当前位置:文档之家› 照明工程计算公式

照明工程计算公式

照明工程计算公式
照明工程计算公式

照明工程计算公式

每平方米需要多少 w 照度,照度公式

照明 2010-04-28 17:11:04 阅读2014 评论0 字号:大中小订阅

计算公式:是以单位容量法来计算的,n=Pn/Pn,la 其中n表示所需灯的数量(支),Pn表示达到某一照度值时全部灯的标称功率之和(W), Pn,la表示达到100 Lx照度是全部灯的标称功率(W)。单位容量法计算的基础是:

为达到平均照度100 Lx时,室内地面面积每平方米需要用白炽灯约22w或荧光灯5.5w. 对于白炽灯的计算:Pn,100=22w/m2*A(E=100 Lx,nB=0.3,n=15 Lm/w)

对于荧光灯的计算:Pn,100=5.5w/m2*A(E=100 Lx,nB=0.3,n=15 Lm/w)

A表示地面面积(m2)即:比如10m2地面,选用照度为100 lx时考虑安装40w 的荧光灯,要安装多少支?

Pn,100=5.5w/m2*1m2=55w n=55w/40w=1.375≈2支

如果你取室内的照度为300 lx,那么所需的灯数为 Pn,300=(E/100

lx)*Pn,100=(300/100)*55=165w n=165/40=4.125≈5支

你按照这样的算法不就可以得出每平方米需要多少 w 了吗?

工厂照度要求为250-300 Lx

“宴会场所”照度要求为300-700 Lx,

“餐厅” 照度要求为150-300 Lx

“餐厅”,照度要求为200 Lx,高5米,45瓦的节能灯,1000平方米要80个。2600平方米,大概要210个吧。

2.家里面积平方适合用多少瓦的节能灯(灯泡)

一般的标准是:15—18平方米照明用灯光在60—80瓦;30—40平方米在100—150瓦;40—50平方米在220—280瓦;60—70平方米在300—350瓦;75—80平方米在400~450瓦。

通常卫生间的照明每平方米2瓦就可以了;

餐厅和厨房每平方米4瓦足够了,而书房和客厅要大些,每平方米需8瓦;在写字台和床头柜上的台灯可用15至60瓦的灯泡,最好不要超过60瓦。

您的房间是卧室,如需要读书写字的话。若15平方米,建议选择的节能型吸顶灯瓦数为65W左右。

3.基本公式为(主要是用在快速计算,准确度较差但对一般的空间平均照度计算已足够)

Lux = ((Total Lumen) x LLF x CU)/ M ^2

照度= ((总流明数) x 减光系数 x 利用系数) / 面积

这里的CU是必须依据灯具的RCR(室形系数)资料来查的。不过太麻烦了点。所以一般简算法是Lux = ((Total Lumen) x 0.5)/ M ^2最快。当然0.5可依不同的情形而增减,不过一般是减的多。

基本上流明法除了计算平均照度外,还可利用公式来求灯具数量,如好好的利用公式会让工作进行得快些也较保险些。希望有一天当客户问我用的灯过不够亮或我需要用几个灯才够,你只需让他灯30秒就利用一台计算机算出然后很自信的说没问题,绝对刚好。

其他还有可与公式配合的其他资料:

Lumen / W ---每一瓦多少流明

W / M^2---每平方米多少瓦

自己揣摩一下吧!

4.Lux = ((Total Lumen) x LLF x CU)/ M ^2

照度= ((总流明数) x 减光系数 x 利用系数) / 面积可以算出照度300乘200平米等于60000 ,减光系数0.8 ,利用系数 0.8,那就是 60000除以0.8 是75000 再除0.8是 93750总流明数。 93750除3000(灯管按3000流明算,这里说的是大概,你可以按自已选择的灯管去查资料)就是31.25 。也就是说需要 30个管灯或者32个

5.

照度E是每秒的光通量,E=φ/s 。

普通居住照度标准值一般为150LX左右。

普通学校、办公照度标准值一般为300LX左右。

500LX应该是美术教室,教师黑板,设计室,高级办公室用的。

设计室内照明可按以下思路进行:

Emin=Eav/Z。(最低照度=照度标准值/最低照度系数)

根据最低照度、面积、高度查表得Po:

P∑=Po*A(照明总功率=单位面积安装功率*每盏灯的功率)

确定受照房间灯数:

n=P∑/Po(房间灯数=照明总功率/单位面积安装功率)

参考资料:工厂供电

电气里常说:每平方米多少瓦有如下几个含义:

⑴太阳能光电版每平方米产生多少瓦动力,晶体硅太阳能电池板,每平方米有140W左右。

⑵家里面积平方适合用多少瓦的节能灯(灯泡)

一般的标准是:15—18平方米照明用灯光在60—80瓦;30—40平方米在100—150瓦;40—50平方米在220—280瓦;60—70平方米在300—350瓦;75—80平方米在400~450瓦。

通常卫生间的照明每平方米2瓦就可以了;

餐厅和厨房每平方米4瓦足够了,而书房和客厅要大些,每平方米需8瓦;在写字台和床头柜上的台灯可用15至60瓦的灯泡,最好不要超过60瓦。

您的房间是卧室,如需要读书写字的话。若15平方米,建议选择的节能型吸顶灯瓦数为65W左右。

⑶空调可以供起多少平方米的面积:

