当前位置:文档之家› 2级高频小信号放大电路设计汇总

2级高频小信号放大电路设计汇总

2级高频小信号放大电路设计汇总
2级高频小信号放大电路设计汇总

辽宁工业大学

高频电子线路课程设计(论文)题目:2级高频小信号放大电路设计

院(系):电子与信息工程学院

专业班级:

学号:

学生姓名:

指导教师:

教师职称: 副教授

起止时间:2013.06.28—2013.07.07

课程设计(论文)任务及评语

院(系):电子与信息工程学院教研室:通信教研室Array

注:成绩:平时20% 论文质量40% 答辩40% 以百分制计算

摘要

高频小信号放大器是用于无失真的放大某一频率范围的信号。按其频带宽度可分为窄带与宽带放大器,而最常用的为窄带放大器,它是以各种选频网络组成的谐振回路作为负载,兼具电阻变换和选频滤波的功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。LC单调谐回路谐振放大器主要用于无线电接收系统中高频和中频信号的放大,其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。

本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择,实现放大器与前后级的阻抗匹配,另外通过两级单调谐回路的级联来提高电路的总电压增益,从而使电路工作稳定可靠。

关键词:高频小信号;LC谐振回路;放大器

目录

第1章绪论 (1)

1.1高频小信号放大电路的设计意义 (1)

1.2设计参数及要求 (2)

第2章电路基本原理 (3)

2.1电路原理 (3)

2.2主要质量指标 (3)

2.3谐振放大器的工作稳定性 (5)

2.4多级单调谐回路谐振放大器 (6)

第3章整体电路设计 (8)

3.1整体电路图及工作原理 (8)

3.2电路参数计算 (8)

3.3整体电路仿真及分析 (10)

第4章设计总结 (12)

参考文献 (13)

附录: (14)

第1章绪论

1.1高频小信号放大电路的设计意义

20世纪末,电子通讯获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。在无线通信中,发射与接收的信号应当适合于空间传输。所以,被通信设备处理和传输的信号是经过调制处理过的高频信号,这种信号具有窄带特性。而且,通过长距离的通信传输,信号受到衰减和干扰,到达接收设备的信号是非常弱的高频窄带信号,在做进一步处理之前,应当经过放大和限制干扰的处理。这就需要通过高频小信号放大器来完成。

高频放大器与低频放大器的主要区别是二者的工作频率范围和所需通过的频带宽度有所不同,所以采用的负载也不相同。低频放大器的工作频率低,但整个工作频带宽度很宽。高频放大器的中心频率一般在几百千赫至几百兆赫,但所需通过的频率范围(频带)和中心频率相比往往是很小的,或者只工作于某一频率,因此一般都是采用选频网络组成谐振放大器或非谐振放大器。所谓谐振放大器,就是采用谐振回路(串、并联及耦合回路)做负载的放大器。根据谐振回路的特性,谐振放大器对应靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。

高频小信号放大器是通信设备中常用的功能电路,实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。高频小信号谐振放大电路除具有放大功能外,还具有选频功能,即从众多信号中选择出有用信号、滤除无用的干扰信号的能力。从这个意义上讲,高频小信号放大电路又可视为集放大、选频于一体,由有源放大元件和无源选频网络所组成的高频电子电路。主要作用是做接收机的高频放大器和中频放大器。

高频小信号放大器的分类:

按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;

按频带宽度分为:窄带放大器、宽带放大器;

按电路结构分为:单级放大器、多级放大器;

按负载特性分为:谐振放大器、非谐振放大器;

高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择。同时另加其它电路,实现放大器与前后级的阻抗匹配。

1.2设计参数及要求

设计内容:

1.用EWB仿真,设计一个2级小信号放大电路。

2.能够观察输入输出波形。

3.测量并计算放大倍数。

4.分析电路。

设计参数:

每一级放大倍数自定。

设计要求:

1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。

2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。

3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。

4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。

第2章 电路基本原理

2.1 电路原理

图2.1为单调谐回路谐振放大器原理性电路图,为了突出本文所要讨论的中心问题,图中略去了在实际电路中所必加的附属电路(如偏置电路)等。由图可知,由LC 单回路构成集电极的负载,它谐调于放大器的中心频率。LC 回路与本级集电极电路的连接采用自耦变压器形式(抽头电路),与下级负载L Y 的连接采用变压器耦合。采用这种自耦变压器—变压器耦合形式,可以减弱本级输出导纳与下级晶体管输入导纳L Y 对LC 回路的影响,同时,适当选择初级线圈抽头位置与初次级线圈的匝数比,可以使负载导纳与晶体管的输出导纳相匹配,以获得最大的功率增益。

