2014年陕西高考文科数学试题含答案(Word版)
- 格式:doc
- 大小:1.38 MB
- 文档页数:12
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
仿真模拟(二)————————————————————————————————————— 【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷 (选择题 共50分)只有一项是符合题目要求的)1.已知集合S ={1,2},集合T ={a },∅表示空集,如果S ∪T =S ,那么a 的值是( ) A .∅ B .1 C .2D .1或22.如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( )A .ma nB .na mC .ma 2nD .na 2m3.一个由实数组成的等比数列,它的前6项和是前3项和的9倍,则此数列的公比为( )A .2B .3C .12D .134.已知a ,b 是平面向量,若a ⊥(a -2b ),b ⊥(b -2a ),则a 与b 的夹角是( ) A . π6B .π3C .2π3D .5π65.如图是一个空间几何体的三视图,其中正视图和侧视图都是半径为2的半圆,俯视图是半径为2的圆,则该几何体的体积等于( )A .4π3B .8π3C .16π3D . 32π36.已知常数a ,b ,c 都是实数,f (x )=ax 3+bx 2+cx -34的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-115,则a 的值是( )A .-8122B .13C .2D .57.已知⊙P 的半径等于6,圆心是抛物线y 2=8x 的焦点,经过点M (1,-2)的直线l 将⊙P 分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为( )A .x +2y +3=0B .x -2y -5=0C .2x +y =0D .2x -y -5=08.已知f (x )是定义域为实数集R 的偶函数,∀x 1≥0,∀x 2≥0,若x 1≠x 2,则f (x 2)-f (x 1)x 2-x 1<0.如果f ⎝⎛⎭⎫13=34,4f (log 18x )>3,那么x 的取值范围为( ) A .⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫12,2 C .⎝⎛⎦⎤12,1∪(2,+∞)D .⎝⎛⎭⎫0,18∪⎝⎛⎭⎫12,2 9.已知函数①f (x )=x 2;②f (x )=e x ;③f (x )=ln x ;④f (x )=cos x .其中对于f (x )定义域内的任意一个x 1都存在唯一的x 2,使f (x 1)f (x 2)=1成立的函数是( )A .①B .②C .②③D .③④10.若数列{a n }满足:存在正整数T ,对于任意正整数n 都有a n +T =a n 成立,则称数列{a n }为周期数列,周期为T .已知数列{a n }满足a 1=m (m >0),a n +1=⎩⎪⎨⎪⎧a n-1,a n >1,1a n ,0<a n ≤1,则下列结论中错误的是( )A .若m =45,则a 5=3B .若a 3=2,则m 可以取3个不同的值C .若m =2,则数列{a n }是周期为3的数列D .∃m ∈Q 且m ≥2,使得数列{a n }是周期数列第Ⅱ卷 (非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 11.如果执行下列程序框图,那么输出的S =________.12.一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x 人,成绩为8环、9环的人数情况见下表:那么x =________.13.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,若a 2=b 2+c 2-bc ,cb =12+3,则tan B 的值等于________. 14.已知F 1,F 2是双曲线x 2a 2-y 2=1的两个焦点,点P 在此双曲线上,PF 1→·PF 2→=0,如果点P 到x 轴的距离等于55,那么该双曲线的离心率等于________. 15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题记分) A .(不等式选讲)若存在实数x 使||x -3|-|x -4||<a 成立,则实数a 的取值范围是________.B .(几何证明选讲)如图,AB 是⊙O 的直径,D 是AB 延长线上一点,过D 作⊙O 的切线,切点为C ,CD =53,若∠CAD =30°,则⊙O 的直径AB =________.C .(坐标系与参数方程)在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为________. 三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)设函数f (x )=sin ⎝⎛⎭⎫ωx +π3+sin ⎝⎛⎭⎫ωx -π3+3cos ωx (其中ω>0),且函数f (x )的图象的两条相邻的对称轴间的距离为π2.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.17.(本小题满分12分)某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),……,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少? (2)求这2 000名学生的平均分数;(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?18.(本小题满分12分)如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△P AC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示.点E、F分别为棱PC,CD的中点.(1)求证:平面OEF∥平面APD;(2)求证:CD⊥平面POF;(3)在棱PC上是否存在一点M,使得M到P,O,C,F四点距离相等?请说明理由.19.(本小题满分12分)已知公差不为0的等差数列{a n},a1=1,且a2,a4-2,a6成等比数列.(1)求数列{a n}的通项公式;(2)已知数列{b n}的通项公式是b n=2n-1,集合A={a1,a2,…,a n,…},B={b1,b2,b3,…,b n,…}.将集合A∩B中的元素按从小到大的顺序排成一个新的数列{c n},求数列{c n}的前n项和S n.20.(本小题满分13分)已知f (x )=x 2-2x -ln(x +1)2. (1)求f (x )的单调递增区间;(2)若函数F (x )=f (x )-x 2+3x +a 在⎣⎡⎦⎤-12,2上只有一个零点,求实数a 的取值范围.21.(本小题满分14分)过椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)右焦点F 2的直线交椭圆于A ,B两点,F 1为其左焦点,已知△AF 1B 的周长为8,椭圆的离心率为32. (1)求椭圆Γ的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P ,Q ,且OP →⊥OQ →?若存在,求出该圆的方程;若不存在,请说明理由.详解答案仿真模拟(二)一、选择题1.D 依题意得T ⊆S ,因此a =1或a =2,故选D.2.C 由几何概率的意义可知,图形Ω面积的估计值为m n ×a 2=ma 2n ,故选C.3.A 记题中的等比数列的公比为q .依题意有S 6=9S 3,∴S 6-S 3=8S 3,∴S 6-S 3S 3=8,即q 3=8,得q =2,故选A.4.B 记向量a ,b 的夹角为θ.