空调制冷量的经验计算公式:不顶层、不西晒情况下每平方米150W,之后乘以110%为了弥补制造过程中产生的误差,再乘以110%为了弥补过度宣传;顶层、不西晒或不顶层、西晒,按每平方米200W,既顶层又西晒每平方米250W,其他算法不变。

⑷家里使用的电线每平方(平方毫米)所能承受的功率。一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5 mm2 BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A 4 mm2 BVV铜导线安全载流量的推荐值4×8A/mm2=32A。

注:勒克斯

解释:照度的国际单位(SI),又称米烛光。1流明的光通量均匀分布在1平方米面积上的照度,就是一勒克斯。可以标作勒[克斯],简称勒。英为lux,简作lx 。

照度(Luminosity)指物体被照亮的程度,采用单位面积所接受的光通量来表示,表示单位为勒[克斯](Lux,lx) ,即 1m / m2 。 1 勒[克斯]等于 1 流

[明](lumen,lm)的光通量均匀分布于 1m2 面积上的光照度。照度是以垂直面所接受的光通量为标准,若倾斜照射则照度下降。

照度的计算

照度的计算方法,有利用系数法、概算曲线法、比功率法和逐点计算法等。

(一)利用系数法

1.利用系数的概念

照明光源的利用系数(utilization coefficient) 是用投射到工作面上的光通量( 包括直射光通和多方反射到工作面上的光通)与全部光源发出的光通量之比来表示,

即u=φe/nφ

利用系数u与下列因数有关:

1).与灯具的型式、光效和配光曲线有关。

2).与灯具悬挂高度有关。悬挂越高,反射光通越多,利用系数也越高。

3).与房间的面积及形状有关。房间的面积越大,越接近于正方形,则由于直射光通越多,因此利用系数也越高。

4).与墙壁、顶棚及地板的颜色和洁污情况有关。颜色越浅,表面越洁净,反射的光通越多,因而利用系数也越高。

2.利用系数的确定

利用系数值应按墙壁和顶棚的反射系数及房间的受照空间特征来确定。房间的受照空间特征用一个“室空间比”(room cabin rate,缩写为RCR)的参数来表征。如图8-12所示,一个房间按受照的情况下不同,可分为三个空间:最上面为顶棚空间,工作面以下为地板空间,中间部分则称为室空间。对于装设吸顶灯或嵌入式灯具的房间,没有顶棚空间;而工作面为地面的房间,则无地板空间。

室空间比 RCR=5hRC(l+b)/lb:

式中 hRC --室空间高度;

l---房间的长度;

b--房间的宽度。

根据墙壁、顶棚的反射系数(参看表8-1)及室空间比RCR,就可以从相应的灯具利用系数表中查出其利用系数。

3.按利用系数法计算工作面上的平均照度

由于灯具在使用期间,光源本身的光效要逐渐降低,灯具也要陈旧脏污,被照场所的墙壁和顶棚也有污损的可能,从而使工作面上的光通量有所减少,所以在计算工作面上的实际平均照度时,应计入一个小于1的“减光系数”。因此工作面上实际的平均照度为

Eav=uKnφ/A

式中 u____利用系数;

K____减光系数(亦称维护系数),参考值如表8-3所列;

n____灯的盏数;

φ____每盏灯发出的光通量;

A____受照房间面积。

道路照度计算公式如下:

E=φNU/KBD

具体解释/定义

E:道路照度

φ:灯具光通量

N:路灯为对称布置时取2,单侧和交错布置时取1

U:利用系数

K:混泥土路面取1.3,沥青路面取2

B:路面宽度

D:电杆间距

关于平均照度的计算公式

偶然间得到一个求平均照度的公式

E=F.U.K.N/S.W

并有几组计算数据

E= 2x9000x0.65x0.36/18/30=7.8Lx (110w高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置)

E=2x16000x0.65x0.36/18/30=13.8Lx (150W高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置)

E=2x9000x0.65x0.36/18/28=8.35Lx (110W高压钠灯,杆高10米,间距28米,道路有效宽度:20-1-1,双排对称布置)

我查了资料了解到

U为利用系数

k为维护系数(混泥土路面取1.3,沥青路面取2 )

S为路灯安装间距(28,30为安装间距)

W为道路宽度(18为道路有效宽度)

N为路灯排列方式((N路灯为对称布置时取2,单侧和交错布置时取1)

我想问的是:

1、上边举例的数据中,2是代表对称布置取2,还是沥青路面取2(我得到资料中为提及路面)

2、U利用系数和K维护系数,分别代表数据中哪个数值?

3、公式中的F是什么数据?它对应数据中哪个数值?

4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据在新的计算中如何得到

1、上边举例的数据中,2是代表对称布置取2

2、U利用系数=0.65,K维护系数=0.36

3、公式中的F是光通量,它对应数据是9000和16000

4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据都是根据所选择的灯具和光源的类型得到的。

五,路灯灯具布置设计

以30米宽的混凝土路面道路为例,假设该道路为次干路,车流较多,车速较快,则可选择双侧对称布置。

灯具高度H=8.5米,间距S=25米,灯具悬挑长2米,则有效路宽为26米,根据国家照明标准要求,其照明平均照度Eav不低于5.6Lx,照度均匀度Emin/ Eav 不小于0.35。

灯具采用超级LED路灯,功率为70W,其光通量为8000Lm,灯高8.5米道路平面等照度曲线为:

选用灯具道路平面照度曲线图

根据城市路面比较清洁的情况,选用路灯利用系数U=0.32(国际照明委员会推荐0.3),维护系数K=0.8;则路面平均照度为:

Eav =U xфx N x K/W x S

=0.32 x8000 x1 x0.8/13 x25

=6.3Lx

根据灯具的等照度曲线图可以得出其最小照度值Emin不小于3Lx则其平均均匀度为:

Emin/ Eav=3/6.3=0.47

所以该安装方案路面平均照度Eav=6.3Lx

平均均匀度Emin/ Eav=0.47符合国家标准要求

土力学习题及答案第十章.