本文所讨论的是小信号放大器,因而都工作于甲类,晶体管的作用可用Y 参数等效电路来表示。

2.2 主要质量指标

为了分析高频小信号放大器,首先应当了解实际运用时对它的要求如何,也就是应当先讨论它的主要质量指标。

对高频小信号放大器提出的主要质量指标如下: 1.电压增益与功率增益

放大器的输出电压(或功率)与输入电压(或功率)之比,称为放大器的增益或放大倍数,用v A (或Ap )表示。放大器增益的大小,决定于所用晶体管、要求的通频带宽度、是否良好匹配和稳定的工作。 2.通频带

通频带的定义是放大器的电压增益下降到最大值的1/2倍时所对应的频率范围,常用7.02f ?来表示。放大器的通频带决定于负载回路的形式和回路的等效品质因数L Q 。此外,放大器的总通频带随着放大级数的增加而变窄。并且,通频带越宽,放大器的增益越小,两者是相互矛盾的。在通频带较窄的放大器中,这两者之间的矛盾还不突出,而在频带较宽的放大器中,频带和增益的矛盾变得突出。这是必须在牺牲单级增益的情况下,来保证所需的频带宽度。至于总增益,则可用加多级数的办法来满足。 3选择性

放大器从含有各种不同频率的信号总和(有用的和有害的)中选出有用的信号,排除有害(干扰)信号的能力,称为放大器的选择性。选择性指标是针对抑制干扰而言的,矩形系数和抑制比是两个衡量选择性的基本指标。

(1).矩形系数是表征放大器选择性好坏的一个参量,而选择性是表示选取有用信号、抑制无用信号的能力。理想的频带放大器应该对通频带内的各信号频谱分量予以同样的放大,而对通频带以外的邻近波道的干扰频率分量则应完全抑制,不予放大。因此,理想的频带放大器的频率响应曲线应是矩形。但是,实际的放大器的频率响应曲线与矩形有较大的差异,矩形系数用来表示实际曲线与理想矩形的接近程度,通常用1.0r K 来表示,其定义为:

式中7.02f ?为放大器的通频带;1.02f ?为放大器的电压增益下降至最大值的0.1倍时所对应的频带宽度。矩形系数越接近1,则实际曲线越接近矩形,滤除邻近波道干扰信号的能力越强。通常,频带放大器的矩形系数约在2到5范围内。 (2).抑制比或称抗拒比,通常说明某些特定频率,如中频、象频等选择性的好坏。当对信号频率调谐时,谐振点0f 的放大倍数为0v A 。若有一干扰,其频率为n f ,则电路对此干扰的放大倍数为v A ,我们就将放大器对干扰的抑制能力定义为:

通常将上式称为对干扰的抑制比(或抗拒比),用分贝表示,则d dB d lg 20)(=。

7

.01

.01.022f f K r ?=

v

v A A d 0

=

4.工作稳定性

工作稳定性是指放大器的工作状态(直流偏置)、晶体管参数、电流元件参数等发生可能的变化时,放大器的主要特性的稳定程度。一般的不稳定现象是增益变化、中心频率偏移、通频带变窄、谐振曲线变形等。极端的不稳定状态是放大器自激,致使放大器完全不能正常工作。特别是在多级放大器中,如果级数多,增益高,则自激的可能性最大。为了使放大器稳定工作,需要采取相应的措施,如限制每级的增益、选择内部反馈小的晶体管、加中和电路或稳定电阻、使级间失匹配等。此外,在工艺结构方面,如元件排列、屏蔽、接地等方面均应良好,以使放大器不自激或远离自激。 5.噪声系数

噪声系数是用来表征放大器的噪声性能好还的一个参量。在放大器中,噪声总是有害无益的,因而应力求使它的内部噪声愈小愈好,即要求噪声系数接近1。在多级放大器中,最前面的一、二级对整个放大器的噪声系数起决定性作用,因此要求它们的噪声系数尽量接近1.为了使放大器的内部噪声小,可采用低噪声管,正确选择工作点电流,选择合适的线路等。