依题意得⎩⎪⎨⎪⎧a ·(a -2b )=0,b ·(b -2a )=0,即|a |2=|b |2=2a ·b =2|b |2cos θ,cos θ=12,θ=π3,即向量a ,b 的夹角为θ=π3,故选B.5.C 依题意得,该几何体是一个半球,其体积等于12×43π×23=16π3,故选C.6.C 依题意得f ′(x )=3ax 2+2bx +c ≤0的解集是[-2,3],于是有3a >0,-2+3=-2b 3a ,-2×3=c 3a ,解得b =-3a2,c =-18a ,函数f (x )在x =3处取得极小值,于是有f (3)=27a +9b +3c -34=-115,-812a =-81,a =2,故选C.7.A 依题意得,要使两弧之差最大,注意到这两弧的和一定,因此就要使其中的一弧长最小,此时所求直线必与MP 垂直,又点P (2,0),因此直线MP 的斜率等于2,因此所求的直线方程是y +2=-12(x -1),即x +2y +3=0,故选A.8.B 依题意得,函数f (x )在[0,+∞)上是减函数,不等式4f (log 18x )>3等价于f (log 18x )>34,f (|log 18x |)>f ⎝⎛⎭⎫13,|log 18x |<13,即-13<log 18x <13,由此解得12<x <2,故选B. 9.B 对①,当x 1=0时,x 2不存在;对②,任意的x 1,存在唯一一个x 2(x 2=-x 1)使得f (x 1)f (x 2)=1成立;对③,当x 1=1时,x 2不存在;对④,当x 1=π2时,x 2不存在.10.D 对于A ,当a 1=m =45时,a 2=54,a 3=a 2-1=14,a 4=4,a 5=3,因此选项A 正确.对于B ,当a 3=2时,若a 2>1,则a 3=a 2-1=2,a 2=3,⎩⎪⎨⎪⎧m >1,m -1=3或⎩⎪⎨⎪⎧ 0<m ≤1,1m=3,由此解得m =4或m =13;若0<a 2≤1,则a 3=1a 2=2,a 2=12,⎩⎪⎨⎪⎧m >1,m -1=12或⎩⎪⎨⎪⎧0<m ≤1,1m =12,由此解得m =32,因此m 的可能值是13,32,4,选项B 正确.对于C ,当m =2时,a 1=2,a 2=2-1,a 3=2+1,a 4=2,a 5=2-1,a 6=2+1,…,此时数列{a n }是以3为周期的数列,因此选项C 正确.综上所述,故选D.二、填空题11.解析: 依题意,执行题中的程序框图,最后输出的S =2×(1+2+3+…+20)=2×20×(1+20)2=420.答案: 42012.解析: 依题意得7x +8×7+9×8=(x +7+8)×8.15,由此解得x =5. 答案: 513.解析: 依题意得b 2+c 2-a 2=2bc cos A =bc ,cos A =12,A =60°.c b =sin C sin B =sin (B +60°)sin B=12+32·1tan B =12+3,因此tan B =12. 答案: 1214.解析: 依题意得⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=|F 1F 2|2,|PF 1|-|PF 2|=±2a ,(|PF 1|2+|PF 2|2)-(|PF 1|-|PF 2|)2=2|PF 1|·|PF 2|=4c 2-4a 2=4b 2,|PF 1|·|PF 2|=2b 2=2.又S △PF 1F 2=12|PF 1|·|PF 2|=12|F 1F 2|×55,因此|F 1F 2|=25,a =(5)2-1=2,该双曲线的离心率是|F 1F 2|2a =52.答案:5215.A.解析: 注意到|x -3|-|x -4|≤1,即有|x -3|-|x -4|≥-1,且当x ≤3时取等号,因此函数y =|x -3|-|x -4|的最小值是-1,于是实数a 的取值范围是(-1,+∞).答案: (-1,+∞)B .解析: 依题意得OC ⊥CD ,∠COD =∠CAD +∠OCA =60°,tan ∠COD =CD OC =53OC =3,OC =5,因此直径AB =2OC =10. 答案: 10C .解析: 点⎝⎛⎭⎫2,π3的直角坐标是(1,3),圆ρ=2cos θ的直角坐标方程是x 2+y 2=2x ,圆心的直角坐标是(1,0),因此点(1,3)与点(1,0)的距离为 3.答案:3三、解答题16.解析: (1)f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3.∵函数f (x )图象的两条相邻的对称轴间的距离为π2,∴T =2πω=π,∴ω=2.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=2sin ⎝⎛⎭⎫x +π3. 由x ∈⎣⎡⎦⎤0,π2,可得π3≤x +π3≤56π, ∴当x +π3=π2,即x =π6时,g (x )取得最大值g ⎝⎛⎭⎫π6=2sin π2=2; 当x +π3=5π6,即x =π2时,g (x )取得最小值g ⎝⎛⎭⎫π2=2sin 5π6=1. 17.解析: (1)设第i (i =1,2,…,8)组的频率为f i ,则由频率分布图知f 7=1-(0.004+0.01+0.01+0.02+0.02+0.016+0.008)×10=0.12,∴这个人的分数在255~265之间的概率约是0.12.(2)这2 000名学生的平均分数为200×0.04+210×0.1+220×0.1+230×0.2+240×0.2+250×0.16+260×0.12+270×0.08=237.8.(3)从第一组到第四组,频率为0.04+0.1+0.1+0.2=0.44,而0.5-0.44=0.06,将第五组[235,245),按以下比例分割:0.060.2-0.06=37,∴中位数为235+3=238,∴应将分数线定为238分.18.解析: (1)证明:因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上,所以PO ⊥平面ADC ,所以PO ⊥AC .因为AB =BC ,所以O 是AC 的中点,所以OE ∥P A . 同理OF ∥AD .又OE ∩OF =O ,P A ∩AD =A , 所以平面OEF ∥平面PDA . (2)证明:因为OF ∥AD ,AD ⊥CD , 所以OF ⊥CD .又PO ⊥平面ADC ,CD ⊂平面ADC , 所以PO ⊥CD .又OF ∩PO =O ,所以CD ⊥平面POF . (3)存在,事实上记点E 为M 即可. 因为CD ⊥平面POF ,PF ⊂平面POF , 所以CD ⊥PF .又E 为PC 的中点,所以EF =12PC ,同理,在直角三角形POC 中,EP =EC =OE =12PC ,所以点E 到四个点P ,O ,C ,F 的距离相等. 19.解析: (1)设等差数列{a n }的公差为d . 由题意(a 4-2)2=a 2a 6得(3d -1)2=(1+d )(1+5d ). 解得d =3或者d =0.因为公差d 不为0,所以d =3. 故a n =3n -2.(2)由题意知数列{c n }是数列{a n }与数列{b n }的公共项,令2n -1=3m -2,则2n =2·2n -1=6m -4=3(2m -1)-1不是数列{c n }的项,2n +1=2n -1·22=12m -8=3(4m -2)-2是数列{c n }的项.所以{c n }是以a 1=b 1=1为首项,4为公比的等比数列,即 c n =4n -1,故S n =1-4n 1-4=4n -13. 20.解析: (1)f (x )的定义域为{x |x ≠-1}.∵f (x )=x 2-2x -ln(x +1)2,∴f ′(x )=2x -2-2x +1=2(x 2-2)x +1, 解⎩⎪⎨⎪⎧x ≠-1,f ′(x )>0得-2<x <-1或x >2, ∴f (x )的单调递增区间是(-2,-1)和(2,+∞).(2)由已知得F (x )=x -ln(x +1)2+a ,且x ≠-1,∴F ′(x )=1-2x +1=x -1x +1. ∴当x <-1或x >1时,F ′(x )>0;当-1<x <1时,F ′(x )<0.∴当-12<x <1时,F ′(x )<0,此时,F (x )单调递减; 当1<x <2时,F ′(x )>0,此时,F (x )单调递增.