当前位置:文档之家› 热敏脂质体的制备和研究进展

热敏脂质体的制备和研究进展

热敏脂质体的制备和研究进展
热敏脂质体的制备和研究进展

热敏脂质体的制备及研究进展

【摘要】由于普通的脂质体、纳米粒、微囊、微球等并不具备很强的主动识别靶器官、靶细胞、靶组织的能力,所以采用热敏脂质体载药并结合病变部位升温,来实现药物的靶向投递和在靶部位快速释药。

【关键词】热敏脂质体;磁性;长循环;多聚物

近年来,随着当代分子生物学、细胞生物学和材料科学的飞速发展,为靶向制剂的研发开辟了新天地[1]。而纳米囊[2]、纳米粒[3]、固体脂质纳米粒[4]、脂质体[5-6]等新兴制剂学技术已可将药物相对浓集于人体的某一器官。

如脂质体做为药物载体已被广泛研究,一部分工作已达到了临床应用阶段[7]。而脂质体之所以能适用于临床,是因其具有能够经受灭菌;具有较高的包裹率;制备方法适合生产;完全除去所含有机溶剂的优点。但它在溶液状态下仍存在着一些问题,如脂质体分散系的不稳定性:粒子的聚集、药物的渗漏以及磷脂在液态下的氧化、水解,这就影响了脂质体在临床上的应用。

并且普通的脂质体、纳米粒、微囊、微球等并不具备很强的主动识别靶器官、靶细胞、靶组织的能力,因此,开始研发能特异性识别器官、细胞、组织的主动靶向制剂和物理化学靶向制剂就越来越受到研究者的重视[8-9],其中,热敏脂质体(也称温度敏感型脂质体)是脂质体靶向研究领域的热点之一,其有效的利用了脂质体和热疗的双重优势,降低不良反应进一步加强了治疗的靶向性。

目前,采用热敏脂质体载药并结合病变部位升温,来实现药物的靶向投递和在靶部位快速释药,已成为全新的脂质体靶向策略。本文将对热敏脂质体的最新研究进展略作综述。1.常规热敏脂质体

常规热敏脂质体是利用在相变温度时,脂质体的类脂质双分子层膜从胶态过渡到液晶态,脂质膜的通透性增加,药物释放速度增大的原理制成的热敏脂质体。例如将二棕榈酸磷脂(DPPC)和二硬脂酸磷脂(DSPC)按一定比例混合,制成的3H甲氨喋呤热敏脂质体,再注入荷Lewis肺癌小鼠的尾静脉后,再用微波加热肿瘤部位至42℃,病灶部位的放射性强度明显的高于非热敏脂质体对照组。

在正常体温下,热敏脂质体中脂质体膜呈致密的胶晶态排列,故药物很难扩散出来;而

当脂质体随血液循环,经过预先加热的靶器官时,只要达到磷脂液晶态相变温度,则局部的高温即可使磷脂的磷脂酰基链紊乱、活动度增强,引起脂质体膜的结构发生变化,使其磷脂双分子层由排列整齐且致密的胶晶态变成疏松混乱的液晶态,膜流动性增强,最终导致脂质体膜的通透性发生改变,脂质体内部包裹的药物大量扩散到靶器官中,在靶部位形成较高的药物浓度[10-11]。以此便能达到局部靶向治疗作用。

2.磁性热敏脂质体

磁性热敏脂质体(thermosensitive magnetolipo一somes,TMs)是近2O年来国内外研究较多的一种靶向给药系统。该类脂质体的亲水性核中包裹着磁性材料[12-13]或有磁性共聚物镶嵌在脂质双分子层中[14-15],进人体内后随着血流运行,在合适的体外磁场引导下,选择性地达到并定位于肿瘤组织和细胞后,将其所含药物释放出来发挥药效,因此可减少对正常组织的影响[16]。磁性热敏脂质体结合了磁性靶向的特点,可先将药物运送到肿瘤部位,随后再在温热的刺激下快速释放药物,起到局部杀伤的效果。目前常用的磁性材料主要为具有良好磁感应性的Fe3O4、Fe2O3。、CoO、右旋糖苷铁及一些混合磁性材料等。

有个成功的例子,是Zhu等[17]采用改良的逆相蒸发法制备的磁性热敏甲氨蝶呤脂质体:先将DPPC-胆固醇(质量比为67:33)溶于氯仿一乙醚(4:3)4 mL中,冰浴并滴加Fe2O3一Glu 溶液(6 g·L -1)和甲氨蝶呤溶液(3 g·L -1)各1 mL,持续搅拌直至形成稳定的W/O型乳剂,43℃减压蒸除有机溶剂,通过离心(5 000 r·min-1)去除未包裹的磁性材料,并用超声波细胞粉碎机超声5分钟以减小载药脂质体的粒径,过0.8μm微孔滤膜整粒后,采用透析法除去其中游离的甲氨蝶呤,得粒径为500 nm左右的TMs。体外释放度试验显示,当释放介质温度依次为3O、35、37、39、4O、4l、42、44 ℃时,该TMs在1O分钟内释放的药物量分别为17%、l9%、22%、4O%、78%、80%、83%、83%,表明其在4O℃左右具有良好的热敏性。在比较该TMs与普通脂质体及单纯甲氨蝶呤溶液对骨骼肌组织的靶向能力的实验中发现,在外加磁场的作用下。该TMs中的甲氨蝶呤在骨骼肌中的C max由4.90 mg·L-1增加到11.20 mg·L-1,在温热和磁场的双重作用下,其Cmax可进一步增加到18.86 mg·L-1;TMs组中甲氨蝶呤的T1/2分别为普通脂质体制剂组和甲氨蝶呤溶液组的3.5和20倍,表明该TMs可显著提高药物在骨骼肌组织中的蓄积,延长药物的半衰期。

