运筹学课后答案2
- 格式:doc
- 大小:12.04 MB
- 文档页数:50
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。
并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。
1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。
运筹学课后习题答案运筹学课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涉及到数学、统计学和计算机科学等多个领域,旨在解决实际问题中的优化和决策难题。
在学习运筹学的过程中,课后习题是巩固知识和理解概念的重要方式。
下面将为大家提供一些运筹学课后习题的答案,希望能对大家的学习有所帮助。
1. 线性规划问题线性规划是运筹学中最基本的问题之一。
它的目标是在给定的约束条件下,找到使目标函数达到最大或最小值的决策变量的取值。
以下是一个线性规划问题的示例及其答案:问题:某公司生产两种产品A和B,每单位产品A的利润为3万元,产品B的利润为4万元。
产品A每单位需要2个工时,产品B每单位需要3个工时。
公司总共有40个工时可用。
如果公司希望最大化利润,应该生产多少单位的产品A和产品B?答案:设产品A的生产单位为x,产品B的生产单位为y。
根据题目中的约束条件可得到以下线性规划模型:目标函数:Maximize 3x + 4y约束条件:2x + 3y ≤ 40x ≥ 0, y ≥ 0通过求解这个线性规划模型,可以得到最优解为x = 10,y = 10。
也就是说,公司应该生产10个单位的产品A和10个单位的产品B,以最大化利润。
2. 项目管理问题项目管理是运筹学的一个重要应用领域。
它涉及到如何合理安排资源、控制进度和降低风险等问题。
以下是一个项目管理问题的示例及其答案:问题:某公司需要完成一个项目,该项目包含5个任务。
每个任务的完成时间和前置任务如下表所示。
为了尽快完成项目,应该如何安排任务的执行顺序?任务完成时间(天)前置任务A 4 无B 6 无C 5 AD 3 BE 7 C, D答案:为了确定任务的执行顺序,可以使用关键路径方法。
首先,计算每个任务的最早开始时间和最晚开始时间。
然后,找到所有任务的最长路径,即关键路径。
关键路径上的任务不能延迟,否则会延误整个项目的完成时间。
根据上表中的信息,可以得到以下关键路径:A → C → E,最长时间为4 + 5 + 7 = 16天因此,任务的执行顺序应为A → C → E。
第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一P461.1(a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a)约束方程组的系数矩阵?1236300A??81?4020??30000?1最优解x??0,10,0,7,0,0?T。
(b) 约束方程组的系数矩阵?1234?A2212?????211?最优解x??,0,,0?。
5??5T1.3(a)(1) 图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?10x1?5x2?0x3?0x4?3x?4x2?x3?9s.t. ?1?5x1?2x2?x4?8则P3,P4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表?1??2。
??min?,89??53?8 5?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1, x2?,x3?0 ,x4?0。
最大值z*?22(b)(1) 图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15?s.t. ?6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。
??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为篇二:运筹学习题及答案运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
第二章补充作业习题:用大M 法和两阶段法求解下面LP 问题:⎪⎪⎩⎪⎪⎨⎧≥≥+-≥-+=0,3232s.t.42min 21212121x x x x x x x x z解: 标准化为⎪⎪⎩⎪⎪⎨⎧≥=-+-=----='0,,,3232s.t.42max 432142132121x x x x x x x x x x x x z(1)大M 法引入人工变量65,x x ,得到下面的LP 问题⎪⎪⎪⎪⎨⎧=≥=+-+-=+------=6,,1,03232s.t.42max 642153216521 j x x x x x x x x x Mx Mx x x z j因为人工变量6x 为4>0,所以原问题没有可行解。
