士生导师

天津大学

技术研究?离网型风力发电机性能测试系统概述

81

家用小型风力发电系统的初步设计

2015年度本科生毕业论文(设计) 家用小型风力发电系统的初步设计 院-系:工学院 专业:电气工程与其自动化 年级:2011级 学生姓名: 学号: 导师与职称: 2015年6月

2015 Annual Graduation Thesis (Project) of the College Undergraduate The preliminary design of small household wind power generation system Department:Electrical Engineering and Automation Major:Institute of Technology Grade:2011 Student’s Name:Xu Yun Dong Student No.:2 Tutor:The lecturer Hua Jing Finished by June, 2015

摘要 风能作为一种清洁的可再生能源正逐渐受到了人们的重视,风力发电也成为了时下的朝阳产业。本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换与继电控制电路做了初步的研究。 本论文首先介绍了课题的目的和意义,综述了国内外风力发电的发展概况,简要概括了风力发电相关技术的发展状况,论述了常见小型风力发电系统的基本组成和各部分的作用,同时对本论文的系统方案做了简要的概括,着重分析了整流电路与Buck降压电路的配合,蓄电池充放电继电保护以与电能输出的有效性等。还引入了市电切换电路,作为在发电机故障或蓄电池电量不足的情况下为负载供电。为了使能量的利用达到最大化,本系统还引入了并网电路。所以本论文设计的小型风力发电机组不但适合偏远的地区,也适合市区家庭使用。 本文提出的解决方案为:风力传动装置带动三相永磁交流发电机,然后通过AC—DC—DC—AC变换为交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组和稳压器,通过继电控制电路的监控以实现系统的自动控制,同时并入市电投切,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。系统的运行状况采用继电控制电路监控和切换。 本论文的重点在于继电控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析。 关键词:小型风力发电机组;整流:逆变;继电控制:蓄电池

关于离网型风力发电系统的研究

关于离网型风力发电系统的研究 【摘要】进入二十一世纪以来,人民的生活水平在不断的提高,但是经济的增长带来的是资源的浪费,和环境的污染,近几年来,环境的恶化进一步加大,政府对于环境的重视程度不断提高,随着国民素质的普遍提高,环保意识不断的增强。那么为了缓解环境的压力,人们开始研发新型能源。风能作为一种新型能源,逐渐受到人们的重视。风能具有很多有点。它最重要的是无污染,能量来自于自然界存在的风力。在一些地区,风力发电已经成为了主要的电力来源,缓解了火力发电造成的环境污染。本文就风力发电中的离网型发电系统做系统的介绍。希望能够对今后的风力发电系统提供一些参考和借鉴,将风力发电的一些前景展现出来,以供人们参考。 【关键词】风力发电;离网原理;特性;发展前景 随着经济的飞速发展以及不可再生能源的大量消耗,风能作为一种绿色能源已成为研究的热点。风力发电有很多的优点,例如:占地少、无污染等。在各个地区都受到了广泛地欢迎。随着科技的发展,风力发电技术不断提高,离网型系统作为比较古老的系统慢慢的被社会所淘汰,它对偏远地区的人们来说还是极其重要的。同时,它在各方面的原理对于风力系统的发展具有指导意义。 1.风力发电系统的现状 风力发电无需借助外部能源,风险性小,也不会造成大气污染。这些优点使得风力发电得到了广泛应用和大力发展。 目前,绝大多数国家都已应用了风力发电系统。我国拥有着较为丰富的风力资源,是较早利用风力发电的国家。我国的偏远地区由于地形、自然条件的限制,电网无法到达,此时离网型风力发电系统便处于无可替代的地位,为人们带来了极大的便利。 1.1国内风力发展现状 我国于20世纪60年代初期开始发展风能发电,首先采用的是离网式小风机技术。我国因没有充分依靠国内机电制造业基础,没有吸收引进国外先进技术,力求自主研发。这就导致了我国风电建设比较落后。目前,国内的风电容量设备大部分是从国外引进的成套设备,致使风力发电设备成本增高,为了保证收益,导致电费增高。与火力发电、水力发电相比,缺少市场竞争力。经过我国政府有关部门的积极规划和支持,我国在风电装机容量的世界排名从2004年的第10位历经3年跃居到了第5位,发展迅猛,由此可见,我国的风力发展潜力巨大。 1.2国外风力发展现状 美国等西方国家于20世纪80年代开始研发风力发电技术,并将风力发电进