3.长循环热敏脂质体

长循环热敏脂质体(1ong-circulation thermosensi-tive liposome,LTL)通过将亲水性大分子如PEG等镶嵌到热敏脂质体表面,以使其既可减少PEG的识别和摄取,延长体内的循环

时间,又可在加热条件下迅速释放药物于加热部位[18-24],起靶向释药作用。制备此类脂质体时,PEG为最常用的添加剂之一。

例如亓晓温[25]将DPPC-(DSPE-mPEG2000一乳糖)(质量比为5:2)用氯仿溶解,5O℃下减压旋转蒸发除去氯仿后加入卡铂水溶液(12 g·L )水化,形成带有蓝色乳光的载药脂质体溶液,采用高压均质机,先用孔径为200nm的聚碳酸酯膜将此载药脂质体溶液挤压过膜lO次,然后换孔径为100nm的膜,再挤压过膜5次,制得粒径为100nm左右、包封率达8O%以上的卡铂长循环热敏脂质体。体外释放度试验显示,该脂质体在外界温度低于39℃时,释药率小于5%;而当温度超过41℃时释药率达8O%以上,表明在外界温度刺激下,该制剂中绝大部分被包封的药物能迅速释放。此外,给Lewis肺癌荷瘤小鼠分别注射卡铂长循环热敏脂质体、卡铂长循环脂质体和生理盐水,给药后将小鼠处死,称量肿瘤,结果,各组小鼠肿瘤质量分别为低于50 mg、70 mg和大于350 mg,表明卡铂长循环热敏脂质体具有良好的抑瘤作用。

4.多聚物热敏脂质体

多聚物热敏脂质体(polymer thermosensitive liposome),是利用某些多聚物存在一个最低临界溶液温度(LCST),当温度在LCST以下时,其为水溶性,而在LCST以上则为脂溶性。制备此类热敏脂质体的方法是将磷脂与多聚物的混合物作为膜材,使多聚物镶嵌在脂质体膜上,当外界温度低于LCST时,多聚物形成亲水膜,使脂质体与水性溶剂、血液中调理素等的相互作用受到抑制,对脂质体起稳定作用;而当外界温度高于LCST时,则多聚物转化成亲油性物质,吸附于脂质体表面,有利于脂质体与靶细胞(或组织、器官)的结合,破坏脂质体,使脂质体中的药物迅速释放 e。

已有Han等[26]通过把DPPC一氢化大豆卵磷脂(HSPC)-胆固醇-(DSPE—PEG2000)(物质的量比为10:5:3:0.6)及聚一Ⅳ一异丙基丙烯酰胺(PNIPAM)一丙烯酰胺(AAM)(10 g·L-1 )溶于氯仿中,旋转蒸发形成磷脂膜,再在其中加入多柔比星溶液(1.73mmol·L-1,pH 7.4)1 mL 水化,并在一l5℃和35℃下反复冻融5次,然后在冰浴的条件下将初步得到的脂质体通过100nm聚碳酸酯膜挤出,得到一种多

柔比星多聚物热敏脂质体。体外释放度试验显示,38℃下,该热敏脂质体中多柔比星的释放率小于lO%,而在40℃下则大于70%,表明该脂质体具有良好的温度敏感性。

5.热敏免疫脂质体

除了磁性引导、长循环外,还可在脂质体表面连接抗体或多糖以得到主动靶向性更好的热敏免疫脂质体(thermosensitive immunoliposome)。热敏免疫脂质体在抗体和多糖的引导下可吸附到靶细胞的表面,且若同时在生物体外进行局部加热可更进一步控制药物在某些特

定部位的释放,使进入细胞的药物浓度得到提高。

比如Sullivan等(PNAS,1986年)曾制备了[3H]尿苷热敏免疫脂质体。其先将预先制备好的DPPC脂质体与含有[3H]尿苷(50 mmol·L-1 )、乙二醇-双-(2一氨基乙醚)四乙酸(EGTA,1 mmol·L-1)、NaN3(0.02%)的磷酸盐缓冲液混合,于4l℃温孵,再用恒流泵(流速:0.26μL·min )将溶于含有去氧胆酸盐(3.8 mmol·L -1)的磷酸盐缓冲液(pH 8)的棕榈酰特异性抗体溶液(15 g·L-1)注入脂质体混悬液中,于43℃淬火至室温得[3H]尿苷免疫脂质体混悬液,然后用含有EGTA(1 mmol·L -1)、NaN3(O.O2%)的磷酸盐缓冲液透析过夜,以除去残留的[3H]尿苷和去氧胆酸盐。在用RDM4细胞进行的体外实验中测定了该[3H]尿苷热敏免疫脂质体的释放和吸收。结果显示,在4l℃以下时,释放介质中几乎无[3H]尿苷,4l℃以上时则有大量[3H]尿苷释放出来;在药物释放的起始阶段,每1×107个细胞对[3H]尿苷热敏免疫脂质体中药物的摄取量达l7.5pmol,1分钟后,细胞对该脂质体的摄取速度为3.0 pmol·min-1;而对于非免疫脂质体和游离尿苷,在药物释放的起始阶段,细胞的摄取量极低,几乎可忽略不计,1分钟后,细胞对两者的摄取速度分别为2.4和1.2 pmol·min-1。这表明尿苷免疫热敏脂质体在特定温度下可快速释放药物,起到突释效应,与非免疫脂质体和游离尿苷相比,细胞对热敏免疫脂质体的摄取速度显著增加,提示热敏免疫脂质体可作为药物控释系统来提高药物的靶向能力。