2.3 谐振放大器的工作稳定性

在实际运用中,晶体管存在着反向传输导纳re y ,放大器的输出电压o V 可通过晶体管的re y 反向作用到输入端,引起输入电流i I 的变化,这种反馈作用将可能引起放大器产生自激振荡等不良后果。

放大器存在着稳定系数和稳定增益。稳定系数用S 表示,S 越大,则放大器越稳定;1=S 为维持自激振荡的条件。对于一般放大器来说,5≥S ,就可以认为是稳定的。而所谓稳定增益,是指晶体管不加任何稳定措施,而满足稳定系数S 的要求时,放大器工作于谐振频率的最大的电压增益。理论上,只要放大器的电压增益不大于12.52,在没有任何稳定措施的条件下,放大器是稳定的,即满足5≥S 的要求。

提高谐振放大器的稳定性的措施:由于晶体管存在着re y 的反馈,所以晶体管是一个“双向器件”。作为放大器工作时,re y 的反馈作用是有害的,其有害作用是可能引起放大器工作的不稳定。使晶体管re y 的反馈作用消除的过程称为单向化,单向化的目的就是提高放大器的稳定性。

单向化的方法有两种:一种是消除re y 的反馈作用,称为“中和法”;另一种是使负载电导或信号源电导的数值加大,因而使得输入或输出回路与晶体管失去匹配,称为“适配法”。

所谓中和法,是在晶体管放大器的输出和输入之间引入一个附加的外部反馈电路,以抵消晶体管内部re y 的反馈作用。由于re y 中包含电导分量和电容分量,因此外部反馈电路也包括电阻分量和电容分量两部分,并要使通过电阻、电容分量的外部反馈电流正好与通过re y 所产生的内部反馈电流相位差180°,从而互相抵消,变双向器件为单向器件。但是严格的中和很难达到,因为晶体管的反向传输导纳re y 是随频率变化的,因而只能对一个频率点起到完全中和的作用。

失配法的实质是指信号源内阻不与晶体管输入阻抗匹配;晶体管输出端负载阻抗不与本级晶体管的输出阻抗匹配。可以选择合适的接入系数1p ,2p 或在谐振回路的两端并联阻尼电阻来实现降低电压增益。在实际运用中,较多的采用共射-共基级联放大器。由于共基电流的特点是输入阻抗很低(亦即输入导纳很大)和输出阻抗很高(亦即输出导纳很小),当它和共射电路连接时,相当于共射放大器的负载导纳很大。所以共射-共基级联放大器的稳定性比一般共射放大器的稳定性高的多。共射级在负载导纳很大的情况下,虽然电压增益很小,但电流增益仍较大,而共基级虽然电流增益接近1,但电压增益却较大,因此级联后功率增益较大。

2.4 多级单调谐回路谐振放大器

在实际应用中,若单级放大器的增益不能满足设计要求,那么就会采用多级放大器,即多个单级放大器级联。

假如放大器有m 级,各级的电压增益分别为1v A ,2v A ,…, vm A ,显然,总增益m A 是各级增益的乘积,即vm v v m A A A A ???= 21

如果多级放大器是由完全相同的单级放大器组成的,即vm v v A A A === 21 那么,整个放大器的总增益是m

v m A A 1=,因此m 级和单级放大器的通频带具有如下关系:

由于式中的m 是大于1的整数,所以带宽缩减因子必定小于1。因此,m 级相同的放大器级联时,总的通频带比单级放大器的通频带缩小了。级数愈多,m 愈大,总通频带愈小。如果要求m 级的总通频带等于原单级的通频带,则每级的通频带要相应地加宽,即必须降低每级回路的L Q 。这时,

()7.01

7.02122f f m m ????? ??-=?7

.00

1212f f Q m L ??

