当前位置:文档之家› 第七章 叶的形态与结构

第七章 叶的形态与结构

第七章 叶的形态与结构
第七章 叶的形态与结构

第七章叶的形态与结构

第一节叶的发生组成和叶序

叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。本章主要讲述叶的形态、结构特征及其与功能间的相互关系。

第一节叶的发生、组成与叶序

一、叶的发生与生长

(一)叶的发生与生长

1.叶的发生

叶由叶原基生长分化而来。当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。这些突起是叶分化发育的起点,因而被称为叶原基。叶原基是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为外起源(图7-1)。

2.叶的生长

由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。

叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴是尚未分化的叶柄和叶片。具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶柄才随之迅速伸长(图7-2)。

当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。

在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组织和原形成层。在一种植物中叶肉的层数基本是恒定的,是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶片厚度。

一般说来,叶的生长期是有限的,这和具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保留着居间分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱、韭菜等剪去上部叶片,叶仍可继续生长(即割一茬又长一茬),就是由于叶基部居间分生组织活动的结果。

3.叶的发育、生长与调控

叶是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。

(二)叶在植物系统进化与个体发育中的地位和意义

二、叶的生理功能和利用

(一)叶的生理功能

(二)叶的利用

(三)叶序

三、叶的形态多样性

(一)叶的形态与组成

1. 完全叶与不完全叶

完全叶是具有叶片、叶柄和托叶三部分的叶,如杨树、棉花等。不完全叶是叶片、叶柄和托叶三者中缺少其任一部分或两部分的叶,如丁香叶无托叶,莴苣茎叶无叶柄及托叶等(图7-3)。

2.叶的形态

叶形态多样,大小差别很大,小的仅数毫米,大的可达数米。可从质地、类型(单叶与复叶)、叶序、叶的整体形状及大小、叶尖、叶基、叶缘、叶脉等方面对叶进行描述,描述叶片的术语也可用于托叶等片状结构的描述(详细参见第三篇第十四章)。

3.叶的组成

1)双子叶植物的叶

一般双子叶植物的叶由叶片、叶柄及托叶组成,有的叶或无托叶,或叶柄不明显。

叶片叶片大多呈典型的扁平体,不同的植物其叶片形状差异很大。叶片是进行光合作用和蒸腾作用的主要场所,是叶最重要的组成部分。叶片内分布叶脉,叶脉有运输水分、养分及支持叶片伸展的功能。

叶柄叶柄位于叶片基部,上端与叶片相连,下端与茎相连,是连接叶片和茎的部分。叶柄有支持作用,可通过自身长短的变化和扭曲,支持叶片处于最有利于光合作用的位置;叶柄还有输导作用,通过叶柄中的维管束将叶片及茎中的维管系统连接起来,成为茎与叶片之间物质运输的通道。

托叶(stipules)托叶是叶柄基部的附属物,多成对出现,通常比较细小。很多双子叶植物具有托叶,托叶形状多样,单子叶植物一般没有托叶。托叶在发育过程中有保护幼叶叶片作用,成长后或脱落或保留。

2)禾本科植物的叶

水稻、小麦等禾本科植物叶的组成与上述双子叶植物不同,由叶片、叶鞘、叶环、叶舌、叶耳组成。叶片条形,具平行脉。叶基部呈鞘状,叶鞘一侧开裂,包围着茎杆,有保护茎的居间生长、加强茎的支持作用及保护叶腋内幼芽的功能。叶鞘与叶片连接处的外侧称为叶枕(又称叶颈、叶环),它是一个与叶片颜色不同的环,具有弹性及伸延性,可以调节叶片的位置。在叶鞘与叶片连接处的内侧,有些禾本科植物有一向上突起的膜状结构,称为叶舌;叶舌能使叶片向外弯曲,使叶片接受更多的阳光,同时可以防止水分、病原菌及害虫进入叶鞘内。有些植物,在叶舌的两旁,有一对从叶片基部边缘伸出来的突出物,称为叶耳。叶舌、叶耳的有无、形态、大小及色泽常为禾本科植物分类的依据。如小麦叶耳明显,稗草则不具叶耳(图7-4)。

(二)单叶与复叶

单叶是只有一个叶柄且其上只生一个叶片的叶,绝大多数植物的叶是单叶。

复叶是在一个叶柄上生有两片以上的叶片的叶。复叶的叶柄称为总叶柄,总叶柄上着生的叶片称为小叶(leaflet),着生小叶的轴状部分(叶柄的延伸结构)称为叶轴。

复叶与生有单叶的小枝、叶轴与纤细的茎有时不易区分,可根据以下几个方面进行判断:复叶的小叶叶腋处不具腋芽,仅总叶柄叶腋处具腋芽,且叶轴先端不具顶芽;茎生单叶叶腋处具芽,且茎端有顶芽;复叶中的各小叶多排列在同一平面;茎生单叶常排列成螺旋状;复叶脱落时,总叶柄或与小叶一同、或在小叶之后,也会脱落;茎在其叶脱落后,一般枝干不脱落。

根据小叶在总叶柄上的排列情况,可将复叶分为羽状复叶、掌状复叶、三出复叶和单身复叶等类型,详见第十四章第一节。

第二节叶的解剖结构

一、双子叶植物叶的解剖结构

(一)叶片的解剖结构

横切双子叶植物的叶片,其结构由表及里可分为表皮、叶肉、叶脉三部分。

1.表皮

表皮是由初生分生组织的原表皮发育而来、位于叶片的上、下表层的初生保护组织。构成表皮的细胞有表皮细胞、气孔器和表皮附属物等组成(图7-5,图7-6)。

表皮细胞是生活细胞,通过显微镜观察叶片表面,可见表皮细胞形状不规则,彼此间紧密嵌合,一般不含叶绿体,有的植物表皮细胞内含有花青素,使叶片呈现红、紫、蓝等颜色。观察叶片切片,可见表皮细胞厚度相仿,基本呈长方形,外切向壁较厚,常覆有一层角质层。角质层有较强折光性,可减少强光对植物的伤害,还有减少水分过度蒸腾和防止病菌侵入的作用。角质层并非完全不通透,喷洒在叶面上的药液,一部分通过气孔,一部分则通过角质层进入叶片。

表皮一般为一层细胞,但少数植物的表皮可为多层细胞,称为复表皮,如印度橡皮树、夹竹桃等植物的叶,其复表皮由3~4层细胞组成。

在大多数双子叶植物叶表皮上,都有气孔器的分布。气孔器通常由2个保卫细胞及其细胞间的气孔组成。保卫细胞形态与表皮细胞差异很大,表面观为肾形;细胞壁薄厚不均,与气孔相邻处的细胞壁较厚,其它部分较薄、有弹性;所含叶绿体及细胞质均较表皮细胞丰富;有些植物在保卫细胞旁还有两至多个其形态大小与表皮细胞、保卫细胞均不同的、排列整齐的副卫细胞,形成特定的气孔器结构,成为物种分类的显微特征之一。气孔可开闭,其开闭与调节水分蒸腾有关。当保卫细胞含水分较多时,细胞鼓胀外凸,气孔张开;当失水较多时,