【结语】热敏脂质体是靶向药物的一个代表,自1978年出现以来,其基本原理及应用方面的研究均有很大的进展。尽管其再联合热疗的临床应用目前尚有一定的局限性,但作为一种高尖端科技成果,相信在药学、医学、化学、生物学等多学科的共同协作下,热敏脂质体联合热疗会成为一种有效治疗肿瘤的新手段。

【参考文献】

[1] 崔福德,张强,周建平,等.药荆学[M].北京:人民卫生出版社,2008:454.

[2] Lampreeht A,Yamamoto H,Takeuehi H,et al .Microsphere

design for the colonic delivery of 5-fluorouracil[J].J Controlled Release,2003,90(3):313-322.

[3] 朱玲,贾欣,阿有梅,等.加替沙星聚氰基丙烯酸正丁酯纳米粒小鼠体内分布特征[J].中国新药杂志,2010,19(1):59-63.

[4] 田洁,逢秀娟,吴冬冬,等.顺铂固体脂质纳米粒的制备及其在大鼠体内的分布[J].中

国药剂学杂志,2008,6(4):141-149.

[5] 王晓燕,曹德英.两性霉素B冻干脂质体的制各及在小鼠体内分布的考察[J].中国医院药学杂志,2009,9(18):1530-1534.

[6] Jia Y,Joly H,Omfi A.Liposomes as a carrier for gentamicin delivery:development and evaluation of the physico-chemical properties[J].Int J Pharms,2008,359(1/2):254-263.

[7]Guo LSS. Novel Antifungal Drug Delivery:stable Ampho-tericin Bcholesteryl Sulfate Disk. Int J Pharm. 1991. 75:45

[8] 屠锡德,张均寿,朱家璧.药刺学[M].北京:人民卫生出版社,2002:987.

[9] 邓英杰.脂质体技术[M].北京:人民卫生出版社,2007:206-207.

[10]de Smet M,Langereis S,Van den Bosch S,et al.Temperature-sensitive liposomes for doxorubicin delivery under

MRI guidance[J].J Controlled Release,2010,143(1):l20-127

[11] Paoli E E,Kruse D E,Seo J W ,et a1.An optical and

microPET assessment of thermally-sensitive liposome bio—distribution in the Met-1 tumor model:importance of formulatlon[J].J Controlled Release,2010,143(1):13-22.

[12] Sabate R,Barnadas—Rodriguez R,Callejas-Fernandez J,et a1.Preparation and characterization of extruded magnetoliposomes[J].Int JPharms,2008,347(1

/2):156-162.

[13]Zhang J Q,Zhang Z R,Yang H,et al.Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration:in vitro and in vivo studies[J].Pharm Res,2005,22(4):573.583

[14]Kamaly N,KalberT,Ahmad A,et a1.Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetie resonance imaging[J].Bioconjugate Chem,2008,19(1):118—129.

[15]Leclercq F,Cohen—Ohana M,Mignet N,et a1.Design,synthesis,and evaluation of gadolinium cationic lipids as tools for biodistribution studies of gene delivery complexes[J].Bioconjugate Chem,2003,14(1):112一I19

[16]彭健,刘鑫,王荣兵,等.5一氟尿嘧啶磁性纳米脂质体在大鼠肝癌模型体内的靶向分[J].中国现代医学杂志,2007,17(24):2952-2956

[17]Zhu L,Huo Z L,Wang L L,et a1.Targeted delivery of methotrexate to skeletal

muscular tissue by thermosensitive magnetoliposomes[J].,Tnt J Pharms,2009,370(1/2):136—143.

[18]吴燕,吴诚,梅兴国,等.盐酸表柔比星长循环热敏脂质体的处方优化及体外释药考察[J].中国药学杂志,2010,45(9):677—681.

[19]吴燕,张福成,吴诚.盐酸表阿霉素长循环热敏脂质体大鼠药代动力学考察[J].药学学报,2010,45(3):365.370.

[20]曾昭武,王小丽,周伟华.替加氟磁性长循环热敏脂质体的制备与质量评价[J].中国组织工程研究与临床康复,2008,12(45):8839—8842.

[21]吴燕,吴诚,梅兴国.盐酸表柔比星长循环热敏冻干脂质体的处方工艺研究与体外释药机制探讨[J].军事医学科学院院刊,2010,34(2):139—145.

[22]张明宇,曾昭武.卡莫司汀长循环热敏脂质体的制备与表征[J].中国医学工程,2008,16(3):172—174.

[23]Li L,ten HagenT LM,Schippera D,et a1.Triggered content release from optimized stealth therm osensitive liposomes using mild hyperthermia[J].J Controlled Release,2010,143(2):274-279.