?? ??-=

采取和在单级时求矩形系数的同样方法,可求得m 级单调谐放大器的矩形系数为

()()1

2

11002217.01.01.0--=

??=

m

m m

m

r f f K

第3章 整体电路设计

3.1 整体电路图及工作原理

根据设计任务要求以及单调谐回路谐振放大器的原理,2级高频小信号放大器的整体电路如图3.1所示:

高频小信号放大器的工作原理是实现对微弱的高频信号进行不失真的放大。若输入信号电压为wt U u im i cos =,则输出电压t U A u im m o ωcos =,其中m A 为放大器的电压增益,即放大倍数。输入信号为小信号电压,输出信号是通过谐振回路放大后的电压。

3.2 电路参数计算

2级高频小信号放大器是由两个单调谐放大器级联而组成,由于是两级放大,为了计算方便,令两部分放大电路的元件参数均相同,即电路的主要质量指标完全相同。要计算整体电路的电压增益,则需要先计算单调谐回路谐振放大器的相关性能指标,由此推出设计电路的相关指标。 ⒈单调谐回路谐振放大器性能指标

假设谐振频率MHz f 5.60=,通频带带宽MHz BW 8.0=,电压增益大于20dB ,选用晶体管3DG6C 在性能上可以满足要求。晶体管确定后,根据高频小

信号谐振放大器的信号幅值较小,晶体管应工作于线性状态,在满足放大倍数

的前提下,静态工作点处的电流EQ I 应尽可能的小一些,以减小静态功率损耗。静态工作点电流EQ I 的变化会引起Y 参数的变化,在正常的取值范围内,随着EQ I 的增加,fe y 会变大,ie g 和oe g 会增加。已知晶体管的参数为MHz f T 250≥,

Ω='70r b b ,pF C c b 3=',mA I EQ 1=,600=β。由此可计算出如下参数:

Ω

?=?=301056.1/26,mA I mV r EQ e b β S r g e b e b 31064.0/1,,-?==

S mV mA I g e 3m 1046.3826/-?==

F f g C T 12e b'105.242/-?==π

由以上参数可得:Ω===K 5.121b b e R R R ,F e μ1.0C =,因为pF C c b 3=',且c b e b C C ,,??,由以上四个参数根据计算公式得出相应的Y参数:

mS j C j g r C j g e b e b b b e b e b ie 82.216.1)(1/)(y +=+++='''''ωω

由此可得: mS g ie 16.1=,F C ie 12105.22-?=

mS j C j g r g r C j e b e b b b b b e b oe 922.0185.0)(1/y +=++='''''ωω

由此可得: mS g oe 185.0=,F C oe 12103.7-?=

mS j C j g r g e b e b b b m fe 73.095.34)(1/y -=++='''ω

由此可得: mS y fe 65.35=,37.11-=fe ?

mS j C j g r C j y e b e b b b c b re 347.007.0)(1/--=++-=''''ωω

由此可得: mS y re 354.0=,4.101-=re ?

由因为谐振回路总电容ie oe o C P C P C C 2

22

1++=∑,211N N P =,322N N P =,C C C T o +=,选取6.01=P ,3.02=P ,将以上参数代入∑C 中,得到pF C 628.20=∑,为了计算方便,可通过调节可变电容T C 使pF C 20=∑,由此可计算出pF C 470=。

根据公式()2

021f C L π∑=,可得H L μ3.1=。由中心频率MHz f 20=,有载品

质因数258.02027.0==?=f f Q L ,mS Q C g L 101.00==∑∑ω,由∑g 可计算出

Ω=K R T 10。

由以上参数可得出以下电路性能指标: 电压增益:2021=-=∑g Y P P A fe v

通频带:MHz Q f BW L 8.00== 矩形系数:()

95.9110

222

7.01.01.0≈-=??=f f K r

2.2级高频小信号放大器性能指标

电压增益:()()4002

2==v v A A

通频带:()MHz f f BW 5.021227.021

27.0≈????

? ??-=?=

矩形系数:

3.3 整体电路仿真及分析

用EWB 仿真软件,实现该电路的模拟和仿真,整体电路仿如图3.2所示:

由整体电路仿真可以通过示波器的两个通道得到输入输出波形,如图 3.3所示,观察图中的波形可知,上面的曲线是2级高频小信号放大电路的输入波

形,而下面的曲线是输出波形。

()()()()()

66

.4121100

22212

127.021.021.0=--=

??=f K f r

0MHz BW 8.0=,谐振电压放大倍数()4002=v A ,矩形系数()1066.421.0<=r K 的2级高频小信号放大电路。设计中运用了LC 谐振回路,不但可以对高频小信号进行放大,而且还可以起到选频滤波的作用。电路的连接方式采用两级电路级联,对高频小信号进行放大,提高了电路的总电压增益,使电路工作稳定可靠。