细胞横向瘪缩,气孔关闭。多数植物的气孔白天开放,干热的中午及夜晚关闭。

表皮上还有一些形态不同的表皮附属物,由表皮细胞向外突出分裂形成。表皮附属物形状多样,多呈单列毛状,还有分枝状、星形或鳞片状,其形态是鉴定植物的特征之一;表皮附属物组成不同,有些是单细胞的,有些是多细胞的;表皮附属物功能不一,有些为分泌结构,有些起保护作用。表皮附属物可反射强光,分泌粘性物质,限制叶表面的空气流动,使干热风不致直入气孔,减缓蒸腾作用,使表皮的保护作用得以加强。

2.叶肉

叶肉由含大量叶绿体的薄壁细胞组成,是叶进行光合作用的主要部位。根据细胞形态的不同,叶肉可分为栅栏组织、海绵组织(图7-6)。

1)栅栏组织

栅栏组织是紧贴上表皮的一至数层长圆柱状薄壁细胞,长轴垂直于表皮,排列紧密如栅栏状,细胞内富含叶绿体,光合作用强。

细胞内叶绿体可随光照条件而移动,使自身既免遭强光破坏又可充分接受光能。光强时,叶绿体贴近细胞侧壁,减少受光面积,以免过度发热;光弱时,叶绿体分散在细胞质内,以充分利用散射光。虽然在光学显微镜下观察,栅栏组织细胞排列紧密,但实际上它的胞间隙仍然很大。

2)海绵组织

海绵组织细胞形状不规则,含叶绿体较少,排列疏松,胞间隙大,光合作用弱,但气体交换和蒸腾作用较强。

有些植物上表皮内侧为栅栏组织,下表皮内侧为海绵组织,这种上、下表皮内侧的叶肉组织形态不同的叶称为异面叶(背腹型叶、两面叶)。海绵组织所含叶绿体较栅栏组织少,所以异面叶的背面一般绿色较淡。上、下表皮内侧的叶肉组织形态相同,或叶肉细胞没有栅栏组织和海绵组织分化的叶称为等面叶(isobilateral leaf),如禾本科植物的叶等。

3.叶脉

叶脉是叶片中贯穿于叶肉组织间的脉纹结构。叶脉分布如茎枝系统,有粗细和主侧脉之分。位于叶片中央最粗大的叶脉称为主脉(中脉);主脉的分支为侧脉,侧脉的分枝称为细脉或小脉,细脉仍可再分枝;细脉的末端称为脉梢。叶脉的分布方式叫做脉序。

1)叶脉的组成

一般叶脉含有厚角组织、薄壁组织及一至数个维管束。薄壁组织包围在维管束外形成维管束鞘(bundle sheath)。较大叶脉的维管束由木质部、韧皮部和束中形成层组成,属无限维管束;束中形成层活动能力弱,活动时间短,只形成极少量的次生维管组织。叶脉中维管束可视作茎中维管束的延伸,茎中维管束的类型,影响叶中初生木质部、初生韧皮部的相对位置。在叶片中,多数植物木质部近上表皮、韧皮部近下表皮,也有些植物上、下表皮内侧均有韧皮部,木质部居于中间。

主脉及侧脉中组成分子较多,尤其是厚角组织、薄壁组织,因而叶脉常会在叶面形成隆起(图7-6)。细脉中结构趋于简单,一般没有束中形成层和机械组织,维管束鞘细胞也较少,木质部和韧皮部的组成分子逐渐减少。到了脉梢,仍有一圈薄壁细胞围成的维管束鞘;维管束中仅余一列狭短的筛管分子和1~2个螺纹管胞,有时甚至没有筛管,只有管胞存在。

与小脉进行物质交换的维管束鞘薄壁细胞,常具传递细胞(transfer cell)或传输细胞特征,传递细胞的细胞壁多网状内突,由此相应增大了质膜面积,这种特有的结构,对该细胞与周围细胞间进行快速的物质运输非常有利。在脉梢,伴胞常特化为传递细胞。维管束鞘的存在的,使任何物质进入或离开维管组织都必须穿过维管束鞘,水分不会由维管组织直接释放到细胞间隙内,这对于水分的缓慢释放有重要意义;维管束鞘所起的作用非常类似于根的内皮层,控制着物质进出维管组织。

在叶脉系统中,主脉及侧脉主要是起轴向长距离输导作用,细脉则是起释放水分、装载光合产物的横向输导作用。此外,叶脉也因其自身的结构而具有支持叶片的功能。

2)叶脉的类型

不同的植物,其叶片内叶脉分布的方式不同。双子叶植物多具网状脉;单子叶植物多具平行脉、弧形脉、射出脉,偶有网状脉时,也与双子叶植物具游离脉梢的网状脉不同,其细脉多相互交汇、无脉梢游离,如天南星科、薯蓣科的一些植物;裸子植物多具单一主脉;蕨类多具叉状脉,叉状脉也偶见于种子植物(详见第三篇第十四章)。

(二)叶柄的解剖结构

叶柄一般细长,横切面为半月形,其结构与茎大致相同,也是由表皮、基本组织(类似于茎的皮层)和维管(组织)束三部分组成的。表皮为一层细胞,表皮下方、基本组织外围有较多的厚角组织,厚角组织的机械作用和一定的弹性,使得在对叶片支持的同时,又不影响叶柄的伸延、扭曲和摆动,使叶成镶嵌状分布。维管(组织)束多呈半圆形排列在皮层基本组织中(图7-7)。

二、单子叶植物叶的解剖结构

(一)禾本科植物叶的解剖结构

1.叶片

禾本科植物的叶片结构也分为表皮、叶肉、叶脉三部分。

1)表皮

上表皮由表皮细胞(长细胞)、短细胞(硅细胞和栓细胞)、泡状细胞和气孔器组成;下表皮组成稍有不同,没有泡状细胞(图7-8,图7-9)。

通过显微镜观察叶片上表皮,可见细胞排列规律,沿叶长轴方向成整齐纵列。表皮细胞近长方形,长轴与叶的长轴平行;端壁较平;侧壁具细密锯齿,相邻两列细胞侧壁嵌合紧密;外壁角化且含硅质,可形成乳突。