(2)两阶段法:增加人工变量65,x x ,得到辅助LP 问题⎪⎪⎩⎪⎪⎨⎧=≥=+-+-=+----=6,,1,03232s.t.max 6421532165 j x x x x x x x x x x x g j初始表因为辅助LP 问题的最优值为4>0,所以原问题没有可行解。
习2.1 解:设1x 为每天生产甲产品的数量,2x 为每天生产乙产品的数量,则数学模型为,5183202..200300max 211212121≥≤≤+≤++=x x x x x x x t s x x z最优解为:()TX 4.8,2.3*=,最优值为:z = 2640。
(1)最优解为:()TX 5.0,5.1*=,最优值为:z = 4.5。
(2)无可行解有无穷多最优解,其中一个为:TX⎪⎭⎫⎝⎛=0,310*1,另一个为:()TX10,0*2=,最优值为:z = 20。
(4)无界解解:A B资源限额会议室115桌子3212货架3618工资2522设1x为雇佣A的天数,2x为雇佣B的天数,则数学模型为,186312235..2225min2121212121≥≥+≥+≥++=xxxxxxxxt sxxz最优解为:()TX3,2*=,最优值为:z = 116。
运筹学本科版答案【篇一:运筹学课后习题答案】xt>1.用xj(j=1.2…5)分别代表5中饲料的采购数,线性规划模型: minz?0.2x1?0.7x2?0.4x3?0.3x4?0.8x5st.3x1?2x2?x3?6x4+18x5?700x1?0.5x2?0.2x3+2x4?x5?300.5x1?x2?0.2x3+2x4?0.8x5?1002.解:设x1x2x3x4x5x6x表示在第i个时期初开始工作的护士人数,z表示所需的总人数,则minz?x1?x2?x3?x4?x5?x6st.x1?x6?60x?x2?701x2?x3?60x3?x4?50x4?x5?20x5?x6?30xj(j?1,2,3,4,5,6)?03.解:设用i=1,2,3分别表示商品a,b,c,j=1,2,3分别代表前,中,后舱,xij表示装于j舱的i种商品的数量,z表示总运费收入则:maxz?1000(x11?x12?x13)?700(x21?x22?x23)?600(x31?x32?x3 3)st.x11?x12?x13?600x21?x22?x23?1000x31?x32?x33?80010x11?5x21?7x31?40010x12?5x22?7x32?540010x13?5x23?7x33?15008x11?6x21?5x31?20008x12?6x22?5x32?30008x13?6x23?5x33?15008x?6x21?5x3111?0.158x12?6x22?5x328x?6x23?5x3313?0.158x12?6x22?5x328x?6x21?5x3111?0.18x13?6x23?5x33xij?0(i?1,2.3.j?1,2,3)xi(i?1,2.3.4.5.6)?05. (1)z = 4(2)maxz?x1?x2st.6x1?10x2?120x1?x2?705?x1?10解:如图:由图可得:x?(10,6);z*t*3?x2?8?16*即该问题具有唯一最优解x?(10,6)t(3)无可行解(4)maxz?5x1?6x2st.2x1?x2?2?2x1?3x2?2 x1,x2?0如图:由图知,该问题具有无界解。
运筹学课后习题答案第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2x1+x2解:由图可得:最优解x=1.6,y=6.43用图解法求解线性规划:Max z=5x1+6x2解:由图可得:最优解Max z=5x1+6x2, Max z= +4用图解法求解线性规划:Maxz = 2x 1 +x 2 由图可得:最大值==+35121x x x ,所以==2321x xmax Z = 8.6将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’7将线性规划模型化为标准形式Min Z =x1+2x2+3x3解:令Z’ = -z,引进松弛变量x4≥0,引进剩余变量x5≥0,得到一下等价的标准形式。
x2’=-x2 x3=x3’-x3’’Z’ = -min Z = -x1-2x2-3x39用单纯形法求解线性规划问题:Max Z =70x1+120x2解: Max Z =70x1+120x2单纯形表如下Max Z =3908.11.解:(1)引入松弛变量X4,X5,X6,将原问题标准化,得max Z=10X1+6X2+4X3X1+X2+X3+X4=10010 X1+4X2+5X3+X5=6002 X1+2X2+6X3+X6=300X1,X2,X3,X4,X5,X6≥0得到初始单纯形表:(2)其中ρ1 =C1-Z1=10-(0×1+0×10+0×2)=10,同理求得其他根据ρmax =max{10,6,4}=10,对应的X1为换入变量,计算θ得到,θmin =min{100/1,600/10,300/2}=60,X5为换出变量,进行旋转运算。