第10章土坡和地基的稳定性 1.简答题 1.土坡稳定有何实际意义?影响土坡稳定的因素有哪些? 2.何为无黏性土坡的自然休止角?无黏性土坡的稳定性与哪些因素有关? 3.简述毕肖普条分法确定安全系数的试算过程? 4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同? 5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数? 6.地基的稳定性包括哪些内容?地基的整体滑动有哪些情况?应如何考虑? 7.土坡稳定分析的条分法原理是什么?如何确定最危险的圆弧滑动面? 8.简述杨布(Janbu)条分法确定安全系数的步骤。 2.填空题 1.黏性土坡稳定安全系数的表达式为。 2.无黏性土坡在自然稳定状态下的极限坡角,称为。 3.瑞典条分法稳定安全系数是指 和之比。 4.黏性土坡的稳定性与土体的、、 、 和等5个参数有密切关系。 5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。 3.选择题 1.无粘性土坡的稳定性,()。 A.与坡高无关,与坡脚无关 B.与坡高无关,与坡脚有关 C.与坡高有关,与坡脚有关 D.与坡高有关,与坡脚无关 2.无黏性土坡的稳定性()。 A.与密实度无关 B.与坡高无关 C.与土的内摩擦角无关 D.与坡角无关 3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( ) A.K=1.46 B. K=1.50 C.K=1.63 D. K=1.70 4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪 种方法测定?() A.三轴固结不排水试验 B.直剪试验慢剪 C.现场十字板试验 D.标准贯入试验 5. 瑞典条分法在分析时忽略了()。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事 锂电前沿原创作品:网上已有较多的N/P的文章,内容非常不错,也非常有深度。比如:锂圈人的《锂电池设计的N/P比》(见文末延伸阅读)的文章和锂想生活的《Overhang设计对锂电池性能的影响》(见文末延伸阅读)的文章。但是,从业新手普遍对文章中提到的传统石墨负极锂离子电池的N/P设计的实例运用和钛酸锂负极锂电池的N/P比两个问题感到迷茫。本文着重讲述这两个问题,当然由于水平所限,讲述不足的地方,请大牛多多指教。 正文:在设计锂电池时,正确计算正负极容量合理的配比系数非常重要。对于传统石墨负极锂离子电池,电池充放电循环失效短板主要在于负极侧发生析锂、死区等,因此通常采用负极过量的方案。在这种情况下,电池的容量是由正极容量限制,负极容量/正极容量比大于1.0(即N/P 比>1.0)。如果正极过量,在充电时,正极中出来的多余的锂离子无法进入负极,会在负极表面形成锂的沉积以致生成枝晶,使电池循环性能变差,也会造成电池内部短路,引发电池安全问题。因此一般石墨负极锂电池中负极都会略多于正极,但也不能过量太多,过量太多会消耗正极中的锂;另外也会造成负极浪费,降低电池能量密度,提高电池成本。

对于钛酸锂负极电池,由于LTO负极结构较稳定,具有高的电压平台,循环性能优异且不会发生析锂现象,循环失效原因主要发在正极端,电池体系设计可取的方案是采用正极过量,负极限容(N/P 比<1.0),这样可以缓解当电池接近或处于完全充电状态时在高电位区域正极电位较高导致电解质分解。 图1、石墨负极不足和负极过量时电池性能趋势图 传统石墨负极锂离子电池 N/P比的计算实例 N/P比(Negative/Positive)是指负极容量和正极容量的比值,其实也有另外一种说法叫CB(cell Balance)。 一般情况下,电池中的正负极配比主要由以下因素决定: ①正负极材料的首次效率:要考虑所有存在反应的物质,包括导电剂,粘接剂,集流体,隔膜,电解液。 ②设备的涂布精度:现在理想的涂布精度可以做到100%,如果涂布精度差,要加以考虑。 ③正负极循环的衰减速率:如果正极衰减快,那么N/P比设计低些,让正极处于浅充放状态,反之如果负极衰减快,那么N/P比高些,让负极处于浅充放状态 ④电池所要达到的倍率性能。