∵F ⎝⎛⎭⎫-12=-12+2ln 2+a >a ,F (2)=2-2ln 3+a <a , ∴F ⎝⎛⎭⎫-12>F (2). ∴F (x )在⎣⎡⎦⎤-12,2上只有一个零点⇔⎩⎪⎨⎪⎧ F ⎝⎛⎭⎫-12≥0,F (2)<0或F (1)=0. 由⎩⎪⎨⎪⎧F ⎝⎛⎭⎫-12≥0,F (2)<0得12-2ln 2≤a <2ln 3-2; 由F (1)=0得a =2ln 2-1.∴实数a 的取值范围为12-2ln 2≤a <2ln 3-2或a =2ln 2-1.21.解析: (1)由已知得⎩⎪⎨⎪⎧ 4a =8,c a =32,解得⎩⎪⎨⎪⎧a =2,c =3,∴b 2=a 2-c 2=1,故椭圆Γ的方程为x 24+y 2=1.(2)假设满足条件的圆存在,其方程为x 2+y 2=r 2(0<r <1). 当直线PQ 的斜率存在时,设其方程为y =kx +t , 由⎩⎪⎨⎪⎧ y =kx +t ,x 24+y 2=1消去y 整理得(1+4k 2)x 2+8ktx +4t 2-4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2.① ∵OP →⊥OQ →,∴x 1x 2+y 1y 2=0.又y 1=kx 1+t ,y 2=kx 2+t ,∴x 1x 2+(kx 1+t )(kx 2+t )=0,即(1+k 2)x 1x 2+kt (x 1+x 2)+t 2=0.② 将①代入②得(1+k 2)(4t 2-4)1+4k 2-8k 2t 21+4k 2+t 2=0,即t 2=45(1+k 2).∵直线PQ 与圆x 2+y 2=r 2相切,∴r =|t |1+k 2=45(1+k 2)1+k 2=255∈(0,1),∴存在圆x 2+y 2=45满足条件.当直线PQ 的斜率不存在时,也适合x 2+y 2=45.综上所述,存在圆心在原点的圆x 2+y 2=45满足条件.。
文 科 数 学第Ⅰ卷(共50分)一、选择题:本大题共12个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.平面向量a =(1,1),b =(-1,m ),若a ∥b ,则m 等于( ) A .1 B.-1 C.0 D.±13.已知A={x|2()lg(2)f x x x =--,x∈R},B={x ||x +1|<4,x>0},则A B=( ) A .(0,1) B.(1,2) C.(2,3) D.(3,4)4.设三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin a b A =,b 2+c 2-a 2=bc ,则三角形ABC 的形状为( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等边三角形5.某几何体的三视图如右图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A 、9214+π B 、8214+π C 、9224+π D 、8224+π6.已知()()()()f x x a x b a b =-->的图像如图所示 ,则函数()xg x a b =+的图像是( )8.执行如图所示的程序框图,输入的N=2014,则输出的S=()A.2011 B.2012 C.2013 D.2014【答案】C是否9.某产品在某零售摊位上的零售价x(元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程^y =b ∧x +a 中的b =-4,据此模型预计零售价定为15元时,销售量为 ( )A .48B .49C .50D .5110.已知定义在R 上的奇函数)(x f 满足f (x -4)=-f (x ),且[0,2]x ∈时,()2xf x =-1,甲、乙、丙、丁四位同学有下列结论:甲:f (3)=1;乙:函数f (x )在[-6,-2]上是减函数;丙:函数f (x )关于直线x =4对称;丁:若m (0,1)∈,则关于x 的方程f (x )-m=0在[0,6]上所有根之和为4,其中正确的是( )A . 甲、乙、丁 B.乙、丙 C. 甲、乙、丙 D. 甲、丙第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11. i是虚数单位,复数322izi=+的虚部为 .13..13S=++=210S=++++=321S=++++++=那么nS= .14.已知某班在开展汉字听写比较活动中,规定评选一等奖和二等奖的人数之和不超过10人,一等奖人数与二等奖人数之差小于等于2人,一等奖人数不少于3人,且一等奖奖品价格为3元,二等奖奖品价格为2元,则本次活动购买奖品的最少费用为____15. 选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)(1)(选修4—4坐标系与参数方程到该直线的距离是 .(2)(选修4—5 不等式选讲)已知c b a ,,都是正数,且12=++c b a ,则小值为 .(3) (选修4—1 几何证明选讲)如图,两个等圆⊙O 与⊙'O 外切,过O 作⊙'O 的两条切线,,OA OB ,A B 是切点,点C 在圆'O 上且不与点,A B 重合,则ACB ∠= .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12x ∈R . (I )求函数()f x 的最小正周期和单调递增区间;(II )将函数()y f x =的图象上各点的纵坐标保持不变,横坐标先缩短到原来的得到函数()y g x =的图象,求函数()y g x =在区间上的最小值.17.(本小题满分12分) 数列{}n a 的前n 项和为n S ,且n a 是n S 和1的等差中项,等差数列{}n b 满足11b a =,43b S =. (Ⅰ)求数列{}n a 、{}n b 的通项公式; ,数列{}n c 的前n 项和为n T ,证明:12n T <18.(本小题满分12分)如图,四边形PCBM 是直角梯形,∠PCB=90°,PM∥BC,PM =1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:PC⊥AC;(Ⅱ)求三棱锥B MAC V -的体积。
2014年普通高等学校招生全国统一考试数学(文科)(课标I )一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. B.21 C. 21D. (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203 B.72 C.165 D.158(10) 已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3 C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()1 13,1,,1,xe xf xx x-⎧<⎪=⎨⎪≥⎩则使得()2f x≤成立的x的取值范围是________.(16)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角60MAN∠=︒,C点的仰角45CAB∠=︒以及75MAC∠=︒;从C点测得60MCA∠=︒.已知山高100BC m=,则山高MN=________m.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知{}n a是递增的等差数列,2a,4a是方程2560x x-+=的根。