[24]Kim J Y,Kim J K,Park J S,et a1.The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator[J].B/omater/a/s,2009,30(29):5751-5756.

[25]亓晓温.卡铂长循环脂质体研究[D].北京:军事医学科学院药物毒物研究所,2008:33-40

[26]Kono K.Thermosensitive polymer—modified liposomes[J].Adv Drug Del Rev,2001,53(3):307-319.

脂质体制备方法

微脂体(又称脂质体)及其制备方法一二 微脂体(又称脂质体) 微脂体起源于1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含盐分的水溶液后,再加以摇晃,会使脂质形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式将此小球状的物体命名为微脂体(liposo me)并做出明确的定义: 指出微脂体是由一到数层脂质双层膜(lipid bilayer) 所组成的微小的囊泡,有自行密合(self-closing)的特性。微脂体由脂双层膜包裹水溶液形成,由于构造的特性,可同时作为厌水性(hydrophobic)及亲水性(hydrophilic)药品的载体,厌水性药品可以嵌入脂双层中,而亲水性药品则可包覆在微脂体内的水溶液层中。如同细胞膜,微脂体的脂质膜为脂双层构造,由同时具有亲水性端及厌水性端的脂质所构成,脂双层由厌水性端相对向内而亲水性端面向水溶液构成,组成中的两性物质以磷酸脂质最为常见。微脂体的形成是两性物质在水溶液中,依照热力学原理,趋向最稳定的排列方式而自动形成。微脂体的性质深受组成脂质影响,脂质在水溶液的电性,决定微脂体是中性或带有负电荷、正电荷。此外,磷酸脂碳链部分的长短,不饱和键数目,会决定微脂体的临界温度(transition temperature, Tc),影响膜的紧密度。一般来说,碳链长度越长临界温度越高,双键数越多则临界温度越低,常见的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的临界温度分别是42℃与56℃,而Egg PC(egg phosphatidylcholine)与POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 则低于0℃。临界温度影响微脂体包裹及结合药物的紧密度,当外界温度高于Tc时,对膜有通透性的药物,较容易通过膜;此外,当外界温度处于临界温度时,微脂体脂质双层膜中的脂质,会因为流动性不一致而使微脂体表面产生裂缝,造成内部药物的释出。在磷脂质内加入胆固醇,会对微脂体性质产生下列影响:增加微脂体在血液中的安定性,较不易发生破裂;减少水溶性分子对微脂体脂膜的通透性;增加微脂体的安定性,使其在血液循环中存在的时间较长。 微脂体可依脂双层的层数或是粒子大小,加以命名或分类: (1) Multilamellar vesicle(MLV)是具有多层脂双层之微脂体,粒子大小介于100-1000 nm,特色是粒子内具多层脂质膜,一般而言,干燥后的脂质薄膜,

靶向制剂习题

; 靶向制剂 练习题: 一、名词解释 1.靶向制剂:是指载体将药物通过局部给药或全身血液循环而选择性地浓集于靶组织、靶器官、靶细胞或细胞内结构的给药系统。 2.脂质体:系指将药物包封于类脂质双分子层(厚度约4nm)内而形成的微型囊泡。 3.微球:是一种以适宜高分子材料为载体包裹或吸附药物而制成的球形或类球形微粒。 4.纳米粒:包括纳米囊和纳米球,是以高分子材料为载体的固态载药胶体微粒,一般粒径多在10~1000nm范围内。 … 5.前体药物:是活性药物衍生而成的药理惰性物质,在体内经化学反应或酶反应的作用后,前体药物中的活性母体药物再生而发挥其治疗作用. 二、选择题(一)单项选择题 1.以下不属于靶向制剂的是D A.药物-抗体结合物 B.纳米囊 C.微球 D.环糊精包合物 E.脂质体 2.以下属于主动靶向给药系统的是C A.磁性微球 B.乳剂 C. 药物-单克隆抗体结合物 D.药物毫微粒 E. pH敏感脂质体3.以下不能用于制备脂质体的方法是A A.复凝聚法 B.逆相蒸发法 C.冷冻干燥法 D.注入法 E.薄膜分散法 ) 4.以下关于判断微粒是否为脂质体的说法正确的是C A.具有微型囊泡 B.球状小体 C.具有类脂质双分子层的结构的微型囊泡 D.具有磷脂双分子结构的微型囊泡 E.由表面活性剂构成的胶团 5.以下不是脂质体与细胞作用机制的是B A.融合 B.降解 C.内吞 D.吸附 E.脂交换 6.已知某脂质体药物的投料量W总,被包封于脂质体的药量W包和未包入脂质体的药量W游,试计算此药的重量包封率Q w C A. Q w%=W包/W游*100% B. Q w%=W游/W包*100% C. Q w%=W包/W总*100% D. Q w%=(W总-W包)/W游*100% E. Q w%=(W总-W包)/W包*100% 。 7.以下关于脂质体相变温度的叙述错误的为A A.在相变温度以上,升高温度脂质体膜的流动性减小 B. 在一定条件下,由不同磷脂组成的脂质体有可能存在不同的相 C.与磷脂的种类有关 D.在相变温度以上,升高温度脂质体双分子层中疏水链可从有序排列变为无序排列 E.在相变温度以上,升高温度脂质体膜的厚度减小 8.以下不用于制备纳米粒的有E A.乳化聚合法 B.天然高分子凝聚法 C.液中干燥法 D.自动乳化法 E.干膜超声法 #