基本条分法

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs= 抗滑力矩/滑动力矩,即 =M R/M h

图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

瑞典条分法毕肖普条分法基本假设

条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理。 瑞典条分法基本假设: 滑面为圆弧面; 垂直条分; 所有土条的侧面上无作用力; 所有土条安全系数相同。 毕肖普条分法基本假设:(双重叠代可解) 滑弧为圆弧面;垂直条分;所有土条安全系数相同;考虑土条的侧向受力。 影响基底压力因素主要有: 荷载大小和分布基础刚度基础埋置深度土体性质 地基土中附加应力假设: 地基连续、均匀、各向同性、是完全弹性体、基底压力是柔性荷载。 应力分布: 空间问题——应力是x,y,z 三个坐标轴的函数。 平面问题——应力是x,z 两个坐标的函数。 库仑(C. A.Coulomb)1773年建立了库仑土压力理论,其基本假定为: (1)挡土墙后土体为均匀各向同性无粘性土(c=0); (2)挡土墙后产生主动或被动土压力时墙后土体形成滑动土楔,其滑裂面为通过墙踵的平面; (3)滑动土楔可视为刚体。 库仑土压力理论根据滑动土楔处于极限平衡状态时的静力平衡条件来求解主动土压力和被动土压力。 朗肯土压力理论是朗肯(W.J.M.Rankine)于1857年提出的。它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。 临塑荷载及临界荷载计算公式的适用条件 (1)计算公式适用于条形基础。这些计算公式是从平面问题的条形均布荷载情况下导得的,若将它近似地用于矩形基础,其结果是偏于安全的。 (2)计算土中由自重产生的主应力时,假定土的侧压力系数K0=1,这与土的实际情况不符,但这样可使计算公式简化。 (3)在计算临界荷载时,土中已出现塑性区,但这时仍按弹性理论计算土中应力,这在理论上是相互矛盾的,其所引起的误差随着塑性区范围的扩大而扩大。

《土力学》第十章习题集及详细解答讲课稿

《土力学》第十章习题集及详细解答 第10章土坡和地基的稳定性 1.填空题 1.黏性土坡稳定安全系数的表达式为。 2.无黏性土坡在自然稳定状态下的极限坡角,称为。 3.瑞典条分法稳定安全系数是指 和之比。 4.黏性土坡的稳定性与土体的、、 、 和等5个参数有密切关系。 5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。 2.选择题 1.无粘性土坡的稳定性,( B )。 A.与坡高无关,与坡脚无关 B.与坡高无关,与坡脚有关 C.与坡高有关,与坡脚有关 D.与坡高有关,与坡脚无关 2.无黏性土坡的稳定性( B )。 A.与密实度无关 B.与坡高无关 C.与土的内摩擦角无关 D.与坡角无关 3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( C ) A.K=1.46 B. K=1.50 C.K=1.63 D. K=1.70 4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪 种方法测定?( C ) A.三轴固结不排水试验 B.直剪试验慢剪 C.现场十字板试验 D.标准贯入试验 5. 瑞典条分法在分析时忽略了( A )。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力 6.简化毕肖普公式忽略了( C )。 A.土条间的作用力 B.土条间的法向作用力 C.土条间的切向作用力 3判断改错题

1. ,只有黏性土坡的稳定性才与坡高无关。 2. ,只有最小安全系数所对应的滑动面才是最危险的滑动面。 3. ,只适用于均质土坡。 4. √ 5. ,毕肖普条分法也适用于总应力法 1.黏性土坡的稳定性与坡高无关。 2.用条分法分析黏性土的稳定性时,需假定几个可能的滑动面,这些滑动面均是最危险的滑动面。 3.稳定数法适用于非均质土坡。 4.毕肖普条分法的计算精度高于瑞典条分法。 5.毕肖普条分法只适用于有效应力法。 4.简答题 1.土坡稳定有何实际意义?影响土坡稳定的因素有哪些? 2.何为无黏性土坡的自然休止角?无黏性土坡的稳定性与哪些因素有关? 3.简述毕肖普条分法确定安全系数的试算过程? 4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同? 5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数? 6.地基的稳定性包括哪些内容?地基的整体滑动有哪些情况?应如何考虑? 7.土坡稳定分析的条分法原理是什么?如何确定最危险的圆弧滑动面? 8.简述杨布(Janbu)条分法确定安全系数的步骤。 5.计算题 1.一简单土坡,。(1)如坡角,安全系数K= 1.5,试用稳定数法确定最大稳定坡高;(2)如坡高,安全系数仍为1.5,试确定最大稳定坡角;(3)如坡高,坡角,试确定稳定安全系数K。 2. 某砂土场地经试验测得砂土的自然休止角,若取稳定安全系数K=1.2,问开挖基坑时土坡坡角应为多少?若取,则K又为多少? 3. 某地基土的天然重度,内摩擦角,黏聚力,当采取坡度1∶1开挖坑基时,其最大开挖深度可为多少? 4. 已知某挖方土坡,土的物理力学指标为=18.9,若取安全系数,试问: (1)将坡角做成时边坡的最大高度; (2)若挖方的开挖高度为6m ,坡角最大能做成多大?

锂电池公式

1.设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1)设计系数一般取1.03~1.10。 2.极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2)极片宽度Wp: Wp = 电池宽度-C (3)包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4)包尾极片的宽度Wp′: Wp′= Wp-0.5 (5)其中: A —系数,取值由电池的厚度T决定,当 (1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm;(2)3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm;(3)4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值 5.2~ 6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值 5.4~ 6.0mm。 B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定:

5. 隔膜尺寸的确定 现在使用的隔膜的规格一般为厚度0.020mm、0.022mm的,隔膜的长度Ls、宽度Lt由以下公式确定: Ls = (Wp+0.5)×(2×N+2) (11)Lt = Lp+Ψ(12)其中: Ψ—隔膜宽超出极片的长度,范围为2.0~4.0mm,一般取3.0mm. 6. 包装袋的设计 6.1槽深设计 根据叠片后电芯的厚度T'确定铝塑包装膜的槽深H,为避免铝塑包装膜的二次拉伸,冲槽深度原则上等于叠片后电芯的厚度。 T'= T 正+T 负 +T 隔膜 (13) = h 正×N 正 +2h 单 +h 负 ×N 负 +h 隔膜 ×(N 负 +1)×2(14) H = T'±0.1(15) 注:以上计算针对单冲槽槽深设计,目前只能满足冲槽深度≤4.2mm的,对于4.2~5.0mm槽深的要依据生产上所能达到的实际尺寸。 其中: T 正 —正极片的总厚度; T 负 —负极片的总厚度; T 隔膜 —叠成电芯后隔膜的总厚度,隔膜的厚度一般为0.020/0.022mm; h 正 —正极片(双面)轧片后的厚度; h 单 —正极单面极片轧片后的厚度; h 负 —负极片(双面)轧片后的厚度; N 负 —负极片的数量; h 隔膜 —隔膜的厚度. 6.2 包装袋膜腔长度的确定 膜腔的长度与电芯的长度有以下关系: 膜腔长度 = 电芯长度-A (16)注:参数A的确定参见公式(2).

与电有关的各类计算公式大全

电功率的计算公式 电功率的计算公式,用电压乘以电流,这个公式是电功率的定义式,永远正确,适用于任何情况。 对于纯电阻电路,如电阻丝、灯炮等,可以用“电流的平方乘以电阻”“电压的平方除以电阻”的公式计算,这是由欧姆定律推导出来的。 但对于非纯电阻电路,如电动机等,只能用“电压乘以电流”这一公式,因为对于电动机等,欧姆定律并不适用,也就是说,电压和电流不成正比。这是因为电动机在运转时会产生“反电动势”。 例如,外电压为8伏,电阻为2欧,反电动势为6伏,此时的电流是(8-6)/2=1(安),而不是4安。因此功率是8×1=8(瓦)。 另外说一句焦耳定律,就是电阻发热的那个公式,发热功率为“电流平方乘以电阻”,这也是永远正确的。 还拿上面的例子来说,电动机发热的功率是1×1×2=2(瓦),也就是说,电动机的总功率为8瓦,发热功率为2瓦,剩下的6瓦用于做机械功了。 ________________________________________ 电工常用计算公式 一、利用低压配电盘上的三根有功电度表,电流互感器、电压表、电流表计算一段时间内的平均有功功率、现在功率、无功功率和功率因数。 (一)利用三相有功电度表和电流互感器计算有功功率 式中 N——测量的电度表圆盘转数 K——电度表常数(即每kW?h转数) t——测量N转时所需的时间S CT——电流互感器的变交流比 (二)在三相负荷基本平衡和稳定的情况下,利用电压表、电流表的指示数计算视在功率 (三)求出了有功功率和视在功率就可计算无功功率 (四)根据有功功率和现在功率,可计算出功率因数 例1某单位配电盘上装有一块500转/kW?h电度表,三支100/5电流互感器,电压表指示在400V,电流表指示在22A,在三相电压、电流平衡稳定的情况下,测试电度表圆盘转数是60S转了5圈。求有功功率、现在功率、无功功率、功率因数各为多少? [解]①将数值代入公式(1),得有功功率P=12kW ②将数值代入公式(2);得视在功率S=15kVA ③由有功功率和视在功率代入公式(3),得无功功率Q=8l kVar

基本条分法

基本条分法

————————————————————————————————作者: ————————————————————————————————日期: ?

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs=抗滑力矩/滑动力矩,即=M R/Mh

O 1 O 2 F smin An A 土层2 土层1 B 图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

毕肖普法土坡稳定的程序计算法

毕肖普法土坡稳定的程序计算法 姓名:翟慧君学号:63085217007 毕肖普法是由毕肖普( A. W. Bish op, 19 55 ) 提出的进行土坡稳定分析的一种方法。我们知道瑞典条分法在进行土坡稳定分析的时候, 不考虑相邻土条间作用力的相互影响。一般说这样得到的稳定安全系数可能偏低10% ~ 20% , 而且这种误差随着滑弧圆心角和孔隙水应力的增大而增大, 严重时可使算出的安全系数比其它较严格的方法的结果小一半。而毕肖普法考虑了土条侧面的作用力, 并且假定各土条底部滑动面上的安全系数均相同, 即等于整个滑动面的平均安全系数。因此毕肖普法是比较合理的土坡稳定分析方法。 在土坡稳定安全系数的计算中, 由于滑动圆弧的圆心和半径都是任意假定的, 计算出的安全系数不一定是最小的安全系数, 所以需要多次试算, 假定多个滑裂面才能找到计算土坡的最小安全系数。这就使得求解过程虽然不复杂, 但计算量很大的土坡稳定安全系数的计算需要花费大量的时间, 因此人们的视线自然而然的转向了利用计算机来缩短计算时间这个方向。这样的环境之下, 考虑到窗口界面已成为程序设计的基本要求, 优选visual- basic语言计算土坡的稳定安全系数。本程序不需要输入公式, 只要输入土体容重、内摩擦角、凝聚力、土坡高度、土条宽度、坡脚等一些参数, 即可计算出土坡的最小安全系数。 1 计算原理 如图1 所示, 假定滑动面为一圆心为O, 半径为R 的圆弧。任一土条中, 其上的作用力有土条自重Wi , 土条底部的总法向力Ni 和总切向力T i、条块间的法向力Ei 、Ei+ 1 和切向力Xi 、X i + 1。共有7 个未知力。为使问题求解, 毕肖普假定可忽略土条间的切向力的作用。 1. 1 滑动面圆心位置的确定 滑动面圆心位置的确定采用费伦纽斯确定最危险滑动面圆心的方法。 如图所示: D 点的位置距坡脚A 点的水平距离为4 . 5 H, 竖直距离为H。O 点的位置为从坡顶和坡底引出的与坡边坡和坡顶分别成B 1, B 2 的两条直线的交点。最危险滑弧的圆心在D O 直线的延长线附近。圆心O1, O 2, , 对应的圆弧分别求得稳定安全系数K 1, K 2, , , 绘出K 值曲线可得到最小安全系数值K m i n, 其相应的圆心O min 即为最危险滑 动面的圆心。考虑到土坡的最危险滑动面圆心位置有时可能在DO 直线的之外, 因此通过O min 点作DO 线的垂线, 在垂线上取几个点试算滑动面的圆心Oc 1、O c 2,, , 并计算稳定安全系数Kc 1、Kc 2, ,, 绘得Kc 值曲线, 最小的安全系数( Kc m i n) 的对应的圆心, 才是最危险滑动面的圆心。