2014年陕西省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)2.(5分)函数f()=cos(2+)的最小正周期是()A.B.πC.2πD.4π3.(5分)已知复数=2﹣i,则•的值为()A.5 B.C.3 D.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an =2n B.an=2(n﹣1)C.an=2n D.an=2n﹣15.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A .4πB .3πC .2πD .π6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为( )A .B .C .D .7.(5分)下列函数中,满足“f (+y )=f ()f (y )”的单调递增函数是( )A .f ()=3B .f ()=3C .f ()=D .f ()=()8.(5分)原命题为“若<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真、真、真B .假、假、真C .真、真、假D .假、假、假9.(5分)某公司10位员工的月工资(单位:元)为1,2,…,10,其均值和方差分别为和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .,s 2+1002B .+100,s 2+1002C .,s 2D .+100,s 210.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y=3﹣2﹣ B .y=3+2﹣3 C .y=3﹣ D .y=3+2﹣2二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y 2=4的准线方程是 .12.(5分)已知4a =2,lg=a ,则= .13.(5分)设0<θ<,向量=(sin2θ,cos θ),=(1,﹣cos θ),若•=0,则tan θ= .14.(5分)已知f ()=,≥0,若f 1()=f (),f n+1()=f (f n ()),n ∈N +,则f 2014()的表达式为 .选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma+nb=5,则的最小值为 .几何证明选做题16.如图,△ABC 中,BC=6,以BC 为直径的半圆分别交AB 、AC 于点E 、F ,若AC=2AE ,则EF= .坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 .三、解答题(共6小题,共75分)18.(12分)△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c .(Ⅰ)若a ,b ,c 成等差数列,证明:sinA+sinC=2sin (A+C );(Ⅱ)若a ,b ,c 成等比数列,且c=2a ,求cosB 的值.19.(12分)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB 、BD 、DC 、CA 于点E 、F 、G 、H .(Ⅰ)求四面体ABCD 的体积;(Ⅱ)证明:四边形EFGH 是矩形.20.(12分)在直角坐标系Oy 中,已知点A (1,1),B (2,3),C (3,2),点P (,y )在△ABC 三边围成的区域(含边界)上,且=m +n (m ,n ∈R )(Ⅰ)若m=n=,求||; (Ⅱ)用,y 表示m ﹣n ,并求m ﹣n 的最大值.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.22.(13分)已知椭圆+=1(a >b >0)经过点(0,),离心率为,左右焦点分别为F 1(﹣c ,0),F 2(c ,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l :y=﹣+m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足=,求直线l 的方程.23.(14分)设函数f ()=ln+,m ∈R .(Ⅰ)当m=e (e 为自然对数的底数)时,求f ()的极小值;(Ⅱ)讨论函数g ()=f ′()﹣零点的个数;(Ⅲ)若对任意b >a >0,<1恒成立,求m 的取值范围.2014年陕西省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={|≥0,∈R},N={|2<1,∈R}={|﹣1<<1,∈R},∴M∩N=[0,1).故选:D.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)函数f()=cos(2+)的最小正周期是()A.B.πC.2πD.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f()=cos(2+)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)已知复数=2﹣i,则•的值为()A.5 B.C.3 D.【分析】由求出,然后直接利用复数代数形式的乘法运算求解.【解答】解:由=2﹣i ,得•=(2﹣i )(2+i )=4﹣i 2=5.故选:A .【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.4.(5分)根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n ﹣1)C .a n =2nD .a n =2n ﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.【解答】解:由程序框图知:a i+1=2a i ,a 1=2,∴数列为公比为2的等比数列,∴a n =2n .故选:C .【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:C.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A.B.C.D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:B.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(+y)=f()f(y)”的单调递增函数是()A.f()=3B.f()=3 C.f()=D.f()=()【分析】对选项一一加以判断,先判断是否满足f(+y)=f()f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f()=3,f(y)=y3,f(+y)=(+y)3,不满足f(+y)=f ()f(y),故A错;B.f()=3,f(y)=3y,f(+y)=3+y,满足f(+y)=f()f(y),且f()在R上是单调增函数,故B正确;C.f()=,f(y)=,f(+y)=,不满足f(+y)=f()f(y),故C错;D.f()=,f(y)=,f(+y)=,满足f(+y)=f()f (y),但f()在R上是单调减函数,故D错.故选:B.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若<an ,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假 D.假、假、假【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.【解答】解:∵<an =⇔an+1<an,n∈N+,∴{an}为递减数列,命题是真命题;其否命题是:若≥an ,n∈N+,则{an}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A .【点评】本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键.9.(5分)某公司10位员工的月工资(单位:元)为1,2,…,10,其均值和方差分别为和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .,s 2+1002B .+100,s 2+1002C .,s 2D .+100,s 2【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论.