短细胞包括硅细胞和栓细胞,二者常成对分布;硅细胞内充满硅质,外切向壁外突成齿状或刚毛状。表皮细胞硅化及硅细胞的存在,增强了叶片的硬度和抗病虫害的能力。

气孔器由一对哑铃形的保卫细胞和一对菱形或半球形的副卫细胞组成。保卫细胞壁厚薄不均匀,与气孔相邻的细胞壁较厚,其它部分较薄、有弹性。保卫细胞吸水后,哑铃形的头部膨大明显,相互撑开,使气孔开放;保卫细胞失水后,细胞萎蔫,气孔关闭。上、下表皮的气孔器数目相差不大,这与叶片近直立、背腹面受光基本相等有关。

表皮上常生有表皮毛,有些表皮毛基部较大、先端尖锐,且有木质化的厚壁,称为刺毛。

横切叶片可见长、短细胞均近长方形;位于上表皮的泡状细胞(运动细胞)呈扇形排列,是仅外壁厚的薄壁细胞,其径向壁远大于表皮细胞。叶片失水时,泡状细胞较其它细胞萎蔫明显,因仅上表皮具泡状细胞,上表皮比下表皮收缩程度大,所以叶片内卷,这样可有效减少蒸腾;待植物吸水后,叶片又平展如初。

2)叶肉

禾本科植物的叶为等面叶,叶肉没有栅栏组织和海绵组织的分化。叶肉细胞形状随植物种类不同而不同,在有些植物中细胞壁具发达的内褶,如小麦、水稻等的叶肉细胞形成“峰、谷、腰、环”的结构。其峰垂直于表皮,各环沿叶片长轴排列。细胞壁的内褶增大了质膜表面积,有利于光合作用(图7-9B)。

3)叶脉

禾本科植物的叶具直出平行脉。叶脉维管束由初生韧皮部、初生木质部和维管束鞘组成,无束中形成层,为有限外韧维管束。较大的叶脉,其维管束上、下方常有厚壁组织与表皮相连。在有些植物,如小麦,叶尖端维管束鞘延伸成芒状。

大部分禾本科植物,最初的光合产物是三碳化合物(3—磷酸甘油酸),这类植物被称为

C3植物,如水稻、小麦等植物。C3植物维管束鞘由二层细胞组成,内层为厚壁细胞,细胞较小,几乎不含叶绿体;外层维管束鞘为薄壁细胞,较大,所含叶绿体明显少于周围叶肉细胞(图7-9)。

有些禾本科植物,最初的光合产物是四碳化合物(如草酰乙酸、苹果酸和天冬氨酸等),这些植物被称为C4植物,如玉米、甘蔗等植物。C4植物利用CO2的能力强于C3植物,且光合效率高,在高温、干旱等不利条件下尤为明显,因此,C4又被称作为高光效植物。C4植物维管束鞘由一层薄壁细胞组成,细胞较大,所含叶绿体比周围叶肉细胞内的叶绿体大、且分布密集于叶肉一侧。常呈明显的“花环”状结构,而不同于C3植物(图7-10)。

2.叶鞘

叶鞘由表皮、基本组织、维管束组成,维管束较多且彼此平行,维管束结构与茎中维管束结构相似(图7-11)。

3.稃片与芒

(二)非禾本科植物叶片的解剖结构

非禾本科植物的叶在形态和组成上具有多样性。其叶形态各异,主要为条形、披针形等。其组成也不一致,多数非禾本科植物的叶是不完全叶,由叶片和叶鞘两部分组成,如泽泻科、莎草科、百合科、鸭趾草科、兰科等植物;少数植物的叶是完全叶,具有叶片、叶柄和托叶三部分,如菝葜属植物等。

非禾本科植物的叶,尤其是叶片的解剖结构也由表皮、叶肉和叶脉三部分所组成,其解剖结构特征与禾本科植物叶片的解剖结构基本相似。所不同的是:少数非禾本科植物叶片的表皮细胞外壁角质化,具明显的角质层,表皮上的气孔器由2个肾形保卫细胞所组成,如洋葱、火柴头等的叶(图7-13);有的植物的叶肉具有栅栏组织和海绵组织的分化,如薯蓣和菝葜、葱等(图7-14),有的植物的叶肉则没有栅栏组织和海绵组织的分化,如水仙、石蒜等;有的植物的叶脉为网状脉等,如玉簪和菝葜等。

三、裸子植物叶片的解剖结构

四、离层与落叶

(一)落叶及其生物学意义

(二)落叶的原因

1.离层与保护层

一年生草本双子叶植物的叶,随植物体死亡,多数并不脱落。多年生植物中常见落叶现象。落叶是植物对环境适应的一种正常生理现象。有些植物落叶时在叶柄基部产生了离层,但有些植物则无离层出现,如大多数单子叶植物,叶的脱落似乎只是由于机械折断。

可产生离层的植物,在叶将落时,叶柄基部或近基部的部分薄壁组织细胞开始分裂,产生数层小细胞,这就是离区(abscission zone)。离区包括位于远茎端的离层(abscission layer)和近茎端的保护层(protective layer)两个部分。离区细胞层数多,但离层细胞仅有1~3层。离区产生不久,离层细胞开始粘液化、细胞彼此近乎呈游离状态,在其自身重量及外力的作用下,叶从离层处脱落(图7-16)。

离层下方的保护层,由数层栓质化等的细胞所组成,与加速叶的脱落、承担叶脱落后的初期保护有关。保护层的存在,使叶柄脱落后在茎上留下非常整齐、光滑的痕迹―叶痕。在木本植物中,保护层最终被保护层下发育的周皮所代替,并与茎的其他部分的周皮相连续。保护层的这些特点,能避免水分的散失和昆虫、真菌、细菌等对植物的伤害。

2.环境与叶的凋落

总结与复习

叶的主要功能是光合作用和蒸腾作用。叶是绿色高等植物合成有机物的重要器官。

叶由叶原基发育而来,发育过程包括顶端生长、边缘生长和居间生长三种方式。

一般被子植物的叶是扁平的薄片,它们以叶柄或叶鞘着生于茎的节上。双子叶植物的完全叶包括叶片、叶柄和托叶三部分,缺一则称为不完全叶。禾本科植物的叶主要包括叶片和叶鞘两部分,有的在叶片、叶鞘相接处还有叶舌、叶耳和叶环,或者只具其中一种。

典型的成熟叶片,其结构由表皮、叶肉和叶脉三部分组成。叶表皮外方常被角质层覆盖,由表皮细胞、气孔器、表皮附属物组成,表皮细胞中一般不含叶绿体。叶肉是叶片进行光合作用的主要场所,在多数双子叶植物叶片中,叶肉分化为栅栏组织和海绵组织两部分,主脉中具有微弱的形成层。