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

汽车交流发电机的工作特性

交流动机分析流发出特 流发 系列系交流 流发电机机来说,析汽车用发电机的特性最为1.输输出特发电机规列的交流,即U=常流发电机由特性(1 )机的工作其转速用交流发的特性有为重要。输出特性 特性是指规定为14流发电机常数时,机的输出性曲线I= 空载转速 作特点是转速变化约为发电机的特有输出特性 指在发电机4V ,对2机规定为I =f (n 出特性曲线=f (n )可速n1 转速变化为1:8特性必须性。空载机端电压24V 28V ), 其) 的函 线。 可以看出化范围大,柴油机须以转速载特性和压U 不变其输出电函数关系出: 大,对于一机约为1速的变化为外特性,变(对12V 流与转速。图2-一般汽油:5,因为基础。,其中以V 系列的速之间的26所示油发因此交以输的交的关示为

发电机转速小于一定值n1时,对外输出电流为零。当发电机达到额定电压并能对外输出电流时的最小转速为n1,称n1为空载转速。空载转速常用来作为测试发电机性能的参数之一。 (2)最大电流Imax 发电机输出电流能力随转速的升高而增大,但曲越来越平坦,当转速达到一定值时,无论转速增加多少电流都不再增加,即一定结构的发电机输出最大电流Imax有一定限制。由此可见,交流发电机自身具有限制输出电流防止过载的能力,又称为自我保护能力。 交流发电机自我限流的原理如下: 交流发电机定子绕组具有一定的阻抗Z,它由绕组的电阻r及感抗XL两部分组成,即 式中 R——一相绕组的电阻; XL——一相绕组的感抗; XL=2лfL 式中 L——一相定子绕组的电感; f——感应电动势的频率; P——磁极对数。 由于XL 与n成正比,故发电机定子绕组的阻抗Z随发电机的车速升高而增加。高速时,由于R与XL相比可忽略

离网风力发电系统的安装与调试

离网风力发电系统的安装与调试 一、任务导入 风力发电机在安装时应首先选择风能较好的位置,这样才能保证风力发电机输出理想的电能。选址是一个非常复杂的问题,它包括很多因素,比如:当地有效风吹刮情况、年平均风速、连续无有效风速时数、风的能量密度、强风和紊流出现的次数、雷电冰雹出现的情况、风力发电机与用户的距离(输电线路的远近)、安装维护的方便性、地形地貌等。 二、相关知识 学习情境1 离网风光互补发电系统风力发电机的选址 (一)地形和气象因素对风力发电机选址的影响 风力发电机安装地址的选择非常重要,性能很高的风力发电机,假如没有风,它也不会工作;而性能稍差一些的风力发电机,如果安装地址选择得好,也会使它充分发挥作用。风力发电机的选址条件包含着非常复杂的因素,原则上,在一年之中极强风及紊流少的地点应为最好的安装风力发电机的地点,但受用电负荷所处地理位置的限制,有时很难选出这样的地点。 风力发电机的装机地点对于发电量及安全运行是非常重要的,一个好的装机地点应该具有两个基本要求:较高的平均风速和较弱的紊流。选择安装场地对今后风力发电机的有效使用十分重要,风力发电机的选址是一个非常复杂的问题,大的风力发电机的选址往往需要了解多年的气象数据,并经过若干年的实测,考虑其他综合因素,才能最终确定风力发电机的安装地点。 1.地形影响 由于风力机的能量输出与风速的三次方成正比,所以应因地制宜地选择风力机的安装地点。因为当风吹过地表时,气流会产生剪切和加速。剪切的作用会使地面上的风速比高空的风速低得多,而不受剪切影响的高度比气象站测量高度(10m)要大得乡。由于风的剪切受地形影响,因此有效风能也受地形影响。也就是说,建筑物、树及其他障碍物对风的剪切和有效风能有影响。当气流通过山丘或窄谷时,气流产生加速作用,利用这一特点,可以将风力发电机安装在这样的有利地形上以增加风力发电机的功率输出,有关地形对风的影响如图1-58和表1-29所示。 图1—58 地形对风的影响