【解答】解:由题意知y i =i +100, 则=(1+2+…+10+100×10)=(1+2+…+10)=+100, 方差s 2=[(1+100﹣(+100)2+(2+100﹣(+100)2+…+(10+100﹣(+100)2]=[(1﹣)2+(2﹣)2+…+(10﹣)2]=s 2.故选:D .【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.10.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y=3﹣2﹣B .y=3+2﹣3C.y=3﹣D.y=3+2﹣2【分析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案.【解答】解:由函数图象知,此三次函数在(0,0)上处与直线y=﹣相切,在(2,0)点处与y=3﹣6相切,下研究四个选项中函数在两点处的切线.A、,将0,2代入,解得此时切线的斜率分别是﹣1,3,符合题意,故A正确;B、,将0代入,此时导数为﹣3,不为﹣1,故B错误;C、,将2代入,此时导数为﹣1,与点(2,0)处切线斜率为3矛盾,故C错误;D、,将0代入,此时导数为﹣2,与点(0,0)处切线斜率为﹣1矛盾,故D错误.故选:A.【点评】本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一.二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4的准线方程是=﹣1 .【分析】先根据抛物线的标准方程形式求出p,再根据开口方向,写出其准线方程.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是=﹣1.故答案为=﹣1.【点评】根据抛物线的方程求其焦点坐标和准线方程,一定要先化为标准形式,求出的值,再确定开口方向,否则,极易出现错误.12.(5分)已知4a =2,lg=a ,则= .【分析】化指数式为对数式求得a ,代入lg=a 后由对数的运算性质求得的值.【解答】解:由4a =2,得, 再由lg=a=, 得=.故答案为:. 【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.13.(5分)设0<θ<,向量=(sin2θ,cos θ),=(1,﹣cos θ),若•=0,则tan θ= . 【分析】由条件利用两个向量的数量积公式求得 2sin θcos θ﹣cos 2θ=0,再利用同角三角函数的基本关系求得tan θ【解答】解:∵=sin2θ﹣cos 2θ=2sin θcos θ﹣cos 2θ=0,0<θ<, ∴2sin θ﹣cos θ=0,∴tan θ=,故答案为:.【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.14.(5分)已知f ()=,≥0,若f 1()=f (),f n+1()=f (f n ()),n ∈N +,则f 2014()的表达式为 .【分析】由题意,可先求出f 1(),f 2(),f 3()…,归纳出f n ()的表达式,即可得出f 2014()的表达式 【解答】解:由题意...…故f 2014()=故答案为: 【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma+nb=5,则的最小值为 .【分析】根据柯西不等式(a 2+b 2)(c 2+d 2)≥(ac+bd )2当且仅当ad=bc 取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb )2≤(m 2+n 2)(a 2+b 2)∵a 2+b 2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.【点评】此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.【分析】(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH 是矩形.【解答】(Ⅰ)解:由题意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V==;(Ⅱ)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH ∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形,∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)在直角坐标系Oy中,已知点A(1,1),B(2,3),C(3,2),点P(,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)由点的坐标求出向量和的坐标,结合m=n=,再由=m+n求得的坐标,然后由模的公式求模;(Ⅱ)由=m+n得到,作差后得到m﹣n=y﹣,令y﹣=t,然后利用线性规划知识求得m﹣n的最大值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),∴,又m=n=,∴.∴;(Ⅱ)∵,∴,两式相减得,m﹣n=y﹣.令y﹣=t,由图可知,当直线y=+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为:1.【点评】本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.【分析】(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率.【解答】解:(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P (A )=,P (B )=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(Ⅱ)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为, 由频率估计概率得P (C )=0.24.【点评】本题主要考查了用频率表示概率,属于中档题.22.(13分)已知椭圆+=1(a >b >0)经过点(0,),离心率为,左右焦点分别为F 1(﹣c ,0),F 2(c ,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l :y=﹣+m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足=,求直线l 的方程.【分析】(Ⅰ)由题意可得,解出即可.(Ⅱ)由题意可得以F 1F 2为直径的圆的方程为2+y 2=1.利用点到直线的距离公式可得:圆心到直线l 的距离d 及d <1,可得m 的取值范围.利用弦长公式可得|CD|=2.设A (1,y 1),B (2,y 2).把直线l 的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长|AB|=.由=,即可解得m .【解答】解:(Ⅰ)由题意可得, 解得,c=1,a=2. ∴椭圆的方程为. (Ⅱ)由题意可得以F 1F 2为直径的圆的方程为2+y 2=1.∴圆心到直线l 的距离d=,由d <1,可得.(*)∴|CD|=2==. 设A (1,y 1),B (2,y 2). 联立,化为2﹣m+m 2﹣3=0,可得1+2=m ,. ∴|AB|==. 由=,得, 解得满足(*).因此直线l 的方程为. 【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交的弦长问题、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.23.