双子叶植物与单子叶植物,在叶的组成、叶脉类型、叶片结构上,都有很大差异。

双子叶植物的叶片,横切面可分为表皮、叶肉和叶脉三个基本部分。表皮由原表皮发育而来,是覆盖在叶片表面的初生保护组织。一般包括表皮细胞、气孔器、表皮毛、异细胞等。两个肾形的保卫细胞之间的裂生胞间隙称为气孔,与叶光合作用时气体交换及进行蒸腾作用有关。有些植物如甘薯等还具有副卫细胞。排水器分布于植物的叶尖和叶缘。叶肉由基本组织发育而来,是叶片进行光合作用的主要部分。背腹型叶的叶肉可分化出栅栏组织(腹面)和海绵组织(背面)。等面叶的叶肉,则没有分化为栅栏组织和海绵组织,或上下两面都同为栅栏组织。叶脉主要由原形成层发育而来。叶脉愈细,其结构愈简单。

禾本科植物叶片也是由表皮、叶肉和叶脉三部分组成。表皮由表皮细胞、泡状细胞和气孔器等有规律地排列而成。表皮细胞有一种长细胞和两种短细胞。泡状细胞分布在两条平行的叶脉之间的上表皮内,在横剖面上形成展开的折扇状。可调节叶片失水。气孔器由两个哑铃形的保卫细胞及其外侧的两个近似菱形的副卫细胞组成。叶肉没有栅栏组织和海锦组织的分化。禾本科植物叶脉为平行叶脉,叶脉内的维管束是有限外韧维管束,各束外围为由1—2层薄壁或厚壁细胞组成的维管束鞘。

落叶的原因与叶柄基部的几层细胞发生程序性死亡、形成离区有关。离区可分化产生保护层和离层结构,叶脱落是离层基本组织细胞程序性死亡和外力作用的结果。

被子植物叶的形态结构和功能

第六章被子植物叶的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物叶的发生、生长和基本结构及其相关概念。掌握叶的形态、结构、生理功能及其与生态环境间的相互关系及其在生产中的意义。 本章学习的难点和重点: 叶营养器的解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)单、双子叶植物叶的结构特点对比; (2)不同生态条件下叶结构特点分别对比,找出某些结构之间的共同点和不同点。 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 第一节、叶的形态与功能 一、叶的主要生理功能 1、进行光合作用、制造有机物 2、进行蒸腾作用和呼吸作用 3、繁殖与贮藏等 二、叶的基本形态 (一)双子叶植物叶的形态 叶:由叶片、叶柄和托叶三部分组成。—完全叶单叶 不完全叶复叶 叶片由叶尖、叶缘、叶基等部分组成。 (二)禾本科植物叶的形态 叶鞘、叶片、叶环、叶耳、叶舌 第二节、叶的解剖结构 一、双子叶植物叶片的结构 结构分为表皮、叶肉和叶脉三个基本部分。 1、表皮:由表皮细胞、气孔器和表皮毛组成,分为上表皮和下表皮,为良好的保护组织。 (1)表皮细胞:横切面为长方形,表面观为不规则的波浪状,排列紧密。细胞外壁角质层发达(上表皮的角质层比下表皮发达),或有蜡被,上有表皮毛。 (2)气孔器:由两个肾形的保卫细胞及其之间的气孔组成,一般在下表皮数目较多。 保卫细胞:内含叶绿素、淀粉粒等,细胞壁在近气孔处较厚。 气孔器—气孔:张开或关闭,控制蒸腾作用和气体的交换。 副卫细胞:或无。 (3 2、叶肉:叶肉主要由栅栏组织和海绵组织(或同化组织)组成,并常有分泌腔、含晶

花的形态与结构

第九章花的形态与结构第一节花的组成与发生 快速导航:花的组成与发生 | 花芽分化与调控 | 植物的繁殖( reproduction)是植物在漫长的演化历程中形成的特性,是植物体生长发育到一的、有利于再生新个体的特定结构,繁殖是重要的生命现象之一。植物通过繁殖不断增加新的个传性和稳定性,随着不断的自然选择和人工选择,形成了种类繁多、性状各异的植物世界,使物化。植物的繁殖方式多种多样,一般分为营养繁殖(vegetative reproduction/ propagation)、reproduction)和有性繁殖(sexual reproduction) 三类。 营养繁殖是植物在植株的一定部位形成新的营养性个体的繁殖方法,如可块根、块茎和珠芽的植物的克隆(株)系(clone)等。营养繁殖有利于物种保持其遗传的稳定性。农林生产中,常扦插(cutting)、压条(layering)和嫁接(grafting)等方法进行快速繁殖,保存优良种质。 无性繁殖是植物在其生活史中的某一阶段、在植株的一定部位产生具有繁殖能力的特化细胞化的细胞或孢子(离开植物体后)直接发育成新个体的原始体或能够独立生活的新个体的繁殖方融合生殖(apomixis)或无配子生殖(agamospermy),后者如菌类植物、蕨类植物的孢子繁殖等有性生殖是植物体在其生活史的一定阶段、在其特定部位产生具有性别分化的细胞(或称配胞等),通过两性细胞或配子的结合(或受精)形成合子,再由合子萌发成新的植物体的繁殖方具有丰富的遗传变异性,是植物进化和物种多样性的基础。被子植物的有性生殖是植物界中最进被子植物在经历一定时期的营养生长后,并进入生殖生长,在植株的一定部位形成花芽,然发育形成果实和种子。花、果实和种子与植物的有性生殖有关,被称为生殖器官(reproductive 重点介绍被子植物的花、果实和种子的发育与结构。 第一节花的组成与发生 一、花的形态与特征 (一)花的形态与组成 被子植物又称为有花植物(flowering plant)或显花植物(anthophyta),有时将裸子植物的被子植物约有30万种,其花的变化巨大,它们的形态,大小,颜色和组成数目因种而异、各不可将被子植物的花分为完全花(complete flower)和不完全花(incomplete flower)两类。完全萼、花冠、雄蕊(群)和雌蕊(群)等几个部分组成,例如桃花、蚕豆花等(图9-1);不完全花 一部分或几个部分的花,如南瓜、玉米等植物的单性花。 花是适应于生殖、极度缩短且不分枝的变态枝(Goethe ,17 的一部分,花托通常是花柄顶端呈不同方式膨大的部分,是花器官 雄蕊群和雌蕊群)着生的地方。花萼常为绿色,像很小的叶片。 形态,但其形态和结构均类似于叶,有的甚至就呈绿色(如绿牡丹 变态叶,虽然雄蕊与叶的差异较大,但在较早的被子植物(如睡莲 间存在过渡形态,此外,有的植物(如梅、桃等)经过培育,雄蕊 由叶变态而成的心皮卷合而成的,如蚕豆、梧桐等。因此,通常 态叶,雄蕊、雌蕊为可育的变态叶。 1.花柄(pedicel)和花托(receptacle) 花柄也称花梗,呈圆柱形,是连接花和茎的柄状结构,其基 养物质由茎向花输送的通道,又能支持着花,使其向各方展布。类而不同,如梨,垂丝海棠(Malus Halliana Koehne)的花柄很长,有的则很短或无花柄,如贴speciosa (Sweet) Nakai]。果实形成时,花柄发育成果柄。 花托位于花柄的顶端,是花器官其他各组成部分着生的部位。花托的形态常因植物种类而异呈圆柱状,如木兰科植物等;有的呈圆锥状,如草莓等的花;有的凹陷呈杯状,如桃等;有的花冠、雄蕊、雌蕊的一部分贴在一起,形成下位子房,如苹果等;有的呈倒圆锥形,如莲的花;有冠之间,扩大形成扁平状或垫状的盘状体,称为花盘(desk),如柑橘(Citrus reticulata Blan