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

小型家用风力发电系统的设计

毕业设计(论文) 题目小型家用风力发电系统 的设计 姓名 学号 所在学院 专业班级 指导教师 日期年月日

原创性明 本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日学位论文版权使用授书 本学位论文作者完全了解学院有关保管、使用学位论文的规定,同意学院保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在年解密后适用本授权书。 2、不保密□ (请在以上相应方框内打“√”) 作者签名:日期:年月日导师签名:日期:年月日

摘要 随着环境问题和化石能源危机日益加剧,各国都在寻找新的可代替能源来解决能源危机和环境污染。风能和太阳能一样也是取之不尽的一种可再生能源,风力发电成为现在人们利用风能的一种主要形式,小型风力发电构成的家用分布式发电系统在未来更具有利用前景。因此对小型家用风力发电系统的研究有很多实用性和价值。 本文设计的家用风力发电系统选用单片机STC89C52为控制核心设计了系统电路,实现由蓄电池电能逆变为小型家用电器实用的24V50Hz的交流电。对风力发电原理及逆变的必要性做了重点介绍,分析了设计的电路各个模块工作原理,给出了系统的原理图和软件设计流程图。设计的家用发电系统经济成低、实用性强。 关键词:风力发电,单片机,蓄电池,逆变

风力发电系统有哪些设备组成

二、风力发电系统有哪些设备组成 2.1 基本原理和部件组成如下: 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 2.2 风电机结构 机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。

偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风电机偏航。通常,在风改变其方向时,风电机一次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过电话调制解调器来呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 蓄电池:是发电系统中的一个非常重要的部件,多采用汽车用铅酸电瓶,近年来国内有些厂家也开发出了适用于风能太阳能应用的专用铅酸蓄电池。也有选用镉镍碱性蓄电池的,但价格较贵。 控制器和逆变器:风力机控制器的功能是控制和显示风力机对蓄电池的充电,以保证蓄电池不至于过充和过放,以保证蓄电池的正常使用和整个系统的可靠工作。目前风力机控制器一般都附带一个耗能负载,它的作用是在蓄电池瓶已充满,外部负荷很小时来吸纳风力机发出的电能。 逆变器:逆变器是把直流电(12V、24V、36V、48V)变成220V交流电的装置,因为目前市场上很多用电器是220V供电的,因此这一装置在很多应用场合是必须的。 2.3 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上的发电设备相比,有点不同。原因是,发电机需要在波动的机械能条件下运转。 2.3.1 输出电压

发电机性能试验指导书

实验二发电机性能试验 一、实验目的 1.熟悉发电机的构造; 2.通过解剖图,进一步巩固对发电机工作原理的理解,要求能清楚地说出每个零部件的作用; 3.学会使用发电机性能试验台对发电机进行性能检测; 5.能够根据相关的标准对检测结果做出正确的结论。 二、主要设备 1.发电机解剖模型一台; 2.????/ 发电机 3. FYFD-3V型交流发电机性能试验台。 三、实验原理 (一)试验台组成及特点 测控柜:由计算机系统和试验台架组成。 计算机系统:工控计算机系统和数据采集-处理软件、19"液晶显示器、键盘鼠标及活动操作台、打印机。 试验台架:被试验发电机的安装平台、夹紧气缸、测速传感器。拖动电机。试验台架上的机箱内装置:PLC、自动负载箱、变频调速器、控制电器。 FYFD-3V型交流发电机性能试验台,采用自动电子负载,从而提高了做试验的加载速度,可快速得到发电机的最大输出电流。 具有自动调节发电机负载、测试过程自动控制、自动进行合格品判断、数据自动存储、可进行数据打印、关键部件具有异常保护,自动化程度高。 该试验台操作方便。电子负载自动进行负载电压、电流的控制,并能根据试验项目和试验要求,在计算机上输入各项参数,试验时自动得到转速和负载的自动切换,无需反复调整。 (二) 测量原理及试验台结构特点(详见FYFD-3V型交流发电机性能试验台说明书) 发电机出厂试验台在对发电机进行性能测试时,需要测量各试验过程中的电流、电压、转速等参数。所有测量的信号都进计算机处理,采集、储存、显示。 控制过程