(14分)设函数f()=ln+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f()的极小值;(Ⅱ)讨论函数g()=f′()﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f()=ln+,利用f′()判定f()的增减性并求出f()的极小值;(Ⅱ)由函数g()=f′()﹣,令g()=0,求出m;设φ()=m,求出φ()的值域,讨论m的取值,对应g()的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h()=f()﹣在(0,+∞)上单调递减;h′()≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f()=ln+,∴f′()=;∴当∈(0,e)时,f′()<0,f()在(0,e)上是减函数;当∈(e,+∞)时,f′()>0,f()在(e,+∞)上是增函数;∴=e时,f()取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g()=f′()﹣=﹣﹣(>0),令g()=0,得m=﹣3+(>0);设φ()=﹣3+(>0),∴φ′()=﹣2+1=﹣(﹣1)(+1);当∈(0,1)时,φ′()>0,φ()在(0,1)上是增函数,当∈(1,+∞)时,φ′()<0,φ()在(1,+∞)上是减函数;∴=1是φ()的极值点,且是极大值点,∴=1是φ()的最大值点,∴φ()的最大值为φ(1)=;又φ(0)=0,结合y=φ()的图象,如图;可知:①当m>时,函数g()无零点;②当m=时,函数g()有且只有一个零点;③当0<m<时,函数g()有两个零点;④当m≤0时,函数g()有且只有一个零点;综上,当m>时,函数g()无零点;当m=或m≤0时,函数g()有且只有一个零点;当0<m<时,函数g()有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h()=f()﹣=ln+﹣(>0),则h(b)<h(a).∴h()在(0,+∞)上单调递减;∵h′()=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣2+=﹣+(>0),∴m≥;对于m=,h′()=0仅在=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法解答问题,是难题.。
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅱ)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)(2014•新课标Ⅱ)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.(5分)(2014•新课标Ⅱ)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)(2014•新课标Ⅱ)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)(2014•新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)(2014•新课标Ⅱ)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)(2014•新课标Ⅱ)执行如图所示的程序框图,若输入的x,t均为2,则输出的S =()A.4B.5C.6D.79.(5分)(2014•新课标Ⅱ)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)(2014•新课标Ⅱ)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)(2014•新课标Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•新课标Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)(2014•新课标Ⅱ)函数f(x)=sin(x+φ)﹣2sinφcos x的最大值为.15.(5分)(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)(2014•新课标Ⅱ)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•新课标Ⅱ)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)(2014•新课标Ⅱ)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)(2014•新课标Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)(2014•新课标Ⅱ)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)(2014•新课标Ⅱ)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)(2014•新课标Ⅱ)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC 与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.(2014•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅱ)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)(2014•新课标Ⅱ)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)(2014•新课标Ⅱ)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)(2014•新课标Ⅱ)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)(2014•新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2014•新课标Ⅱ)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)(2014•新课标Ⅱ)执行如图所示的程序框图,若输入的x,t均为2,则输出的S =()A.4B.5C.6D.7【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)(2014•新课标Ⅱ)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6C.12D.7【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)(2014•新课标Ⅱ)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)(2014•新课标Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•新课标Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)(2014•新课标Ⅱ)函数f(x)=sin(x+φ)﹣2sinφcos x的最大值为1.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcos x=sin x cosφ+sinφcos x﹣2sinφcos x=sin x cosφ﹣sinφcos x=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=3.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)(2014•新课标Ⅱ)数列{a n}满足a n+1=,a8=2,则a1=.