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织和海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织和海绵组织。叶脉是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织和海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织和海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织和海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态和结构的观察 名科叶形叶序叶脉叶尖叶缘 银杏叶扇形簇生二叉平行 叶脉 叶基(楔形) 不规则 三节 状,中 间凹入 鹅掌楸叶马褂形互生网状脉截形(叶尖) 掌状半 裂 玉簪叶椭圆形簇生弧形平行 脉 急尖(叶尖)全缘 金钱松叶披针形簇生 急形异短尖 (叶尖) 铁树(复叶)羽片条 形 对生叶 序 侧出平行 脉 急尖(叶尖) 羽状全 裂 红花木倒形羽互生网状脉急形异短尖 (叶尖) 细锯状 苦楮披针形互生网状脉尾尖锯状 野生豌豆羽状复 叶 叶须卷 羽状全 裂

叶的形态结构.doc

《叶的形态结构》教学详案 见习学生冯倩撰写时间 __________ 拟执教班级 _________ 指导教师孔梅

6分钟2分钟6分钟3分钟5分钟叶片 的形 态 叶脉 单叶 和复 叶 叶序 叶的 变态 它分为完全叶和不完全叶 (1)完全叶的概念和展示图片 (2)不完全叶的概念和展示图片 2.叶片的形态 叶片形态可是多种多样、大小不同、形态各 异。那么常见的形态在书上26页列举出了这9 种,好!现在我随机的请9位同学上黑板来画出 你们所理解的叶片形状,对号入座一个同学画一 种,如果画不出来没有关系哈,卜面同学知道的 话可以主动上来画出,踊跃者,课代表加分。 好,同学们画好了我们先不评价对不对,我 们先分别一一介绍后再来一起评价 ppt分别展示讲解各种形状叶子,在和全班同 学一起评价 3.叶脉 叶脉的存在部位,ppt协助展示讲解三种类型 4.单叶和复叶 请同学们翻回书25页,书上给我们展示了一些 复叶和单叶的图片,请同学们仔细观察一下,单 叶和复叶有什么不同啊?思考2分钟,我请同学 回答,主动回答加分 同学们似乎都看出来了,但是又好像说的不 太清楚,那我们一起总结下 Ppt展示讲解单叶、复叶概念 复叶的三种分类及代表图片 5.叶序 叶序是指叶在茎或枝条上的排列方式,它分 为互牛、对牛、轮牛、簇牛、基牛 Ppt展示 6.叶的变态 上节课听孔老师为大豕上了植物根、茎两咅E 分内容的时候,发现同学们最感兴趣的就是它们 的变态部分,兴奋的不得了。那么,叶同样也有 变态,我们共同来了解下吧 了解之前还请同学们回忆一下植物营养器官 的变态的是什么? 上黑板绘画 评价 思考并积极回 答 动手加深 印象同时活 跃气氛 鼓励学生 思考回答

第七章植物的形态与功能题库

第七章植物的形态与功能 本章主要考点 1、高等植物组织的类型,在植物体内的分布及其作用 2、植物根、茎结构的形成及组成 3、双子叶植物根、茎的初生结构与次生结构的差异 4、单子叶植物在根、茎结构上的差异 5、叶片结构及对生理功能的适应 6、植物的生活周期,重点掌握被子植物的生活史,认识各阶段的核相变化 7、被子植物的生殖过程,重点掌握雌、雄配子体的发育过程及其结构 8、果实和种子的形成过程,了解雌蕊、子房、胚珠、胚囊、胚、种子之间的关系 9、植物对养分的吸收和运输 10、导管与筛管在形态、构造、功能、分布等方面的异同气孔器的结构,气孔开关的机制以 及对CO2吸收和水分散失的调节 11、根吸收水分和无机盐的途径及方式 12、根压、蒸腾作用在水的运输中的作用,内聚力学说的主要内容 13、植物生长所需要的必需元素 14、植物激素的种类、在植物体内的分布及其主要作用 15、生长素的作用机制 16、光周期对植物开花的影响,长日植物,短日植物 17、光合作用:(1)光反应与碳反应的联系与区别;(2)光合色素与光系统的种类与作用; (3)电子传递与光合磷酸化过程;(4)卡尔文循环的3个阶段;(5)C3途径与C4途径;(6)光呼吸;(7)影响光合作用的因素。 名词术语 1.直根系和须根系 2.凯氏带 3.髓射线 4.维管射线 5.维管系统 6.年轮 7.早材 8.晚材 9.边材 10.心材 11.完全花 12.不完全花

13.心皮 14.传粉 15.双受精 16.子房上位 17.子房下位 18.真果 19.假果 20.聚花果 21.聚合果 22.世代交替 23.生活史 24.蒸腾作用 25.根压 26.必需元素 27.向光性 28.光敏色素 29.光周期 30.长日植物 31.短日植物 32.光反应 33.光合膜 34.天线色素 35.荧光 36.光系统 37.光合磷酸化 38.光合电子传递链 39. C3途径和C3植物 40. C4途径和C4植物 41. 景天酸代谢途径 42.光呼吸