发电机的负载和转速通过计算机给定。 操作面板箱上设置了控制开关,控制各项试验的起动、停止。 测试项目:发电机性能试验、调节器性能试验、带真空泵发电机的真空泵性能试验 (1) 发电机性能试验 空载试验:检查发电机发出的额定电压是否小于额定转速。 半载试验:检查发电机在额定半载转速下能否输出额定的半载电流值。 满载试验:检查发电机在额定负载转速下能否发出额定负载电流。 (2) 调节器性能试验 调节电压试验:测量发电机上的调节器在规定转速和负载下的调节电压。 负载特性:检查发电机在规定的负载变化范围内其调节器的电压变化值。 转速特性:检查发电机在规定的转速变化范围内其调节器的电压变化值。 抛负荷试验:检查发电机的调节器能否承受负载突然为零所产生的高压。 (3) 带真空泵发电机的真空泵性能试验 真空到达时间:检查真空泵在额定转速时,到达额定真空值的时间。 最大真空度:检查真空泵在额定转速和时间最大真空度。 真空下降试验:检查真空泵的真空下降情况。 五、实验步骤(详见试验台使用说明书) (1)试验之前检查线路,然后检查起动机是否安装稳当。检查完毕后即可打开总电源开关。 (2)打开空气压缩机,并充气数分钟以至气压指针显示在0.2~0.4之间(若充气饱满时会自动停止工作)。 (3)打开模拟电源并启动模拟电源,将手动/自动电源按扭拨到“自动”,然后打开机箱电源并启动计算机。 (4)做完以上硬件启动后,即可打开试验软件程序。在软件界面选择试验发电机的标准,若原来没有标准,则需自己查询后再输入。然后点“调试”,将各仪表调至精确,然后即可选择需要做的试验。 (5)试验结束后按需求保存或打印试验数据。然后点击退出键,即可安全退出软件程序。退出程序之后安全关闭计算机,然后再关闭气路,停止模拟电源工作,最后关闭各台架的电源即可。 (6)试验结束后把使用的物品放归原位并清洁试验装置。 六、实验注意事项

最新风力发电标准大全

风力发电标准大全 本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。1、风力发电国家标准 GB/T 2900.53-2001电工术语风力发电机组 GB 8116—1987风力发电机组型式与基本参数 GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件 GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981—1992风力设计通用要求 GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709—2002风电场风能资源测量方法 GB/T 18710—2002风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件

GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件 GB/T 21150-2007失速型风力发电机组 GB/T 21407-2008双馈式变速恒频风力发电机组 2、风力发电电力行业标准 DL/T 666-1999风力发电场运行规程 DL 796-2001风力发电场安全规程 DL/T 797—2001风力发电厂检修规程 DL/T 5067—1996风力发电场项目可行性研究报告编制规程 DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准 JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件

风力发电系统及稳定性

风力发电系统及稳定性 2.1风力发电概述 风能是当今社会中最具竞争力,最有发展前景的一种可再生能源,将风能应用于发电(即风力发电)则是目前能源供应中发挥重要作用的一项新技术。研究风力发电技术对我国大型风力发电机组国产化及推动我国风力发电事业的不断发展有着重要意义。 与火力发电相比,风力发电有其自己的特点,具体表现在一下几个方面:1):可再生的洁净资源。风力发电是一种可再生的洁净能源,不消耗资源,不污染环境,这是风力发电所无法比拟的优点。 2):建设周期短。一个万千瓦级的风力发电场建设期不到一年。 3):装机规模灵活。可根据资金情况决定一次装机规模,有一台的资金就可安装投产一台。 4):可靠性高。把现代科技应用于风力发电机组可使风力发电可靠性大大提高。中大型风力发电机可靠性从20世纪80年代的50%提高到98%,高于火力发电,并且机组寿命可达20年。 5)造价低。从国外建成的风力发电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。 6)运行维护简单。现在中大型风力机自动化水平很高,由于采用了微机技术,实现了风机自诊断功能,安全保护更加完善,并且实现了单机独立控制,多级群控和遥控,完全可以无人值守,只需定期进行必要的维护,不存在火力发电中的大修问题。 7)实际占地面积小。据统计,机组与监控,变电等建筑仅占火电场1%的土地,其余场地仍可供农,牧,渔使用。 8)发电方式多样化。风力发电既可并网运行,也可与其他能源,如柴油发电,太阳能发电,水力发电机组成互补系统,还可以独立运行,对于解决边远无电地区的用电问题提供了现实可行性。 2.11 国外风电发展现状 20世纪70年代石油危机发生以来,西方发达国家积极地寻求新的能源,风力发电应运而生。风电在国外发达国家相当普及,尤其是德国,西班牙,美国等国家,风电所占的比重很大。2011年全球新增装机容量超过4000万kw,累计装机容量超过2.37亿kw。据2012年世界风电报告,2011年全球风电累计装机容量排名前十位的国家如图2-1所示,2011年各国风电累计装机容量占比2-2所示。