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.【解答】解:由题意得,a n+1=,a8=2,令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•新课标Ⅱ)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cos C的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cos A 的值代入表示出BD2,两者相等求出cos C的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CD cos C=13﹣12cos C①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•AD cos A=5﹣4cos A=5+4cos C②,由①②得:cos C=,则C=60°,BD=;(2)∵cos C=,cos A=﹣,∴sin C=sin A=,则S =AB •DA sin A +BC •CD sin C =×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)(2014•新课标Ⅱ)如图,四棱锥P ﹣ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设AP =1,AD =,三棱锥P ﹣ABD 的体积V =,求A 到平面PBC 的距离.【分析】(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =,三棱锥P ﹣ABD 的体积V =,求出AB ,作AH ⊥PB 角PB 于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO ,∵ABCD 是矩形,∴O 为BD 的中点∵E 为PD 的中点,∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =,三棱锥P ﹣ABD 的体积V =,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)(2014•新课标Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)(2014•新课标Ⅱ)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)(2014•新课标Ⅱ)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)(2014•新课标Ⅱ)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC 与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.(2014•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l 的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•大纲版)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ∩N中元素的个数为()A.2B.3C.5D.72.(5分)(2014•大纲版)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)(2014•大纲版)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1} 4.(5分)(2014•大纲版)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD 所成角的余弦值为()A.B.C.D.5.(5分)(2014•大纲版)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)(2014•大纲版)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)(2014•大纲版)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)(2014•大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)(2014•大纲版)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)(2014•大纲版)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(2014•大纲版)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)(2014•大纲版)函数y=cos2x+2sin x的最大值是.15.(5分)(2014•大纲版)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)(2014•大纲版)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)(2014•大纲版)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)(2014•大纲版)△ABC的内角A、B、C的对边分别为a、b、c,已知3a cos C =2c cos A,tan A=,求B.19.(12分)(2014•大纲版)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)(2014•大纲版)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)(2014•大纲版)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)(2014•大纲版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•大纲版)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ∩N中元素的个数为()A.2B.3C.5D.7【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2014•大纲版)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)(2014•大纲版)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)(2014•大纲版)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD 所成角的余弦值为()A.B.C.D.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD 所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)(2014•大纲版)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)(2014•大纲版)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)(2014•大纲版)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)(2014•大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)(2014•大纲版)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,。