花的形态与结构

花的形态与结构 第九章花的形态与结构第一节花的组成与发生快速导航:花的组成与发生 | 花 芽分化与调控 | 植物的繁殖( reproduction)是植物在漫长的演化历程中形成的特性,是植物体生长 发育到一的、有利于再生新个体的特定结构,繁殖是重要的生命现象之一。植物通过繁殖 不断增加新的个传性和稳定性,随着不断的自然选择和人工选择,形成了种类繁多、性状 各异的植物世界,使物化。植物的繁殖方式多种多样,一般分为营养繁殖(vegetative reproduction/ propagation)、reproduction)和有性繁殖(sexual reproduction) 三类。 营养繁殖是植物在植株的一定部位形成新的营养性个体的繁殖方法,如可块根、块茎 和珠芽的植物的克隆(株)系(clone)等。营养繁殖有利于物种保持其遗传的稳定性。 农林生产中,常扦插(cutting)、压条(layering)和嫁接(grafting)等方法进行快速繁殖,保存优良种质。无性繁殖是植物在其生活史中的某一阶段、在植株的一定部位产生具有 繁殖能力的特化细胞化的细胞或孢子(离开植物体后)直接发育成新个体的原始体或能够 独立生活的新个体的繁殖方融合生殖(apomixis)或无配子生殖(agamospermy),后者 如菌类植物、蕨类植物的孢子繁殖等有性生殖是植物体在其生活史的一定阶段、在其特 定部位产生具有性别分化的细胞(或称配胞等),通过两性细胞或配子的结合(或受精) 形成合子,再由合子萌发成新的植物体的繁殖方具有丰富的遗传变异性,是植物进化和物 种多样性的基础。被子植物的有性生殖是植物界中最进被子植物在经历一定时期的营养 生长后,并进入生殖生长,在植株的一定部位形成花芽,然发育形成果实和种子。花、果 实和种子与植物的有性生殖有关,被称为生殖器官(reproductive 重点介绍被子植物的花、果实和种子的发育与结构。 第一节花的组成与发生 一、花的形态与特征 (一)花的形态与组成 被子植物又称为有花植物(flowering plant)或显花植物(anthophyta),有时将 裸子植物的被子植物约有30万种,其花的变化巨大,它们的形态,大小,颜色和组成数 目因种而异、各不可将被子植物的花分为完全花(complete flower)和不完全花(incomplete flower)两类。完全萼、花冠、雄蕊(群)和雌蕊(群)等几个部分组成,例如桃花、蚕豆花等(图9-1);不完全花 一部分或几个部分的花,如南瓜、玉米等植物的单性花。 花是适应于生殖、极度缩短且不分枝的变态枝(Goethe ,17 的一部分,花托通常是花柄顶端呈不同方式膨大的部分,是花器官

第七章 叶的形态与结构

第七章叶的形态与结构第一节叶的发生组成和叶序 叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。本章主要讲 的形态、结构特征及其与功能间的相互关系。 第一节叶的发生、组成与叶序 一、叶的发生与生长 (一)叶的发生与生长 1.叶的发生 叶由叶原基(leaf primordium)生长分化而来。当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织 外层细胞不断分裂,形成侧生的突起。这些突起是叶分化发育的起 点,因而被称为叶原基。叶原基是一团原分生组织细胞,将朝着长、 宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结 构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为 源(exogenous origin)(图7-1)。 .叶的生长 由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。 叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴是尚未分化的叶柄和叶 具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包 上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎 生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶 长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴为叶柄,当幼叶叶片展开时叶柄才随之迅速伸长(图7-2)。 当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。 在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组成层。在一种植物中叶肉的层数基本是恒定的,是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶 一般说来,叶的生长期是有限的,这和具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱(Allium fistulosum L.)、韭菜(Allium tuberosum Rottl.ex Spren 去上部叶片,叶仍可继续生长(即割一茬又长一茬),就是由于叶基部居间分生组织活动的结果。 .叶的发育、生长与调控 叶是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。 (二)叶在植物系统进化与个体发育中的地位和意义 二、叶的生理功能和利用 (一)叶的生理功能 (二)叶的利用 (三)叶序

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织与海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织与海绵组织。叶脉就是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织与海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织与海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织与海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态与结构的观察 名科 叶形 叶序 叶脉 叶尖 叶缘 银杏叶 扇形 簇生 二叉平行 叶脉 叶基(楔形) 不规则三节 状,中间凹入 鹅掌楸 叶 马褂形 互生 网状脉 截形(叶尖) 掌状半 裂 玉簪叶 椭圆形 簇生 弧形平行脉 急尖(叶尖) 全缘 金钱松 叶 披针形 簇生 急形异短尖(叶尖) 铁树(复叶) 羽片条形 对生叶序 侧出平行脉 急尖(叶尖) 羽状全 裂 红花木 倒形羽 互生 网状脉 急形异短尖(叶尖) 细锯状 苦楮 披针形 互生 网状脉 尾尖 锯状 野生豌豆 羽状复 叶 叶须卷 羽状全 裂

七花的形态和结构花序的类型选做

实验七花的形态和结构、花序的类型(选做) 【目的与要求】 1.掌握被子植物花的外部形态及其组成部分的特征。了解花形态的多样性。 2.学会解剖花以及使用花程式描述花。 3.掌握各种花序的结构特点。 【材料与用品】 材料:锦葵花、蚕豆花、小麦花、豌豆花、芸苔花、向日葵花、丹参花、金丝桃花、草莓花、豆梨花、牵牛花、桃花、虎耳草花、梨花、韭菜花、车前花、柳花、半夏花、无花果花、凤尾兰、胡萝卜花,可以根据季节选择适合的实验材料。 器材:解剖镜、解剖针、镊子、载玻片、盖玻片、刀片、白纸 【内容与方法】 一、花的基本组成及结构特征 1.锦葵花解剖观察 副萼:位于花的最外轮,3枚。 花萼:结合,5裂。 花瓣:分离,5枚,旋转状排列。 雄蕊:多数,花丝联合成管状,为单体雄蕊。 雌蕊:子房上位,柱头分离。 2.蚕豆花解剖观察 花萼:5枚,结合。 花冠:5瓣,为蝶形花冠。花瓣呈下降覆瓦状排列。分1片旗瓣,紫色;2片翼瓣和2龙骨瓣。 雄蕊:二体雄蕊。其中9枚花丝合生,包围在子房之外,1枚分离。 雌蕊:子房上位,1心皮1心室。 3.小麦花解剖观察 外稃:位于每朵小花的外侧,先端常有芒。 内稃:位于每朵小花的外侧,比外稃小。 浆片:在外稃之内的基部,有两片肉质透明的小片。开花时,浆片吸水膨胀可撑开外稃,便于传粉。 雄蕊:3枚,花药较大,花丝细长,开花常垂悬。 雌蕊:1枚,有两个羽毛状的柱头,花柱极短,子房上位。 子房:将子房于中部横切,在解剖镜下观察,识别子房室数、心皮数目、胎座类型和胚珠数目。 二、花形态的多样性 1. 花冠: 十字形花冠:花瓣4,离生,十字形,如十字花科植物芸苔的花冠。 蝶形花冠:花瓣5,顶端1片旗瓣,两侧2片翼瓣,下方有2片合生的龙骨瓣。如蝶形花科植物紫荆的花冠。 管状花冠:花瓣5,合生成筒状,上部无明显扩大,如菊科的向日葵的内侧花。 舌状花冠:花瓣5,合生,花冠仅基部少部分联合成筒状,上端联合成扁平舌状,如菊科向日葵的边缘花。 唇形花冠:花瓣5,合生,花冠联合成筒状,上端分成两列,为上唇和下唇,如唇形科丹参的花冠。 漏斗状花冠:花瓣5,全部联合成花筒状,由基部逐渐扩大成漏斗状,如旋花科牵牛花的花冠。 2.雄蕊 分离雄蕊:雄蕊互相分离,如十字花科芸苔的雄蕊。 单体雄蕊:花药分离,花丝联合成一束,如锦葵科锦葵花雄蕊。