施工现场临时用电计算(方式)

施工现场临时用电计算 一、计算用电总量 方法一: P=1.05~1.10(k1∑P1/Cosφ+k2∑P2+ k3∑P3+ k4∑P4)公式中:P——供电设备总需要容量(K V A)(相当于有功功率Pjs) P1——电动机额定功率(KW) P2——电焊机额定功率(KW) P3——室内照明容量(KW) P4——室外照明容量(KW) Cosφ——电动机平均功率因数(最高为0.75~0.78,一般为0.65~0.75) 方法二: ①各用电设备组的计算负荷: 有功功率:P js1=Kx×ΣPe 无功功率:Q js1=P js1×tgφ 视在功率:S js1=(P2 js1 + Q2 js1)1/2 =P js1/COSφ

=Kx×ΣPe /COSφ 公式中:Pjs1--用电设备组的有功计算负荷(kw) Qjs1--用电设备组的无功计算负荷(kvar) Sjs1--用电设备组的视在计算负荷(kVA) Kx--用电设备组的需要系数 Pe--换算到Jc(铭牌暂载率)时的设备容量 ②总的负荷计算: P js=Kx×ΣP js1 Q js=P js×tgφ S js=(P2 js + Q2 js)1/2 公式中:Pjs--各用电设备组的有功计算负荷的总和(kw) Qjs--各用电设备组的无功计算负荷的总和(kvar) Sjs--各用电设备组的视在计算负荷的总和(KVA) Kx--用电设备组的最大负荷不会同时出现的需要系数 二、选择变压器 方法一: W=K×P/COSφ 公式中:W——变压器的容量(KW) P——变压器服务范围内的总用电量(KW) K——功率损失系数,取1.05~1.1 Cosφ——功率因数,一般为0.75 根据计算所得容量,从变压器产品目录中选择。 方法二: Sn≥Sjs(一般为1.15~1.25Sjs)公式中:Sn --变压器容量(KW) Sjs--各用电设备组的视在计算负荷的总和(KVA)

护坡计算正式

土钉墙支护计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑基坑支护技术规程》 JGJ120-99 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):8.000; 土钉墙计算宽度b'(m):13.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):5.000; 基坑内侧水位到坑顶的距离(m):8.000; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 0(m) 宽度b 1 (m) 1 满布 10.00 -- --3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限 摩擦阻力饱和重度 (m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 填土 8.00 18.00 30.00 15.00 112.00 20.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 8.00 3.80 7.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 100.00 5.00 20.00 2.00 1.50 2 100.00 5.00 20.00 1.50 1.50 3 100.00 5.00 20.00 1.50 1.50 4 100.00 5.00 20.00 2.00 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ 0T jk 1、其中土钉受拉承载力标准值T jk 按以下公式计算: T jk =ζe ajk s xj s zj /cosα j 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj 、s zj --土钉之间的水平与垂直距离 α j --土钉与水平面的夹角ζ按下式计算: ζ=tan[(β-φ k )/2](1/(tan((β+φ k )/2))-1/tanβ)/tan2(45°-φ/2)

电芯正负极的容量匹配设计!

电芯正负极的容量匹配设计! 网上已有较多的N/P的文章,内容非常不错,也非常有深度。但是,从业新手普遍对文章中提到的传统石墨负极锂离子电池的N/P设计的实例运用和钛酸锂负极锂电池的N/P比两个问题感到迷茫。本文着重讲述这两个问题,当然由于水平所限,讲述不足的地方,请大牛多多指教。 正文:在设计锂电池时,正确计算正负极容量合理的配比系数非常重要。对于传统石墨负极锂离子电池,电池充放电循环失效短板主要在于负极侧发生析锂、死区等,因此通常采用负极过量的方案。在这种情况下,电池的容量是由正极容量限制,负极容量/正极容量比大于1.0(即N/P 比>1.0)。如果正极过量,在充电时,正极中出来的多余的锂离子无法进入负极,会在负极表面形成锂的沉积以致生成枝晶,使电池循环性能变差,也会造成电池内部短路,引发电池安全问题。因此一般石墨负极锂电池中负极都会略多于正极,但也不能过量太多,过量太多会消耗正极中的锂;另外也会造成负极浪费,降低电池能量密度,提高电池成本。对于钛酸锂负极电池,由于LTO负极结构较稳定,具有高的电压平台,循环性能优异且不会发生析锂现象,循环失效原因主要发在正极端,电池体系设计可取的方案是采用正极过量,负极限容(N/P 比<1.0),这样可以缓解当电池接近或处于完全充电状态时在高电位区域正极电位较高导致电解质分解。