(3)重复(2)过程得到如下迭代过程ρj≤0,迭代已得到最优解,X*=(100/3,200/3,0,0,0,100)T,Z* =10×100/3+6×200/3+4×0 =2200/3。
《管理运筹学》(第二版)课后习题参考答案第 1 章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项b i 0 ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件AX b,X 0 的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
8x 1 3x 2 x 3 2s. t. 6x 1 x 2 x 3 8 x 1,x 2,x 3 0解:标准化max Z 4x 1 x 2 2x 3 8x 1 3x 2 x 3 x 4 2s. t. 6x 1 x2 x3 x 5 8x 1,x 2 ,x 3,x 4 ,x 5 0列出单纯形表故最优解为 X* (0,0,2,0,6)T,即 x 1 0,x 2 0,x 3 2,此时最优值为 Z (X*) 4.6.表 1—15中给出了求极大化问题的单纯形表,问表中 a 1,a 2,c 1,c 2,d 为何值及变量属于哪一 类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一; (3)下一步迭代将以 x 1 代 替基变量 x 5 ;(4)该线性规划问题具有无界解; (5)该线性规划问题无可行解。
运筹学(第2版) 习题答案 1 运筹学(第2版)习题答案2 第1章 线性规划 P36~40 第2章 线性规划的对偶理论 P68~69 第3章 整数规划 P82~84 第4章 目标规划 P98~100 第5章 运输与指派问题 P134~136 第6章 网络模型 P164~165 第7章 网络计划 P185~187 第8章 动态规划 P208~210 第9章 排队论 P239~240 第10章 存储论 P269~270 第11章 决策论 Pp297-298 第12章 博弈论 P325~326 全书360页
由于大小限制,此文档只显示第6章到第12章,第1章至第5章见
《运筹学课后答案1》 习题六 6.1如图6-42所示,建立求最小部分树的0-1整数规划数学模型。 【解】边[i,j]的长度记为cij,设
否则包含在最小部分树内边0],[1jixij
数学模型为: ,12132323243434364635365612132434343546562324463612132446362335244656121324354656min52,22,233344,510ijijijijijZcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx或,[,]ij所有边 6.2如图6-43所示,建立求v1到v6的最短路问题的0-1整数规划数学模型。 图6-42
图6-43 运筹学(第2版) 习题答案 2 【解】弧(i,j)的长度记为cij,设
否则包含在最短路径中弧0),(1jixij
数学模型为:
,1213122324251323343524344546253545564656min100,00110,(,)ijijij
ijZcxxxxxxxxxxxxxxxxxxxxxxij
或所有弧
6.3如图6-43所示,建立求v1到v6的最大流问题的线性规划数学模型。
【解】 设xij为弧(i,j)的流量,数学模型为
),(,0min56453525464534243534231325242312564613121312jicxxxxxxxxxxxxxxxxxxxxxxxZijij所有弧 6.4求图6-41的最小部分树。图6-41(a)用破圈法,图6-41(b)用加边法。
图6-44 【解】图6-44(a),该题有4个解,最小树长为22,其中一个解如下图所示。 运筹学(第2版) 习题答案 3 图6-44(b),最小树长为20。最小树如下图所示。 6.5 某乡政府计划未来3年内,对所管辖的10个村要达到村与村之间都有水泥公路相通的目标。根据勘测,10个村之间修建公路的费用如表6-20所示。乡镇府如何选择修建公路的路线使总成本最低。
表6-20 两村庄之间修建公路的费用(万元) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12.8 10.5 9.6 8.5 7.7 13.8 12.7 13.1 12.6 11.4 13.9 11.2 8.6 7.5 8.3 14.8 15.7 8.5 9.6 8.9 8.0 13.2 12.4 10.5 9.3 8.8 12.7 14.8 12.7 13.6 15.8 9.8 8.2 11.7 13.6 9.7 8.9 10.5 13.4 14.6 9.1 10.5 12.6 8.9 8.8