第七章 叶的形态与结构

第七章叶的形态与结构 第一节叶的发生组成与叶序 叶就是先于根发育出现的结构,就是植物光合作用制造养分的重要场所,就是植物重要的营养器官之一。本章主要讲述叶的形态、结构特征及其与功能间的相互关系。 第一节叶的发生、组成与叶序 一、叶的发生与生长 (一)叶的发生与生长 1.叶的发生 叶由叶原基生长分化而来。当芽形成与生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。这些突起就是叶分化发育的起点,因而被称为叶原基。叶原基就是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为外起源(图7-1)。 2.叶的生长 由叶原基发育成叶的过程包括顶端生长、边缘生长与居间生长三个阶段。 叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴就是尚未分化的叶柄与叶片。具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果就是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶柄才随之迅速伸长(图7-2)。 当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上就是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。 在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂与垂周分裂交替进行,形成了基本分生组织与原形成层。在一种植物中叶肉的层数基本就是恒定的,就是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶片厚度。 一般说来,叶的生长期就是有限的,这与具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保留着居间分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱、韭菜等剪去上部叶片,叶仍可继续生长(即割一茬又长一茬),就就是由于叶基部居间分生组织活动的结果。 3.叶的发育、生长与调控 叶就是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。 (二)叶在植物系统进化与个体发育中的地位与意义 二、叶的生理功能与利用 (一)叶的生理功能 (二)叶的利用 (三)叶序 三、叶的形态多样性

叶的外形和结构解剖

xx 叶的外部形态 叶形:根据叶片长度和宽度的比值,叶形可以分为针形、线形、披针形、长圆 形、卵形、倒 卵形、心形、肾形、椭圆形、圆形、菱形、扇形等 xx: 叶片的边缘叫做xx。常见的叶缘有全缘、锯齿缘、重锯齿缘、牙齿缘、波缘等叶缘凹凸程度大,可形成裂片,根据裂片程度分为浅裂、深裂、全裂、三 出裂、羽状 裂、掌状裂 xx:叶片的先端叫叶尖。常见的有急尖、渐尖、钝行、凹形、截行、倒心形等 叶基:即叶片的基部。常见的有圆形、楔形、心形、箭形、截形等xx:贯穿于叶肉内的维管组织及其外围的机械组织叫叶脉 xx 在叶片中的分布样式叫脉序分为三种:叉状脉序、网状脉序、平行脉序叶序:植物的叶在茎上的排列方式,有互生、轮生、对生等xx 镶嵌:同一枝上的叶,以镶嵌状态的排列方式而不重叠的现象单叶: 一张xx 上只生一张叶片 复叶:

一个叶柄上生有3片或3片以上的叶片,从单叶演化而来,分为三出复叶、羽状复叶、掌状复叶。 区别全裂叶和复叶:全裂叶的裂片无柄、歌裂片形状不同、裂片基部互相 连接复叶的小叶片一般有柄、小叶片形状彼此相同、小叶片的基部相连叶 的解 剖结构 xx 植物叶的结构(以女贞xx 代表)表皮: 异面XX,具有上下表皮之分 表皮细胞一层,细胞排列紧密,无细胞间隙细胞外壁覆盖有一层连续的角 质层,上表皮的角质层明显较厚气孔器主要分布于下表皮,由2个保卫细胞 +气孔组成叶肉:由上下表皮内的薄壁组织组成含叶绿体,是叶进行光合 作用制造有机物的 主要场所 邻接上表皮的为栅栏组织,是叶内主要的光合作用场所邻接下表皮的为海 绵组织,是气体交换、水分蒸腾的主要场所 分布于叶片组织内的维管束,由茎内维管束分出经叶柄通至叶片 维管束的上下两侧常有厚壁组织或厚角组织分布 木质部接近于上表皮,韧皮部位于木质部下方,接近下表皮,中间常具有形成层单子叶植物叶的结构(禾本科植物水稻为例) 表皮: 长细胞: 长轴与xx 平行,外壁角质化并含有硅质

叶的形态与结构

第七章叶的形态与结构 第一节叶的发生组成和叶序 叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。本章主要讲述叶的形态、结构特征及其与功能间的相互关系。 第一节叶的发生、组成与叶序 一、叶的发生与生长 (一)叶的发生与生长 1.叶的发生 叶由叶原基生长分化而来。当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。这些突起是叶分化发育的起点,因而被称为叶原基。叶原基是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为外起源(图7-1)。 2.叶的生长 由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。 叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴是尚未分化的叶柄和叶片。具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶

柄才随之迅速伸长(图7-2)。 当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。 在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组织和原形成层。在一种植物中叶肉的层数基本是恒定的,是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶片厚度。 一般说来,叶的生长期是有限的,这和具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保留着居间分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱、韭菜等剪去上部叶片,叶仍可继续生长(即割一茬又长一茬),就是由于叶基部居间分生组织活动的结果。 3.叶的发育、生长与调控 叶是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。 (二)叶在植物系统进化与个体发育中的地位和意义 二、叶的生理功能和利用 (一)叶的生理功能 (二)叶的利用 (三)叶序 三、叶的形态多样性

叶的形态结构和生理.