风力发电系统的基本原理(DOC)

风力发电系统的基本原理 一、风力发电的基本原理 风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。依据目前的风车技术,大约3m/s的微风速度便可以开始 发电。风力发电的原理说起来非 常简单,最简单的风力发电机可 由叶片和发电机两部分构成如 图1-1所示。空气流动的动能作 用在叶轮上,将动能转换成机械 能,从而推动片叶旋转,如果将 叶轮的转轴与发电机的转轴相 连就会带动发电机发出电来。 二、风力发电的特点 (1)可再生的洁净能源 风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。 (2)建设周期短 一个十兆瓦级的风电场建设期不到一年。 (3)装机规模灵活

可根据资金情况决定一次装机规模,有一台资金就可以安装一台投产一台。 (4)可靠性高 把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从80年代的50%提高到了98%,高于火力发电且机组寿命可达20年。 (5)造价低 从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。 (6)运行维护简单 现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,只需定期进行必要的维护,不存在火力发电的大修问题。 (7)实际占地面积小 发电机组与监控、变电等建筑仅占火电厂1%的土地,其余场地仍可供农、牧、渔使用。 (8)发电方式多样化 风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发电机组形成互补系统,还可以独立运行,因此对于解决

离网型风力发电机性能测试系统

离网型风力发电机性能测试系统 嘉兆科技 概述 风能发电是利用风能的一个很好的途径。根据《离网型风力发电机组(第2部分):试验方法(GB/T 》中的要求。在开发和改进风力发电机,更好地利用风能资源的进程中,需要对风力发电机本身及与风力发电机相关的一些参数进行准确测试,作为改进风力发电机性能的必要依据。 这套测试系统采用了虚拟仪器测试技术,可以实现对被测风力发电机实时实地的数据采集监控以及数据分析处理功能。被测数据可以包括大气压力、大气温度、直流电流、直流电压、频率、风速等。 系统特点 1、成熟的硬件设备与系统架构。 系统以RS-485数据总线为无线采集终端的传输骨干,以嵌入式PC机为数据采集终端控制中心,以以太网,WIFI,2G,3G做为与上层系统的通讯方法。保证了系统的稳定性。 2、优越的系统压缩扩展性能,灵活可控的成本。

底层数据终端采用RS485数据采集方式,每个数据采集终端最多可以连接256个节点,RS485连接最长可达到1000m,可根据现场情况灵活压缩或扩展系统,成本控制非常灵活。 3、小巧坚固的无线采集终端。 采集终端体积小,重量轻,可扩展性强,机箱防护等级为IP65。可选择使用内部电池或外部电源供电。 4、灵活的数据查看报警方式。 采集点采集到的数据可先做预处理再传输回远端集控中心。增强整个系统的信号传输能力和稳定性。 用户可通过采集终端、服务器、远程客户端查看现场数据。通过系统扩展,可增加短信报警及邮件报警等功能。 5、灵活可选的上层通讯链路。 由于数据采集底层采用了嵌入式控制系统,在成本变化不大的情况下,可依据实际情况灵活选择上层通讯链路,如:以太网,WIFI,GPRS,3G等。 6、完善的自我诊断功能。 通过软硬件的设计,系统的能够进行自我检测与诊断,实时发现系统内各组件故障,以便及时的维修与维护。 7、强大的软件功能。 上位机软件与下位机软件协同工作,确保最优数据处理及系统稳定。 通过软件可实时查看发电机运行时现场数据,所有的数据都以数据库的形式保存,方便及时查看和分析。 软件主要功能有: a) 通信管理:系统可自动与各采集模块建立通讯连接,整个系统具有自我诊断功能,当通信因外部原因中断后可在最短时间内重新建立连接。 b) 实时检测:可以实时检测发电机现场的发电机参数和环境参数。