第4章设计总结

通过两个星期的课程设计,我获得了各方面能力的锻炼,包括调查和研究、查阅文献和检索资料的能力,数据处理、综合分析、理论联系实际的能力及计算机绘图和文字处理的能力。从一开始的无从下手到学会查阅资料、查阅文献,到独立分析和解决问题,到最后的整体设计和论文整理,每一个环节我都受益颇多。

课程设计不仅是对我所学的高频电子线路知识理论的检验与总结,而且也是对自己能力的一种提高。通过本次设计,我深刻的体会到理论联系实际的重要性,并且意识到在工作中要不断地用理论来指导实践,用实践来深化理论,做好这些的前提就是要深入掌握理论知识,并且综合运用所学的基础知识理论和基础技能来分析解决实际问题,此过程不仅巩固了所学的知识,而且还扩大了专业知识面,为以后的工作打下基础。

在高频课程设计的过程中,我遇到了诸多的问题,例如:查阅资料的方法错误、设计思路的不正确、电路图连接错误、调试软件不熟练等等。通过仔细分析、独立思考、同学讨论以及老师的点拨,很多问题都迎刃而解。通过这些问题的出现,问题的解决,更加锻炼了我的细心、耐心和毅力,为以后的生活奠定了基础。

参考文献

[1] 张肃文主著《高频电子线路》高等教育出版社 2012.12

[2] 市川裕一编著《高频电路设计与制作》科学出版社2012.1

[3] 黑田彻编著《晶体管电路设计与制作》科学出版社 2011.3

[4] 铃木雅臣编著《高低频电路设计与制作》科学出版社 2012.3

[5] 稻叶保编著《模拟技术应用技巧101例》科学出版社2013.1

[6] 阎石主编《数字电子技术基础》高等教育出版社2012.3

[7] 康华光主编《电子技术基础》高等教育出版社 2011.11

[8] 高吉祥编著《电子技术基础实验与课程设计》电子工业出版社 2002.6

[9] 张玉璞编著《电子技术课程设计》北京理工大学出版社 2010.2

[10] 鲁宝春主编《数字电子技术基础学习指导》北京东北大学出版社 2012.2

附录:

元件明细表

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。 下图中绿色为输入波形,蓝色为输出波形

Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 2次谐波 4次谐波 6次谐波

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

调谐小信号放大器分析设计方案与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。 本次实验需做内容

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

MESFET功率放大器设计:小信号法

第七讲功率放大器设计 MESFET 功率放大器设计:小信号法 基本工程问题: 没有大信号器件模型,怎样设计功率放大器? *许多器件供应商不提供其器件的大信号模型. *通常提供的唯一设计数据是器件的小信号S参数和静态IV曲线. *利用前面STEVE CRIPPS 介绍的负载线法,根据这些数据足以设计第一类的功率放大器. 功率放大器是大信号器件,因为在接近功率饱和时其特性呈现非线性。但许多场合,设计师仅有一组小信号S参数,在电路仿真时,作为表示有源器件的根据。由于这些S参数只适用于小信号,在大信号时怎样设计最大射频输出功率和线性,并不清楚。Steve Cripps 提出一种方法,可以用器件的静态IV曲线确定大信号负载线阻抗(RL),设计第一类放大器。RL用做目标阻抗,即用输出匹配电路表示的管子漏极负载。用该方法设计师可以对RF 最大输出功率优化输出电路,同时对最佳输入匹配和最大增益优化输入电路。通常输出匹配较差,这是因为为了输出最大RF功率,有意造成一定失配(即:输出匹配对RL优化,而不是对器件的S22优化)。 该方法的局限性 *仅对最大Psat优化 *仅对A类和AB类工作状态有效 *无法计算交调产物:IM3,IMR5,IP3 *无法计算谐波电平 *无法计算ACPR(对数字调制) 小信号设计技术有其局限性。输出电路对最大RF饱和功率优化,但不一定对最大线性功率。就是说无法直接计算1dB压缩点输出功率。而且也无法直接计算放大器的二音交调性能:IM3,IM5,IP3和IP5。为了计算这些重要参数,设计师必须依靠测量法或“经验(rules of thumb)”。MESFET放大器的两个重要“经验”是: *P-1dB比Psat约低1dB。 *IP3比P-1dB约高10—12dB。 论题: 用小信号法求解最大功率 *设计流程图(步骤) *指标 *选择器件 *由IV曲线计算负载线电阻 *匹配网络 *分布参数与集总参数 *仿真:增益,输入匹配和输出匹配 *提取封装参数