第三节叶的形态结构与生理 一、选择题; 1、下列哪一说法是错误的 A、绿叶只含叶绿素 B、绿叶只有在光下才能制造淀粉 C、绿叶时刻发生呼吸作用 D、绿叶的上表面一侧产生氧气多 2、从物质变化来说,光合作用的实质是 A、把废物变成有用物 B、把无机物变成有机物 C、使气态物变成另一气态物 D、气态物变成固态物 3、移栽树木时,人们常要去掉几片叶,这样做是为了 A、减轻重量 B、降低呼吸作用 C、减少光合作用 D、减少水分蒸发 4、活的植物体在白天 A、只进行光合作用 B、只进行呼吸作用 C、只进行光合作用与蒸腾作用 D、光合、呼吸与蒸腾同时进行 5、植物进行呼吸作用的时间是 A、只在白天 B、白天和黑夜 C、只在黑夜 D、只在光下 6、植物体进行呼吸作用的部位是 A、只在种子中 B、只在叶片内 C、只在根系中 D、在植物体的各个器官中 二、填充题: 1、叶片的结构一般包括、、三部分,叶绿体较集中的部位是部分的组织。 2、叶片的表皮主要起作用,表皮上有一种气体和水分出入的通道叫,它的开闭,由控制。 3 4、光合作用中的能量转化过程是指光能转变为储存在里的能量;光合作用中的物质转化过程是指简单的转变成复杂的,并且释放出。 5、如果自然界中的森林大面积的减少,那么,大气中的就会不断的增多, 就会不断的减少。 6、植物在光合作用中吸收利用的气体是,在呼吸作用中吸收利用的气体是;植物在光合作用中释放的气体是,在呼吸作用中释放的气体是。 7、植物在光合作用中有机物,在呼吸作用中有机物。 一、分析说明题: 1、有一位科学家曾经把一棵2.5千克重的柳树苗栽种道一只木桶里,桶里的土壤事先称了重量。在这以后,他只给树苗浇纯净的雨水。5年以后,柳树长大了,重量增加了80多千克,而土壤却只减少了不足100克,你从这个实验里可以得出什么结论? 2、把两段绿色枝条按图中装置分别放在甲、乙两个玻璃罩内。在甲玻璃罩内放清水,以

植物叶的形态结构与环境的关系.

植物叶的形态结构与环境的关系 依据各类植物与水的关系 , 把其分为陆生植物与水生植物 , 陆生植物又分为旱生植物 , 中生植物和湿生植物 . 可适应干旱条件而正常生活的植物称为旱生植物 . 旱生植物的叶具有保持水分和降低蒸腾作用 , 其通常向着两个方向发展 : 一类是减小蒸腾的适应 :就外型而言 , 一般植株矮小 , 根系发达 , 叶小而厚 , 蜡被和表皮毛发达 , 有的植物形成复表皮 . 就结构而言 , 叶的表皮细胞壁厚 , 角质层发达 . 气孔下陷或限定在气孔窝内 . 栅栏组织细胞层数多 , 甚至上下表皮内方均有栅栏组织分布 . 海绵组织和细胞间隙不发达 . 叶脉发达 , 可提高输水率和机械强度 , 如夹竹桃和松叶 . 这些形态上的结构特征 , 或是减少了蒸腾面 , 或是尽量是蒸腾作用迟缓进行 , 再加上原生质体的少水性 , 以及一些细胞液的高渗透压 , 使旱生植物具有了高度的抗旱性 , 来适应干旱环境 ;

夹竹桃黄花夹竹桃黄花夹竹桃叶 夹竹桃叶切片图另一类为肉质叶片 , 叶片肥厚多汁 , 叶肉中有发达的储水组织薄壁组职 , 保水力强 . 这些植物的细胞 , 能保持大量水份 , 水的消耗也少 , 因此可耐干旱 . 如芦荟 , 景天 , 龙舌兰等 . 芦荟白景天翡翠景天金边龙舌兰

水生植物的整个植株生在水中 , 因此 , 可以获得充分的水分和溶于水中的营养物质 , 但它们的叶 --尤其是沉水叶 , 不怕缺水 , 而因为水中溶解的空气少 , 光线为散射光叶绿体, , 如何解决获得它所需要的气体和阳光成为所要面对的问题 . 适应这种生态环境的水生植物 , 通常叶片较薄 , 叶面无气孔和表皮毛 (浮水叶仅在上表皮有气孔 , 表皮细胞具叶绿体 , 可营吸收 , 光合作用和气体交换的功能表皮细胞所含的叶绿体 , 对于光的吸收是极为有利的 , 因此 , 沉水叶的表皮不仅是保护组织 , 也是吸收组织和同化组织 (光合组织 . 叶肉不发达 , 无栅栏组织和海绵组织的分化 , 形成发达的通气系统 . 机械组织和维管组织退化 , 导管不发达 . 胞间隙特别发达 , 形成通气组织 , 即具大液泡间隙的薄壁组织 . 有些水生植物中具气生叶或漂浮叶 , 后者仅上表皮有气孔 , 叶肉中也句发达的通气系统 . 如芦竹、石菖蒲、芦荻和水生美人蕉等。 芦竹石菖蒲芦荻水生美人蕉

叶的形态、结构和生理

第三节 叶的形态结构与生理 一、选择题; 1、下列哪一说法是错误的 A 、绿叶只含叶绿素 B 、绿叶只有在光下才能制造淀粉 C 、绿叶时刻发生呼吸作用 D 、绿叶的上表面一侧产生氧气多 2、从物质变化来说,光合作用的实质是 A 、把废物变成有用物 B 、把无机物变成有机物 C 、使气态物变成另一气态物 D 、气态物变成固态物 3、移栽树木时,人们常要去掉几片叶,这样做是为了 A 、减轻重量 B 、降低呼吸作用 C 、减少光合作用 D 、减少水分蒸发 4、活的植物体在白天 A 、只进行光合作用 B 、只进行呼吸作用 C 、只进行光合作用与蒸腾作用 D 、光合、呼吸与蒸腾同时进行 5、植物进行呼吸作用的时间是 A 、只在白天 B 、白天和黑夜 C 、只在黑夜 D 、只在光下 6、植物体进行呼吸作用的部位是 A 、只在种子中 B 、只在叶片内 C 、只在根系中 D 、在植物体的各个器官中 二、填充题: 1、叶片的结构一般包括 、 、 三部分,叶绿体较集中的部位是 部分的 组织。 2、叶片的表皮主要起 作用,表皮上有一种气体和水分出入的通道叫 ,它的开闭,由 控制。 3 (储存能量) 4、光合作用中的能量转化过程是指光能转变为储存在 里的能量;光合作用中的物质转化过程是指简单的 转变成复杂的 ,并且释放出 。 5、如果自然界中的森林大面积的减少,那么,大气中的 就会不断的增多, 就会不断的减少。 6、植物在光合作用中吸收利用的气体是 ,在呼吸作用中吸收利用的气体是 ;植物在光合作用中释放的气体是 ,在呼吸作用中释放的气体是 。 7、植物在光合作用中 有机物,在呼吸作用中 有机物。 一、分析说明题: 1、有一位科学家曾经把一棵2.5千克重的柳树苗栽种道一只木桶里,桶里的土壤事先称了重量。在这以后,他只给树苗浇纯净的雨水。5年以后,柳树长大了,重量增加了80多千克,而土壤却只减少了不足100克,你从这个实验里可以得出什么结论? 2、把两段绿色枝条按图中装置分别放在甲、乙两个玻璃罩内。在甲玻璃罩内放清水,以玻璃罩内放氢氧化钠溶液(氢氧化钠可以吸收二氧化碳)。把它们放在黑暗中一天,然后

相关主题
文本预览
相关文档 最新文档