【解】属于最小树问题。用加边法,得到下图所示的方案。 运筹学(第2版) 习题答案 4 最低总成本74.3万元。 6.6在图6-45中,求A到H、I的最短路及最短路长,并对图(a)和(b)的结果进行比较。
图6-45 【解】图6-45(a):
A到H的最短路PAH={A,B,F,H},{A,C,F,H}最短路长22;A到I的最短路PAI={A,B,F,I},{A,C,F,I}最短路长21。 对于图6-45(b): 运筹学(第2版) 习题答案 5 A到H的最短路PAH={A,C,G,F,H},最短路长21;A到I的最短路PAI={A,C,G,F,I},最短路长20; 结果显示有向图与无向图的结果可能不一样。
6.7已知某设备可继续使用5年,也可以在每年年末卖掉重新购置新设备。已知5年年初购置新设备的价格分别为3.5、3.8、4.0、4.2和4.5万元。使用时间在1~5年内的维护费用分别为0.4、0.9、1.4、2.3和3万元。试确定一个设备更新策略,使5年的设备购置和维护总费用最小。 【解】设点vj为第j年年初购置新设备的状态,(i,j)为第i年年初购置新设备使用到第j年年初,弧的权为对应的费用(购置费+维护费),绘制网络图并计算,结果见下图所示。
总费用最小的设备更新方案为:第一种方案,第1年购置一台设备使用到第5年年末;第二种方案,第1年购置一台设备使用到第2年年末,第3年年初更新后使用到第5年年末。总费用为11.5万元。
6.8图6-46是世界某6大城市之间的航线,边上的数字为票价(百美元),用Floyd算法设计任意两城市之间票价最便宜的路线表。 【解】教师可利用模板求解:data\chpt6\ch6.xls L1 v1 v2 v3 v4 v5 v6 v1 0 8.8 9 5.6 8 6 v2 8.8 0 10 5 100 4 v3 9 10 0 3 4.8 14 v4 5.6 5 3 0 12 100 v5 8 100 4.8 12 0 9
图6-46 运筹学(第2版) 习题答案 6 v6 6 4 14 100 9 0 L2 v1 v2 v3 v4 v5 v6 v1 0 8.8 8.6 5.6 8 6 v2 8.8 0 8 5 13 4 v3 8.6 8 0 3 4.8 14 v4 5.6 5 3 0 7.8 9 v5 8 13 4.8 7.8 0 9 v6 6 4 14 9 9 0 L3 v1 v2 v3 v4 v5 v6 v1 0 8.8 8.6 5.6 8 6 v2 8.8 0 8 5 13 4 v3 8.6 8 0 3 4.8 12 v4 5.6 5 3 0 7.8 9 v5 8 13 4.8 7.8 0 9 v6 6 4 12 9 9 0 最优票价表: v1 v2 v3 v4 v5 v6 v1 0 8.8 8.6 5.6 8 6 v2 0 8 5 13 4 v3 0 3 4.8 12 v4 0 7.8 9 v5 0 9 v6 0 v1、v2、„、v6到各点的最优路线图分别为: 运筹学(第2版) 习题答案 7 6.9 设图6-46是某汽车公司的6个零配件加工厂,边上的数字为两点间的距离(km)。现要在6个工厂中选一个建装配车间。 (1)应选那个工厂使零配件的运输最方便。 (2)装配一辆汽车6个零配件加工厂所提供零件重量分别是0.5、0.6、0.8、1.3、1.6和1.7吨,运价为2元/吨公里。应选那个工厂使总运费最小。 【解】(1)利用习题6.8表L3的结果 minmax12.8ijijLL
v1 v2 v3 v4 v5 v6 Max v1 0 8.8 8.6 5.6 8 6 8.8 v2 8.8 0 8 5 13 4 12.8 v3 8.6 8 0 3 4.8 12 12 v4 5.6 5 3 0 7.8 9 9 v5 8 13 4.8 7.8 0 9 12.8 v6 6 4 12 9 9 0 12 选第1个工厂最好。 (2)计算单件产品的运价,见下表最后一行。计算单件产品的运费,见下表最后一列。 v1 v2 v3 v4 v5 v6 单件产品运费 v1 0 8.8 8.6 5.6 8 6 84.88 v2 8.8 0 8 5 13 4 89.16 v3 8.6 8 0 3 4.8 12 82.16 v4 5.6 5 3 0 7.8 9 71.96 v5 8 13 4.8 7.8 0 9 81.92 v6 6 4 12 9 9 0 82.2 运价 1 1.2 1.6 2.6 3.2 3.4 选第4个工厂最好。
6.10 如图6-47,(1)求v1到v10的最大流及最大流量;(2)求最小割集和最小割量。 【解】给出初始流如下
图6-47 运筹学(第2版) 习题答案 8 第一轮标号:得到一条增广链,调整量等于5,如下图所示 调整流量。 第二轮标号:得到一条增广链,调整量等于2,如下图所示
调整流量。 第三轮标号:得到一条增广链,调整量等于3,如下图所示
调整流量。 第四轮标号:不存在增广链,最大流量等于45,如下图所示