实验2__高频小信号调谐放大器

高频电子线路实验报告姓名: 班级:

实验一高频小信号调谐放大器 一、实验目的 1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。 2.掌握信号源内阻及负载对谐振回路Q值的影响。 3.掌握高频小信号放大器动态范围的测试方法。 二、实验内容: 1.调测小信号放大器的静态工作状态。 2.用示波器观察放大器输出与偏置及回路并联电阻的关系。 3.观察放大器输出波形与谐振回路的关系。 4.调测放大器的幅频特性。 5.观察放大器的动态范围。 三、实验仪器设备: 1、高频电子线路实验箱GP-4。 2、数字存储示波器TDS-1002 3、高频信号发生器WY-1052A 4、数字万用表 四、实验步骤: 实验用单调谐回路谐振放大器电路如图1所示。图中,R1、R2、RE用以保证晶体管工作于放大区域,从而放大器工作于

甲类。 C2是RE的旁路电容,C1、C7是输入、输出耦合电容,L、C3、C4是谐振回路,C3用来调谐,K1、K2、K3用以改变集电极回路的阻尼电阻R3,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值) 的影响。K4、K5、K6用 以改变射极偏置电阻R4, 以观察放大器静态工作 点变化对谐振回路 (包括电压增益)的 影响。为了减轻负载 对回路Q值的影响, 输出端采用了(部分 接入方式),即电感 抽头输出方式。

(一):单级单调谐电路 用示波器在小信号放大器的模块的TT2处观察,调节小信号放大器的T2,CC2,适当调节该模块的w3,使TT2处信号V o的峰值V op-p 最大不失真。记录各数据,填表中。 电压增益系数: 放大器的谐振回路对应的电压放大系数Avo 称为谐振放大器的电压增益系数。当电路处于谐振放大状态时,Avo 计算公式如下: Avo = V o / Vi 或Avo = lg(V o / Vi)dB

低频小信号放大器电路设计

摘要 低频小信号放大器电路设计 摘要 实用性低频小信号放大器电路设计,它主要用于使用前置放大器的低频小信号的电压经过集成块LM358的放大使其增益二十几倍,达到信号放大的作用,本文介绍了其基本原理,内容,与低频放大微弱信号放大能力的技术路线,设计电路图方案等。 本系统是基于(IC)LM358设计而成的一种低频小信号放大器,整个电路主要由稳压电源,前置放大电路,波形变换电路3部分。电源主要是为前置放大器提供稳定的直流电源。前置放大器主要是由ML358一级放大电路和ML358二级放大电路组成,第一级可以将电压放大5倍,第二级可以放大1-5倍,总增益20-25倍,接通电源后,信号发生器产生信号,示波器用于变换的波形显示。通过波形的数据变化,计算出增益效果,是否满足设计需求。 该设计的电路结构简单,实用,充分利用了集成功放的优良性能。实验结果表明,前置放大器的带宽,失真,效率等方面具有较好的指标,具有较高的实用性,为小信号放大器的设计是一个广泛的思考。 关键词:低频小信号,电压放大,前置放大级电路,集成块LM358

Abstract Design of low frequencysmall signal amplifier Abstract: The utility of low frequency small signal amplifier circuit design, it is mainly used for voltage low frequency small signal using a pre amplifier after amplification integrated block LM358 has gain 20 times, achieve signal amplification effect, this paper introduces the basic principle, content, and low frequency amplification technology route of weak signal amplification ability, circuit design scheme. The system is based on (IC) a low frequency small signal amplifier LM358 designed, the whole circuit is mainly composed of a regulated power supply, preamplifier circuit, a waveform transform circuit 3 parts. The power supply is mainly to provide a stable DC power for the preamplifier. The preamplifier is mainly composed of ML358 amplifier and ML358 two stage amplifier circuit, the first stage of the voltage can be magnified 5 times, second can be magnified 1-5 times, 20-25 times of the total gain, power, signal generator generates a signal, oscilloscope is used to transform the waveform display. By the waveform data changes, calculated the gain effect, whether meet the design requirements. The design of the circuit structure is simple, practical, make full use of the excellent performance of the integrated amplifier. The experimental results show that, the pre amplifier bandwidth, distortion, has better efficiency indicators, and has higher practicability, designed for small signal amplifier is a broad thinking. Keywords:Lowfrequency smalsignal,voltage amplification,preamplifiercircuit,Integrated block LM358

晶体管中频小信号选频放大器设计(高频电子线路课程设计)..