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展 10072855 王剑磊高材075 摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。 关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素 脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。 1.pH敏感型脂质体(pH—sensitive Liposomes ) pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。 2.pH敏感型类脂组成的系统

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

脂质体的研究进展学

新型药物载体免疫脂质体的研究进展 08药剂3班乔宇 20080702067 免疫脂质体(immunoliposomes)是单克隆抗体(monoclonal antibody,mAb,简称“单抗”)或其片段修饰的脂质体的简称,这种新型药物载体对靶细胞具有分子水平上的识别能力,具有很多优势,包括对肿瘤靶细胞呈现明显的选择性杀伤作用,且杀伤活性比游离药物、非特异抗体脂质体、单独单抗等更强;在荷瘤动物体内呈特异性分布,肿瘤病灶药物浓度升高,药物毒副作用较小;体内循环半衰期长及运载药物量大等。免疫脂质体发展至今经历了数代:第一代是抗体或抗体片断直接与脂质体的脂膜相连,但由于巨噬细胞的吞噬很快被血液清除;第二代在第一代的表面引入了聚乙二醇(PEG)等亲水性大分子,延长了在血液中的循环时间,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低;第三代将抗体连接在PEG或其衍生物的末端,制成空问稳定性免疫脂质体(sterically stabilized immunoliposomes,SIL),延长了包含药物的脂质体的血液循环时问,且单抗伸展至脂质体外部发挥寻靶作用。 本文就免疫脂质体的分类、抗体连接脂质体的方法、临床应用及其发展现状进行综述。 1 免疫脂质体的分类 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类。 1.1 抗体介导的免疫脂质体 抗体介导的免疫脂质体是利用抗原一抗体特异性结合反应,将单抗与脂质体偶联。抗体有单克隆抗体和多克隆抗体之分,单抗因其专一性在抗体应用中占主导地位。现今,全世界已有超过1 50种单抗应用于临床或正处于临床研究阶段,且也已从原先的纯鼠单抗发展为人鼠嵌合抗体及人源化抗体,如已上市的人源化单抗Daclizumab、Palivizumab、Trastuzumab等;临床应用中,单抗从最初治疗器官移植排斥反应、降凝血发展到治疗癌症、HIV感染等疑难性疾病[2】。 1.1.1 两种抗体修饰的双靶向免疫脂质体 靶向物用两种不同的抗体修饰脂质体,可增加其结合特异性和细胞摄取率,并且抗体在靶向细胞时能产生协同作用【3】。Laginha等【4]假设脂质体通过抗体靶向到两种或多种受体时,由于受体密度增加,靶向效果会更好,并用荧光测定分析法验证了这一假设的正确性。这项实验中,分别制备了连接相同密度抗体的aCD19靶向脂质体、etCD20靶向脂质体、两种脂质体混合物(混合比例为1:1)及双靶向脂质体,证实了双靶向脂质体和混合脂质体较单个抗体修饰的脂质体和受体有更大的结合率和摄取率,且出现加和性;细胞毒性实验中,装载有阿霉素的双靶向脂质体较这两种脂质体混合物有更高的细胞毒性。Saul等【5]以阿霉素为模型药物,用叶酸和抗表皮生长因子的单抗修饰脂质体,同时靶向两种受体,使药物更多地聚集于肿瘤靶位,降低了对正常组织的毒性。 1.1.2 抗体片段修饰的免疫脂质体 虽然抗体对靶点具有高选择性,但持续给药时,患者往往会出现免疫反应,特别是应用外源性抗体f如鼠)时免疫反应加剧。而抗体片段Fab。(55kDa)、单链抗体可变区基因片段scFv(35kDa)产生的免疫原性比整个单抗低,且更易控制其性质