qc t 29094-92汽车用交流发电机技术条件.doc

qc t 29094-92汽车用交流发电机技术条件 QC/T29094一92 汽车用交流发电机技术条件代替JB3309一83 1主题内容与适用范围 本标准规定了汽车用交流发电机旳技术要求、试验方法及检验规那么等。 本标准适用于由硅元件整流旳汽车用交流发电机。该发电机为连续定额工作制,并带有抑制干扰电容器。工作时必须与相应旳电压调节器〔电磁振动式或电子式调节器〕配合使用,并与蓄电池并联工作。 2引用标准 ZBT35001汽车电气设备差不多技术条件 ZBT36010汽车用交流发电机电气特性试验方法 GB2828逐批检查计数抽样程序及抽样表 GB2423.17电工电子产品差不多环境试验规程试验ka:盐雾试验方法 3术语、代号 3、1整体式交流发电机——机体上装有电子式电压调节器旳交流发电机。 A、交流发电机〔左图为内搭铁;右图为外搭铁〕 B、整体式交流发电机〔左图为内搭铁;右图为外搭铁〕

C、带双取样电路调节器旳整体式交流发电机 。 3、2试验电压U t 测试输出电流特性时所规定旳电压值〔本标准规定配用电磁振动式电压调节 器交流发电机,试验电压值为14V、28V;配用电子式调节器,为使调节器处于非工 作状态,试验电压定为:13.5V、27V〕。 3、3额定转速nR

交流发电机在环境温度23±5℃和试验电压U t 下,输出额定电流I R 时同意旳最 大转速。〔本标准规定为6000r/min〕。 3、4最大工作转速n max 交流发电机在环境温度23±5℃,试验电压U t ,和输出最大电流下至少正常连 续工作15min旳最大转速〔本标准规定第Ⅰ、Ⅱ、Ⅲ系列交流机为12000r/min,第IV系列为8000r/min〕。 3、5交流发电机冷态输出 交流发电机机体温度处于23±5℃时旳输出电流值。 3、6交流发电机热态输出 交流发电机在环境温度23±5℃下工作,机体温度达到稳定温升时旳输出电流值。 4技术要求 4、1交流发电机应符合本标准旳规定,并按经规定程序批准旳图样及技术文件制造。 4、2交流发电机在以下条件下应具有工作能力: A、周围环境温度一40~85℃; B、月平均相对湿度不大于99%。 4、3交流发电机外形及安装尺寸应符合各具体产品外形图旳规定。在产品外形图中应注明皮带轮紧固螺母及前、后端盖紧固螺杆旳拧紧力矩。本标准推举值见表1。

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

几种典型的风力发电系统对比分析

几种典型的风力发电系统对比分析 摘要:随着环境和能源问题的日益严峻,可再生能源的开发,尤其是风力发电技术已被越来越多的国家所重视,而对应用在风力发电系统中的逆变器和调制方法的研究尤为重要。重点阐述了我国的风能资源情况和我国目前的发展状况,指出了存在的主要问题,分析了产生这些问题的原因,明确了我国风力发电事业发展的主要措施和途径,并进一步阐述了风力发电在未来的发展趋势及风力发电的优势。 引言 能源与环境问题已经成为全球可持续发展面临的主要问题,日益引起国际社会的广泛关注,并寻求积极的对策。风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富。据估计,全球可利用的风能总量在53000TWh/年。风能的大规模开发利用,将会有效减少化石能源的使用、减少温室气体排放、保护环境。大力发展风能已经成为各国政府的重要选择。 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此,风力发电系统分为恒速恒频发电机系统(CSCF系统)和变速恒频发电机系统(VSCF系统)。恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能。恒速恒频系统(CSCF系统)一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼型感应发电机,前者运行于电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行。变速恒频发电机系统(VSCF),是指在风力发电过程中发电机的转速,并以随风速变化而通过其它的控制方式来得到和电网1恒速恒频发电系统 目前,单机容量为600kW~750kW的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易,励磁功率可直接从电网中获得的笼型异步发电机。恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机。定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单。这种风力机的叶片结构复杂,成型工艺难度较大。而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率。由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机。 1.1定桨距失速控制 定桨距风力发电机组的主要特点是桨叶与轮毅固定连接,当风速变化时,桨叶的迎风角度固定不变。利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的。采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机。 1.2变距调节方式 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定。这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩。由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此,比较适合于平均风速较低的地区安装。变桨距调节的另外一个优点是在风速超速时可以逐步变化到无负载的全翼展模式位置,避免停机,增加风机发电量。对变桨距