课程设计任务书 学生姓名:专业班级:电子1001班 指导教师:韩屏工作单位:信息工程学院题目:晶体管中频小信号选频放大器设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体管或集成电路完成一个调幅中频小信号放大器的设计; 2.放大器选频频率f0=455KHz,最大增益200倍,矩形系数不大于5; 3.负载电阻R L=1KΩ时,输出电压不小干0.5V,无明显失真; 4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年12月10日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年12月11日至2013年12月26日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2013年12月27日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. I Abstract ...................................................................................................... I I 一、绪论 (1) 二、中频小信号放大器的工作原理 (2) 三、中频选频放大器的设计方案 (3) 3.1 稳定性分析 (3) 3.2 提高放大器稳定性的方法 (4) 3.3中频选频放大 (5) 3.4 信号负反馈 (6) 四、电路仿真与分析 (7) 4.1 multisim仿真软件简介 (7) 4.2 中频选频放大部分仿真 (7) 五、实物制作及调试 (9) 六、个人体会 (12) 参考文献 (13) 附录I 元件清单 (14) 附录II总电路图 (15)

通信电子电路课程设计(小信号放大器)

通信电子线路课程设计--高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

年月日 目录 一、前言 (3) 二、电路基本原理 (3) 三、主要性能指标及测量方法 (5) 1、谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1、设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试 (13) 六、心得体会 (14) 七、参考文献 (15)

一、前言 高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助设计在很早以前就已经成为了一种趋势,这类软件的问世也极提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP软件设计了一个高频小信号放大器。 二、电路的基本原理 高频小信号放大器的功用就是五失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

高频小信号放大器

高频小信号放大器() 一、学习目标与要求 1.掌握单调谐回路谐振放大器工作原理的分析方法,理解提高稳定性措施; 2.了解同步调谐放大器和双参差调谐放大器工作原理; 3.了解双调谐放大电路,能够识读各种类型的谐振放大器电路; 4.了解集中选频放大器电路;了解噪声概念; 二、学习要点 (一)高频小信号放大器的分类 (l )按器件分类 高频小信号放大器若按器件分可分为晶体管放大器、场效应管放大器、集成电路放大器。 (2)按通带分类 高频小信号放大器若按通带分可分为窄带放大器、宽带放大器。 (3)按负载分类 高频小信号放大器若按负载分可分为谐振放大器、非谐振放大器。 本章重点介绍单级窄带负载为I .C 调谐回路的谐振放大器,这种放大器不仅有放大作用,而且有选频作用。对其他器件的单级谐振放大器、各种级联放大器以及集成电路放大器这略加讨论。 (二) 高频小信号放大器的质量指标 1.增益(放大系数) 放大器输出电压Vo(或功率P 。)与输入电压V i (或功率P i )之比,称为放大器的增益或放大倍数,用A v (或A P )表示(有时以dB 数计算)。我们希望每级放大器在中心频率(谐振频率)及通频带处的增益尽量大,使满足总增益时级数尽量少。 电压增益:i o v V V A = (6-1) 功率增益:i o P P P A = (6-2) 2.通频带 放大器的电压增益下降到最大值的0,7(即v /1)倍时,所对应的频率范围称为放大器的通频带,用B =2△f 0.7表示,如图3-l 所示。2△f 0.7也称为3分贝带宽。 图6-1 高频小信号放大器的通频带 与谐振回路相同,放大器的通频带决定于回路的形式和回路的等效品质因数Q e 。此外,放大器的总通频带,随着级数的增加而变窄,并且,通频带愈宽,放大器的增益愈小。

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1. 掌握小信号调谐放大器的基本工作原理; 2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3. 了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q 1、选频回路T 1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S =12MHz 。基极偏置电阻R A1、R 4和射极电阻R 5决定晶体管的静态工作点。可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210

式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

相关主题
文本预览
相关文档 最新文档