图1、石墨负极不足和负极过量时电池性能趋势图 传统石墨负极锂离子电池N/P比的计算实例 N/P比(Negative/Positive)是指负极容量和正极容量的比值,其实也有另外一种说法叫CB(cell Balance)。 一般情况下,电池中的正负极配比主要由以下因素决定: ①正负极材料的首次效率:要考虑所有存在反应的物质,包括导电剂,粘接剂,集流体,隔膜,电解液。 ②设备的涂布精度:现在理想的涂布精度可以做到100%,如果涂布精度差,要加以考虑。 ③正负极循环的衰减速率:如果正极衰减快,那么N/P比设计低些,让正极处于浅充放状态,反之如果负极衰减快,那么N/P比高些,让负极处于 浅充放状态 ④电池所要达到的倍率性能。 N/P的计算公式:N/P=负极面密度×活性物质比率×活性物质放电比容量/正极面密度×活性物质比率×活性物质放电比容量 在4.2~3.0V电压范围,25℃下,首轮充放电效率为95%举例来说:LiCoO 2 左右,三元材料首放充放电效率在86%~90%之间。表1为商业NCM111的1C放电前三个充放电循环的质量比容量。 表1 商业NCM111电池前三个充放电循环比容量

边坡稳定性分析,毕肖普法(免费)

边坡稳定性分析 本设计任务段为湖南省洞新高速K52+200~K53+400段,总长1200m ,其中填方路堤的K52+500 横断面填方高度为17.84m ,采用此断面为边坡稳定性验算对象。 如图所示,此断面顶宽为32.0m ,边坡坡度第一阶采用1:1.5,第二阶采用1:0.75 其横截面初步拟定如图1所示: 路堤填土为粘土,土的粘聚力c=20kPa ,摩擦角为Ф=30°,天然容重为γ=18kN/m , 荷载为公路-I 级。 2.1 汽车荷载当量换算 将车辆荷载换算成土柱高(当量高度)。车辆按最不利情况排列,即假设一辆车停在硬路肩上,另两辆以最小间距d=0.6m 与它并排。按以下公式换算土柱高度为 0h = BL NQ 式中: N ——横向分布并列的车辆数,因为按最不利布载,中线每边各布3 辆,取N=3; Q ——每一辆重车的重力(标准车辆荷载为550KN ); L ——前后轮最大轴距,按《公路工程技术标准》(JTG B01—2003)规定对于标准车辆荷载为12.8m r ——路基填料的容重; B ——荷载横向分布宽度,表示如下: B=Nb+(N-1)m+d

式中: b ——后轮轮距,取1.8m ; m ——相邻两辆车后轮的中心间距,取1.3m ; d ——轮胎着地宽度,取0.6m 则:B=Nb+(N-1)m +d =3?1.8+(3-1)?1.3+0.6=8.6m 故按双向布六辆车,布满行车道时,h 0=(3×550)/(18×8.6×12.8)=0.83m 2.2 简化Bishop 法求稳定系数K 2.2.1 最危险圆弧圆心位置的确定 以坡脚为坐标原点,按4.5H 法初定滑动圆心辅助线: (1)由表查得:1β=26°,2β =35°,以坡角为圆心将AB 线逆时针旋转26°,再以B 点为圆心,BC 为基线,旋转35°,两直线交于E 点; (2)量得坡角到路面的距离h=10.24m ,由坡角向下做垂线,量取路堤高 H=17.84+0.83=19.67m 得D 点; (3)由C 点向右引水平线,在水平线上截取4.5H=45.99m 得D 点; (4)连接点D 、E 得直线DE ,即为滑动圆心辅助线; (5)绘出五条不同的位置的滑动曲线; (6)将圆弧范围土体分成若干段; (7)算出滑动曲线每一分段中点与圆心竖曲线之间的偏角α; sin α= R X 式中: X —分段中心距圆心竖直线的水平距离,圆心竖曲线左侧为负,右侧为正; R —滑动曲线半径m

锂电K值计算

引言: K值是用于描述电芯自放电速率的物理量,其计算方法为两次测试的开路电压差除以两次电压测试的时间间隔,公式为OCV2-OCV1/△T。电芯在出货之前,一定要进行K值测试,并将K值大(等价于自放电)的电芯挑出来。对于一个每家必测且如此重要的物理量,我们显然有必要对其进行深入的研究,本文的内容,便是如此。 如何测试K值 在电芯分容后,并不可以马上测试电压,而是要将刚完成分容的电芯存储几天后(本文称呼其为第一次存储)再进行OCV1的测试,然后再存储几天(本文称呼其为第二次存储)进行OCV2测试。电芯的K值,由OCV2减去OCV1后的差值,再除以两次存储之间的时间差值算得。 一般而言,第一次存储我们会使用45度或更高一些的高温条件,其目的有两个:通过高温存储将有腐蚀气账的电芯预先挑出来;通过高温存储让电芯的电压降速率逐步平

发生副反应从而造成电解液过早消耗干、电芯循环跳水。

值的大小)是一个先快后慢的过程,需要常温搁置数日之后,压降速度才能基本稳定。

不同SOC状态下,K值也可能有明显不同:

高,一致性差隔膜的使用会造成K值分布明显发散,制片、卷绕、叠片是引入粉尘和金属碎屑的高危工序,测试条件的变化或温度的不稳定(下详)也会造成K值的异常波动。不论怎么说,分析技术类问题靠的是通用思路+ 对专业问题的经验积累,这才是解决问题的不二法则。 3)负K值是咋回事?只要测试K值之前电芯是在充电的,那理论上就不会出现负K 值(也就是电压上升的情况)。实际遇到的负K值,大多数是由测试温度变化引起的:电芯温度越低,电压就会越高,如果OCV2的测试温度明显低于OCV1的温度,电芯K值就容易为负。小编曾经遇到过一次严重的K值不稳定问题,当时车间温度波动非常大,K 值一会儿大批负值、一会儿大批不良,为了分析这个问题,小编制作了下图: 上图中蓝色点为K值实测数据,红色线为实测数据的移动平均值,横坐标为测试时间(minitab横坐标没法做成时间,因而只能以数据点数代替)。从上图中我们可以发现:该批电芯K值在随着测试时间进行规律的上下波动。再结合当时车间重新进行了布局、温度时高时低这一实际情况,就可以得出K值异常波动是测试温度引起的、而非电芯性能问题这一结论,因为后者显然不可能造成K值与测试时间有密切关系。 4)如何缩短K值测试周期?K值测试需要数天时间,有时候等不及了怎么办呢?如果是样品的话,可以考虑适当增加分容后高温存储的温度,这样可以加速电芯的老化、缩短老化存储时间,让K值尽快平稳;出货时,将K值离群偏大的电芯挑出、只出K值分布

锂离子电池设计公式

锂离子电池设计公式 一、叠片式聚合物锂离子电池设计规范 1.设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)=要求的最小容量 x设计系数(1) 设计系数一般取 1.03?1.10。 2.极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp : Lp =电池长度—A -B (2) 极片宽度Wp : Wp =电池宽度—C (3) 包尾极片的长度 Lp': Lp ' = 2Lp+ T1.0 (4) 包尾极片的宽度 Wp : Wp = Wp0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1) T<3mm时,对于常规电芯 A 一般取值4.5mm,大电芯一般取值 4.8mm; (2) 3mm < T<4mm时,对于常规电芯 A 一般取值 4.8mm,大电芯一般取值 5.0mm ; (3) 4mm < T<5mm时,对于常规电芯 A 一般取值 5.0mm,大电芯一般取值 5.2~6.0mm ; (4) 5mm < T<6mm时,对于常规电芯 A 一般取值 5.2mm, 大电芯一般取值 5.4~6.0mm。 B —间隙系数,一般取值范围为 3.6?4.0mm ; C —取值范围一般为 2.5?2.6mm (适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3.极片数、面密度的确定: 确定极片的数量 N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取 300mAh/g。 N = (T-0.2 ) /0.35 ± (6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片=Lp XWp ( 7) C 设=C 正比xS 极片x NXpE X TJE ( 8)

第四节粘性土土坡稳定分析的条分法

第四节 粘性土土坡稳定分析的条分法 一、费伦纽斯条分法 1、基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都不相同,自重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整个滑动弧面上反力分布不清楚;另外,对于φ>0的粘性土坡,特别是土坡为多层土层构成时,求W 的大小和重心位置就比较麻烦。故在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。该法也假定各土条为刚性不变形体,不考虑土条两侧面间的作用力。 2、计算步骤:为—土坡,地下水位很深,滑动土体所在土层孔隙水压力为0。条分法的计算步骤如下: 1)按一定比例尺画坡; 2)确定圆心O 和半径R ,画弧AD ; 3)分条并编号,为了计算方便,土条宽度可取滑弧半径的1/10,即R b 1.0=,以圆心O 为垂直线,向上顺序编为0、1、2、3、……,向下顺序为-1、-2、-3、……,这样,0条的滑动力矩为0,0条以上土条的滑动力矩为正值,0条以下滑动力矩为负值; 4)计算每个土条的自重 b rh W i i = (i h 为土条的平均高度) 5)分解滑动面上的两个分力 i i i W N αcos =; i i i W T αs i n = 式中:i α——法向应力与垂直线的夹角。

6)计算滑动力矩 ∑==n i i i s a W R M 1sin ――式中:n :为土条数目。 7)计算抗滑力矩 RcL a Wi Rtg M n i i r +=∑=1cos ?――式中:L 为滑弧AD 总长。 8)计算稳定安全系数(safetyfactor)。 ∑∑==+==n i i i n i i i s r a W cL a W tg M M k 1 1sin cos ? 9)求最小安全系数,即找最危险的滑弧,重复2)~8),选不同的滑弧,求K 1、K 2、K 3…… 值,取最小者。 该法计算简便,有长时间的使用经验,但工作量大,可用计算机进行,由于它忽略了条间力对N i 值的影响,可能低估安全系数(5~20)%。 【例】某土坡如图所示。已知土坡高度H =6m ,坡角β=55°,土的重度γ =18.6kN/m 3,内摩擦角? =12°,粘聚力 c =16.7kPa 。试用条分法验算土坡的稳定安全系数。 【解题思路】 ①按比例绘出土坡,选择滑弧圆心,作出 相应的滑动圆弧。 ②将滑动土体分成若干土条(本例题将该 滑弧分成7个土条)并对土条编号; ③量出各土条中心高度h i 、宽度b i ,并列表计算sin β i 、cos β i 以及土条重W i 等值,计算该圆心和半径下的安全系数

短路电流计算公式

二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV

相关主题
文本预览
相关文档 最新文档