实验十五 脂质体的制备

实验十五 脂质体的制备 一、实验目的 1. 掌握注入法制备脂质体的工艺。 2. 掌握脂质体包封率的测定方法。 二、实验原理 60年代初Banghan等发现磷脂分散在水中可形成多层囊,并证明每层囊均为双分子脂质膜组成且被水相隔开,称这种具有生物膜结构的囊为脂质体。197l年Ryman等人提出将脂质体作为药物载体,即将酶或药物包囊在脂质体中。近年来脂质体作为药物载体在传递给药系统中的研究有了迅速的发展。 脂质体系一种人工细胞膜,它具有封闭的球形结构,可使药物被保护在它的结构中,发挥定向作用。特别适于作为抗癌药物载体,以改善药物的治疗作用,降低毒副作用等。 脂质体系由磷脂为骨架膜材及附加剂组成。用于制备脂质体的磷脂有天然磷脂,如豆磷脂,卵磷脂等;合成磷脂,如二棕榈酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱等。磷脂在水中能形成脂质体是由其结构决定的。磷脂具有两条较长的疏水烃链和一个亲水基团。当较多的磷脂加至水或水性溶液中,磷脂分子定向排列,其亲水基团面向两侧的水相,疏水的烃链彼此对向缔合形成双分子层,并进一步形成椭圆形或球状结构——脂质体。常用的附加剂为胆固醇,它也是两亲性物质,与磷脂混合使用,可制备稳定的脂质体,其作用是调节双分子层流动性,减低脂质体膜的通透性。其它附加剂有十八胺,磷脂酸等,这两种附加剂可改变脂质体表面电荷的性质。 脂质体可分为三类:小单室(层)脂质体,粒径在20~50nm,凡经超声波处理的脂质体混悬液,绝大部分为小单室脂质体;多室(层)脂质休,粒径约在400~1000nm;大单室脂质,粒径约为200~1000nm,用乙醚注入法制备的脂质体多属这—类。 脂质体包封率的测定 包封率的定义可用下式表示: 包封率% =(W总 - W游离)/ W总 x 100 式中W总——脂质体混悬液中总的药物量。W游离——未包入脂质体中的药物量。 影响脂质体包封率的因素有多种,如磷脂质的种类,组成比例,制备方法及介质的离子强度等。 包封率的测定方法有凝胶过滤法(常用凝胶为Sephadex G50、Gl00或Sephrous4B、6B)、超速离心法、透析法、超滤膜过滤法等,根据条件加以选择。 脂质体的制法有多种,可按药物性质或需要进行选择。薄膜分散法是一种经典的制备方法,它可形成多室脂质体,经超声处理,可得到小单室脂质体。此法特点是操作简便,但包封率较低。注入法,根据所用溶解磷脂质的溶剂,可分为乙醚注入法和乙醇注入法。乙醚注入法是将磷脂,胆固醇和脂溶性药物及抗氧剂等溶于适量的乙醚中,在搅拌下慢慢滴入50~65°C水性溶液中,蒸去乙醚,即可形成脂质体。此法适于实验室小量制备脂质体。乙醇注入法制备脂质体,脂质体混悬液一般可保留10%乙醇。反相蒸发法,是制备大单室脂质体的方法,此法包封率高。冷冻千燥法,适于在水中不稳定的药物制备脂质体。熔融法,此法适于制备多相脂质体,制得的脂质体稳定,可加热灭菌。本实验乙醚注入法制备安定脂质体,用薄膜分散法制备钙黄绿素脂质体。

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

脂质体的制备

实验十五 脂质体的制备

一实验目的 1.了解脂质体(liposome)在细胞 工程技术中的应用及其制备方法。 2.掌握采用超声波法、冰冻干燥法 和冻融法三种不同的方法制备脂 质体的方法并了解该技术在细胞 工程中的应用。

二实验原理 脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰 冻干燥法和冻融法等。制备方法 不同,所得脂质体结构、大小不 同,性质和用途也就不同(表15-1)。

种类制备方法大小(m)特性 多层大脂质体(MLV)乙醚蒸发法、醇醚水 法、振荡法、液相快 速混合振荡法 0.1~50易制备,包被物释放 速度慢 单层小脂质体(SUV)直接超声波法、溶剂 超声波法、乙醚注射 法 0.02~0.05体积小,适合包被离 子、小分子药物等 单层大脂质体(LUV)递相蒸发法、去污剂 (胆酸纳等)透析法、 冰冻干燥法 0.05~0.5 适合包被蛋白质、 RNA、DNA片段、 大分子药物及细胞融 合 单层巨大脂质体(GUV)冻融法5~30适合包被蛋白质、 RNA、DNA片段, 除菌处理较难

本实验采用超声波法、冻融法、冰冻干燥 法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品 1.器材 超声波清洗机、光学显微镜、荧光显微镜、荧光分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。 2.试剂 1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷 脂,57.2mg胆固醇,溶于1ml氯仿。 2)荧光液:钙黄绿素(calcein)47mg溶于 100ml Tris缓冲液。 3)Tris 缓冲液:称取Tris 0.12g,EDTA 0.288mg,溶于80ml去离子水中,用0.1 mol/L 盐酸调Ph7.2,再加水至100ml。

脂质体及其制备方法的选择

脂质体及其制备方法的选择 1.脂质体概述 1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。此两位学者曾获得过诺贝尔奖提名。 某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的 所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。 脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。不同类型的脂质体其结构特点各不相同,见下图表。 1971年,英国Rymen等人开始将脂质体用作药物载体。所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。