离网风力发电系统的应用设计实例

离网风力发电系统的应用设计实例 一、任务导入 我国还有很多远离电网的农村、牧区、边防连队、海岛驻军等地方使用柴或汽油发电机组供电,发电成本相当高,而这些地方大部分处在风力资源丰富地区。通过采用风力发电机组供电,节约了燃料和资源,同时还减少了对环境的污染,一举多得,有着十分显著的经济效益和社会效益。 如何选择一台真正适合本地区使用的小型风力发电机进行风力发电呢? 二、相关知识 风力发电机根据应用场合的不同又分为并网型和离网型风力机,离网型风力发电机亦称独立运行风力机是应用在无电网地区的风力机,一般功率较小。独立运行风力机一般需要与蓄电池和其他控制装置共同组成独立运行风力机发电系统。这种独立运行系统可以是几千瓦乃至上几十千瓦解决一个村落的供电系统,也可以是几十到几百瓦的小型风力发电机组以解决一家一户的供电,我们这里主要介绍适合我国边远无电地区的小型风力发电机组的应用。 学习情境离网风力发电系统的设计方法 根据安装地点的风能资源情况,以及用户的用电负荷和用电要求,合理选配小型风力发电机组的类型和配置,以获得最佳效益是离网风力发电系统的设计要求。 (一)风力发电设计应注意的问题 1.风力发电系统应用环境的分类 为了使风力发电系统适应不同的使用环境,降低因为环境原因造成的风力发电机组故障,将风力发电系统的使用环境分成3类。根据不同环境的实际需要选择相适应的产品。 I类地区:沿海地区。抗风能力强,风力发电机在承受60m/s风速时,不至于损坏;耐腐蚀,要求在沿海地区耐腐蚀年限为10年。 Ⅱ类:高寒、高海拔地区。要求可以适应低温环境;适应高海拔低气压环境。 Ⅲ类:沙漠、戈壁地区。要求可以适应高温酷热环境;适应沙尘天气。 I类地区风力发电机的安全风速不小于60m/s;Ⅱ类和Ⅲ类地区机组的安全风速不小于50m/s。风力发电机的启动风速和额定风速应根据年平均风速频率分布图来确定,无年平均风速频率分布图时,应根据平均风速最低月份确定。风力发电机的噪声应不高于70dB。 2.影响风力发电系统设计的因素 由于风力资源随地点而变,因此即使在很相近的两个地点,风力资源特性也不会相同,因此,对于任何风光互补发电项目,必须进行实地短期风力测量、长期风力资源预测、风流模拟计算和发电量估算等。 如果需要安装超过一台风力发电机,每台风力发电机在特定风向下部可能成为其他风力发电机的障碍物,造成尾流效应。风电场总发电量估算须考虑尾流效应的影响。根据当地风力特征选择适当的风力发电机。风力资源中等的地方,使用可变速型号比固定速度型号的风力发电机能够有更好的发电量。考虑到部分地区有台风,因此应选择市场上最牢固的风力发电机。国际电工协会标准分级中,1级风力发电机可以抵受最高的极端负荷。此外,湍流强度也影响风力发电机的选择。 只有结合安装地点的实际环境条件选择使用风力发电机,才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。应该指出的是,在风力资源丰富地区,最好选择额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力发电机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试

相关主题
文本预览
相关文档 最新文档