当前位置:文档之家› 多元随机变量边缘分布

多元随机变量边缘分布

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

离散型随机变量的均值与方差、正态分布 一、选择题、填空题 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为 c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1, 则ab 的最大值为 ( ) A.148 B.124 C.1 12 D.16 3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.设X 是一个离散型随机变量,其分布列为: 则q 等于( ) A .1 B .1±22 C .1-2 2 D .1+ 2 2 5.随机变量X 的概率分布规律为P (X =k )=c k (k +1),k =1,2,3,4,其中c 是常数,则P (12

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

第三章多维随机变量及其分布 随机向量的定义: 随机试验的样本空间为S={w},若随机变量X1(w),X2(w),…,X n(w)定义在S上,则称(X1(w),X2(w),…,X n(w))为n维随机变量(向量)。简记为(X1,X2,…,X n)。 二维随机向量(X,Y),它可看作平面上的随机点。 对(X,Y)研究的问题: 1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint 2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度; marginal 3.X与Y的相互关系; 4.(X,Y)函数的分布。 §二维随机变量的分布

一.离散型随机变量 1.联合分布律 定义若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。 设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为 p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i ,j=1,2,… ——

称式为(X,Y)的联合分布律。 (X,Y)的联合分布律可以用表格的形式表示如下:

性质: (1) p ij 3 0,i, j=1,2,… (2) j i ij p ,=1 2.边缘分布律 设二维离散型随机变量(X,Y) 的联合分布律为 p ij = P{X=x i ,Y=y i } i, j=1,2,… 分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.30②S p i.=1 = p{Y=y i }j=1,2, (30)

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

简单随机变量之和与正态分布 本文将笼统,随意的讲解,为什么多随机变量之和可以认为服从正态分布。 首先我们建立一个简单的随机变量之和的模型。假设我们手里有一枚硬币,我们认定硬币的正面为1,反面为0,那么抛一次硬币的情况就是0或1且他们的概率都是50%。如果我不写概率也是写概率的比例,那么这个比例可以写为1:1。现在我们抛两次硬币,那么这个结果有四种,00,01,10,11。相信你知道我在说什么。那么正同我们提到的,我们要的是随机变量之和,所以我们有0,1,2。且他们的比例可以很容易的得到,是1:2:1。那么如果抛三次硬币呢?可能的结果就是0,1,2,3,而他们的比例是1:3:3:1。也许你已经发现这个规律了,也许你没有,但我会告诉你的。假如你抛2N次硬币,并且求和,那么其结果就是0,1,2……2N,共2N+1种可能。这2N+1种可能的比例服从组合数C2N i。你可以代入刚才抛三次的情况,C30:C31:C32:C33就是我们得到的1:3:3:1。至于为什么这个比例符合组合数,抛两次硬币那里举了个例子,就不重复了。这里简单的定义以下,每个随机变量称作X i他们的和称作Y,也就是: 2N Y=∑X i 1 (为什么突然变成了抛2N次而不是抛N次,因为我想保证我抛的是偶数次,这样Y的均值就是N了,你会发现抛两次的时候,Y的均值就是1,但是如果你抛三次,Y的均值就会是1.5,我想避免这个小数。) 所以接下来我们就要说明,组合数的分布规律为什么就成了正态分布。那么首先,你相信这个结论吗?让我们从抛多次到抛少次,来看一下正态分布和这个组合数分布到底有多像。 从Y的取值范围你也能猜出,这里分别是N取5,10,15,20的情况,实际上除了N 取5,也就是抛10次的时候,你还能看得清楚红线和蓝线,当N取10也就是抛20次以后,两线其实非常吻合了。你还可以看一下他们之间的误差,其峰值也是逐渐减小的。

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

第二章概率总结 一、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会 出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结 果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等 或希腊字母ξ、η等表示。) 离散型随机变量:连续型随机变量: 3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质:①---------------------------------------------- ②-------------------------------------------------. 二点分布 如果随机变量X的分布列为: 其中0

一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量, 则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中 则称随机变量X 的分布列 , 为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的 总数、样本容量 条件概率 1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积).记作D=A ∩B 或D=AB 3.条件概率计算公式: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品, 求第二个又取到次品的概率. 相互独立事件 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件 叫做相互独立事件 2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有 如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An) 3解题步骤 说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.

Generated by Foxit PDF Creator ? Foxit Software https://www.doczj.com/doc/e317946430.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{= ∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1.随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3.二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考):

2. 1 离散型随机变量及其分布列约3课时2. 2 二项分布及其应用约4课时 2. 3 离散型随机变量的均值与方差约3课时 2. 4 正态分布 约1课时 小 结 约1课时 2.本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不 同值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

第三章 多维随机变量及其分布 一、填空题 1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-. 2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 . 3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F 4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X 5、设随机变量),(Y X 的概率密度为 ? ? ?<<<<--=其它 04 2,20) 6(),(y x y x k y x f ,则=k 8 1 . / 6、随机变量),(Y X 的分布如下,写出其边缘分布. > 7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=? ∞+∞ -)(x f X 1 . 8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 . ,

9、如果随机变量),(Y X 的联合概率分布为 X 1 2 3 《 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 18 = +βα ;若X 与Y 相互独立,则=α 184 ,=β 182 . 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 { =),(y x f 2 2 221y x e +- π ,Y X Z +=的概率密度=)(Z f Z 4 22 2x e - π . 12、 设 ( ) 的 联 合 分 布 函 数 为 ()()()() ?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =__1___。 二、证明和计算题 1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律. 解:031 }1,1{?= ==Y X P 31 131}2,1{=?===Y X P 31 2132}1,2{=?===Y X P 3 1 2132}2,2{=?===Y X P 《 2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律. X Y 1 2 , 1 31 2 3 1 3 1

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率 是0.6,则两人都击中目标的概率是( ) A.1.4 B.0.9 C.0.6 D.0.48 2.设随机变量1~62X B ?? ???,,则(3)P X =等于( ) A.516 B.316 C.5 8 D.716 3.设随机变量X 的概率分布列为 X 1 2 3 P 1 6 1 3 1 2 则E (X +2) ( ). A.113 B .9 C.133 D.73 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑 台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生 独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有 一人达标的概率为( ) A .0.015 B .0.005 6.设随机变量~()X B n p ,,则22 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ). A.35 B.25 C.110 D.59 8.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )= ( ). A.18 B.14 C.25 D.12

9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). A.1 2p B.1-p C.1-2p D. 1 2-p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

相关主题
文本预览
相关文档 最新文档