包覆脂质体的研究进展

?综述? 包覆脂质体的研究进展 吕青志,翟光喜*,王海刚,黄兴刚 (山东大学药学院,山东 济南250012) 摘要:包覆脂质体是一种新型的膜修饰脂质体,与普通脂质体相比,提高了脂质体体内外稳定性,延长了体内 循环时间,增加了药物的靶向性。现对各种包覆材料的特点予以评价,并对包覆脂质体的国内外研究进展作一综述。关键词:脂质体;包覆脂质体;壳聚糖;多糖中图分类号:Q946.4 文献标识码:A 文章编号:1672-979X(2007)02-0045-04 Research Advance on Coated Liposomes LV Qing-zhi,ZHAI Guang-xi*,WANG Hai-gang,HUANG Xing-gang( School of Pharmaceutical Sciences, Shangdong University,Jinan 250012, China) Abstract:Coated liposomes are a kind of surface modified liposomes which can improve the stability of liposomes either in vivo or in vitro, prolong the circulation time in vivo by reducing the uptake of the phagocytic cells in the reticuloen-dothelial system (RES) and increase the target detection. The advance of coated liposomes and the characters of coatingmaterials are reviewed in this paper.Key words:liposome; coated liposome; chitosan; polysaccharide 收稿日期:2006-11-28 作者简介:吕青志(1983-),女,山东烟台人,硕士研究生,药剂学专业 * 通讯作者:翟光喜,男,博士,副教授Tel:(0531)88382015E-mail:zhaiguangxi@yahoo.com.cn 脂质体(liposome)作为药物载体,具有一定的靶向性和缓释性,能降低药物给药剂量,减轻药物毒性,提高药物的稳定性[1]。但脂质体属微粒分散制剂,存在粒径变大、絮凝、药物渗漏等问题,口服后胃蛋白酶易吸附于磷脂表面,降解酸敏感的大分子药物;静注给药后网状内皮系统对其识别、吸收,导致体内循环时间缩短;磷脂与血中高密度脂蛋白发生脂交换并与白蛋白、调理素、抗体等作用,使脂质体破裂,包封的药物快速渗漏。包覆脂质体(coated liposome)是一种新型的膜修饰脂质体,与普通脂质体相比,它可增加脂质体双层膜的稳定性,提高脂质体的体内外稳定性,延缓脂质体中的药物释放;能够给脂质体外层周围提供一个亲水性屏障,阻止血浆蛋白对脂质体表面的吸附,静注给药可延长脂质体在体内的循环时间,增加药物的靶向性。常用的包覆材料有多糖(如壳聚糖、藻酸盐)及其衍生物、聚乙烯醇衍生物(PVA-R)、胶原蛋白、右旋糖苷衍生物等[2,3]。 1壳聚糖及其衍生物1.1 壳聚糖 壳聚糖(chitosan,CS)是甲壳素的部分脱乙 酰基产物,是自然界中唯一的碱性多糖,无毒,具 有生物黏附、吸收促进、酶抑制和生物可降解性。在酸性条件下,壳聚糖带正电荷易与黏膜发生静电 吸附,能打开消化道上皮间的紧密连接,增加药物的透膜吸收。用壳聚糖包覆脂质体,阳离子型的壳聚糖与阴离子脂质体发生电荷作用,壳聚糖未完全脱乙酰化的酰基插入脂质体的脂膜中,使分子镶嵌在脂质体的表面,形成壳聚糖脂质体复合物,增加了脂质体的稳定性和药物的靶向性[4-6]。 魏农农等[7]用旋转蒸发法制备氟尿嘧啶前体脂质体,然后用氟尿嘧啶前体脂质体0.5 g,加 pH 7.2的磷酸盐缓冲液(PBS)5 mL,缓慢振摇静置,即得脂质体混悬液,将2.5 mL置于10 mL玻璃离心管中,在漩涡搅拌器上缓慢滴加质量浓度为5 g/L的壳 聚糖溶液,持续搅拌10 min,得混悬状壳聚糖包覆

脂质体递药系统的临床研究进展_陶涛

#专家论坛# 脂质体递药系统的临床研究进展 陶 涛(上海医药工业研究院制剂部,上海200040) [摘 要] 本文将脂质体递药系统按结构、组成和功能分成普通脂质体、多囊脂质体、长循环脂质体、热敏脂质体和免疫脂质体5类,分别介绍其应用和临床研究进展。[关键词] 脂质体;药物释放系统;临床研究;综述 [中图分类号] R 943.5 [文献标识码] A [文章编号] 1671-2838(2008)02-0084-05 Recent advances in clinical studies on liposomal drug delivery systems T A O T ao (Depart ment o f Pharmaceutics,Shang hai Inst itute of Phar maceutical Indust ry,Shang hai 200040,China) [ABSTRACT] In this paper ,liposomal drug deliver y systems ar e classified as conventio nal liposomes,multivesicula r lipo -somes,long -circulating lipo somes,ther mo -sensitive lipo so mes and immuno lipo so mes,and their r ecent advances in clinical stud -ies ar e rev iewed. [KEY WORDS] liposomes;drug deliver y systems;clinical r esear ch;rev iew [P har m Care &R es,2008,8(2):84-88] [作者简介] 陶 涛(1959-),女(汉族),博士,研究员,博士 生导师.E -ma il:taotao sipi@https://www.doczj.com/doc/e316082422.html, 脂质体递药系统是20世纪药物制剂技术领域最重要的创新成果之一。从1965年英国学者Bangham 和Standish 通过电镜发现磷脂在水中自然形成多层囊泡并将其命名为脂质体(liposome)至今,脂质体已从基础研究过渡到临床应用阶段,并已有多个产品成功问世,如多柔比星(阿霉素)脂质体)、柔红霉素脂质体、两性霉素B 脂质体、紫杉醇脂质体、阿糖胞苷脂质体、硫酸吗啡脂质体、甲肝疫苗脂质体和乙肝疫苗脂质体等。经过近40年的不断努力,脂质体递药系统也从最初的普通脂质体,发展为长循环脂质体、免疫脂质体和热敏脂质体等。所涉及的药物也从化学合成药,延伸到蛋白药、基因药、疫苗和中药。本文将脂质体按结构、组成和功能分成普通脂质体(conventional lipo som es)、多囊脂质体(m ultivesicular liposo mes)、长循环脂质体(long -circulating liposomes)、热敏脂质体(therm o -sensitiv e liposomes)和免疫脂质体(im munolipo -somes)5类,综述其作为化学药物递释系统的临床应用现状和临床研究进展。1 普通脂质体 普通脂质体用一般磷脂制备而成,按结构可细分为单层脂质体(unilam ellar vesicles,ULV,图1)和多层脂质体(multilamellar vesicles,M LV,图1)。普通脂质体主要被网状内皮系统吞噬,从而使所包载的药物在肝、脾、肺和骨髓等富含吞噬细胞的组织器官内蓄积。 1989年,第一个上市的脂质体递药系统是两性 图1 普通脂质体示意图 Fig 1 Schematic diagram of conventional liposomes 霉素B 脂质体AmBisome 。两性霉素B 是一种多烯类广谱抗真菌抗生素,是目前临床上治疗全身性隐球菌、曲霉菌等真菌感染的一种有效药物,但该药在治疗剂量下存在较严重的毒副作用,限制了它的临床应用。将两性霉素B 包封入脂质体中,不仅能保持其显著的体内外抗真菌(包括白念球菌、曲霉菌、隐球菌)活性及抗利什曼原虫活性,且毒性明显减少。迄今为止,已有3种两性霉素B 脂质体在欧美上市(商品名分别为Abelcet 、A mphocil 和AmB-i so me)。国产两性霉素B 脂质体于2003年上市,商品名为锋克松。 紫杉醇是临床应用最广泛的肿瘤化疗药物,但难溶于水,须将其溶于聚氧乙烯蓖麻油与无水乙醇的复合溶媒(50/50)中制成注射剂使用,临床上常引起中等程度以上的过敏反应。将难溶于水的紫杉醇 # 84#药学服务与研究 Pharm Care &Res 2008Apr;8(2)陶 涛.脂质体递药系统的临床研究进展

国外部分公司脂质体药物研发现状

国外部分公司脂质体药物研发现状 摘要:目的介绍国外脂质体药物的开发现状。方法综述了14 家外国公司所发展的脂质体技术平台和正在开发的脂质体药物。结果和结论目前主要有3 类脂质体药物正在被开发:化疗药物\疫苗和核酸类药物。并且国外从事脂质体药物研发的公司都有自己的专利技术。关键词:药剂学;研究进展;综述;脂质体 中图分类号:R94 文献标识码:A 自从1965 年Bangham 等人发现脂质体,近40 年已经过去了。在这40 年中,经过众多科研人员的不懈努力,脂质体领域出现了许多里程碑式的工作,如:pH 梯度法的发明,长循环脂质体的制备及主动靶向脂质体的发明等。作为一种先进的药物传递系统,脂质体的优势已经被越来越多的人所承认(这里讲的药物是一个广义的概念,既包括化学药物,也包括蛋白质类及核酸类药物)。 作者将简要介绍国外脂质体药物的研发现状。所谓脂质体药物,指的是以脂质体为载体的治疗或预防性药物。由于在国外,新药的研发工作主要由制药公司完成,所以将着重介绍国外从事脂质体药物开发的公司,它们所采用的新技术和开发的脂质体药物。 1 ALZA ALZA 是一个专门从事药物传递系统(drug delivery systems,DDSs)开发的公司[1,2]。它的主要技术平台就是隐型脂质体(STEALTH. liposomes,实际上就是长循环脂质体)技术。众所周知,尽管传统的脂质体可以提高药物的疗效,降低药物的不良反应,但是它们在体内很容易被免疫系统识别和吞噬;因此脂质体可能还没有到达靶区,就已经被机体清除掉了。采用STEALTH.技术,则可以避免这种情况。由于长循环脂质体表面覆盖着一层 PEG(polyethylene glycol)凝胶,它可以成功的逃脱免疫系统的吞噬和破坏。并且,如果长循环脂质体的粒径小于150 nm,它可以有效的穿透肿瘤区的血管,在肿瘤区富集,这样就改变了药物在体内的分布,降低了毒性。 ALZA 采用STEALTH.技术,已经成功的开发了阿霉素脂质体注射液Doxil.。Doxil.主要用于治疗复发性卵巢癌和AIDS 相关的Kaposi’s肉瘤。 2 Antigenics 目前Antigenics 正在开发两个脂质体产品[3,4]:Aroplatin. 和ATRA-IV.。ATRA-IV. (又名ATRAGEN. )是全反式维甲酸(all-trans-retinoic acid)的脂质体注射制剂。全反式维甲酸主要用于治疗急性早幼性骨髓性白血病(acute promyelocytic leukemia), 但是它的口服制剂存在一个重要缺陷,那就是药效的持续时间太短。将其制成脂质体制剂后,药物的血药浓度增加,起效时间明显延长。现在Antigenics 受FDA 委托,正在研究用ATRA-IV. 治疗T 细胞非Hodgkin 氏淋巴瘤(T cell non-Hodgkin’s lymphoma)的可行性。Aroplatin. 是第三代铂类抗癌药物,它的结构和奥沙利铂(Oxaliplatin.) 相似。细胞实验表明, Aroplatin. 可能用于治疗对其他铂类药物(卡铂 carboplatin, 顺铂cisplatin)产生耐药性的肿瘤。用Aroplatin. 脂质体治疗结肠癌的实验正在进行中。 3 Aphios Aphios 之所以在脂质体公司中拥有一席之地[5,6],主要是由于它发展了一种独特的脂质体

相关主题
文本预览
相关文档 最新文档