2014年普通高等学校招生全国统一考试数学(文科)(课标I)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|-1<x <3},N={x|-2<x <1}则M∩N= ( ) A.)1,2(- B.)1,1(- C.)3,1( D.)3,2(-2.若0tan >α,则 ( ) A.0sin >α B.0cos >α C.02sin >α D.02cos >α3.设i iz ++=11,则=||z A.21B.22C.23D.24.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A.2 B.26 C.25D.15.设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B.)(|)(|x g x f 是奇函数 C.|)(|)(x g x f 是奇函数 D.|)()(|x g x f 是奇函数6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B .AD 21C.BCD.BC 217.在函数①|2|cos x y =,②|cos |x y =,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是 ( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )A.203B.72 C.165 D.15810.已知抛物线C:x y =2的焦点为F,A(x 0,y 0)是C 上一点,x F A 045=,则x 0= ( )A.1B.2C.4D.811.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a = ( )A.-5B.3C.-5或3D.5或-312.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ( )A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_ _. 14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__ _____.16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =_ ___m .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(1)在答题卡上作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.20.(本小题满分12分)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积21.(本小题满分12分)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0. (1)求b 的值;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号. 22.(本小题满分10分)选修4-1,几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =. (1)证明:D E ∠=∠;(2)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=ty t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.24.(本小题满分10分)选修4-5;不等式选讲 若,0,0>>b a 且ab ba =+11 (1)求33b a +的最小值;(2)是否存在b a ,,使得632=+b a ?并说明理由.参考答案一、选择题1-5. BABDA 6-10. CCBDC 11-12. BA 二、填空题 13.2314. A 15.(,8]-∞ 16. 150 三、解答题 17. 解:(1)方程2560x x -+=的两个根为2,3,由题意得因为242,3a a ==设数列{}n a 的公差为d,则422a a d -=,故12d =,从而132a = 所以{}n a 的通项公式为112n a n =+ (2)设{}2n na 的前n 项和为n S ,由(1)知1222n n n a n ++=,则2313412...2222n n n n n S +++=++++ ① 341213412 (22222)n n n n n S ++++=++++ ② ①-②得3412131112...242222n n n n n S ++++=++++-123112(1)4422n n n -++=+--,所以,1422n n n S ++=- 18.解: (1)…………………………4分(2)质量指标值的样本平均数为806902610038110221208100100x ⨯+⨯+⨯+⨯+⨯==质量指标值的样本方差为所以,这种产品质量指标的平均数估计值为100,方差的估计值为104. ……10分 (3)依题意38228100++= 68% < 80%所以该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.12分19.(1)证明:连接1BC ,则O 为1B C 与1BC 的交点,因为侧面11BB C C 为菱形, 所以11B C BC ⊥,又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ABO ⊥平面 由于AB ABO ⊂平面,故1B C AB ⊥…………………………6分 (2)作OD BC ⊥,垂足为D,连接AD,做OH AD ⊥,垂足为H. 由于,BC AO BC OD ⊥⊥,故BC AOD ⊥平面,所以OH BC ⊥,又OH AD ⊥,所以OH ABC ⊥平面因为160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得34OD =由于1AC AB ⊥,所以11122AO B C == 由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH = 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217,故三棱柱111ABC A B C -的高为217…12分20.(1)方法一:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4,设(,)M x y ,则(,4),(2,2)CM x y MP x y =-=--, 由题设知0CM MP ⋅=,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=由于点P 在圆C 的内部,所以M 的轨迹方程是22(1)(3)2x y -+-=……………6分方法二:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4,设(,)M x y ,设24,2AB CM y y k k x x --==-,则24,2AB CM y y k k x x --==- 所以2412AB CM y y k k x x--==--化简得,222680x y x y +--+=,即22(1)(3)2x y -+-=所以M 的轨迹方程是22(1)(3)2x y -+-=.(2)方法一:由(1)可知M 的轨迹是以点(1,3)N 为圆心,2为半径的圆, 由于||||OP OM =,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON PM ⊥,因为ON 的斜率为3,所以l 的斜率为13-, 所以l 的方程为1833y x =-+,又||||22OM OP ==,O 到l 的距离为410410,||55PM =, 所以POM ∆的面积为165.方法二:依题意,||22OP =,因为||||22OM OP ==,所以,M 也在228x y +=上所以222282680x y x y x y ⎧+=⎪⎨+--+=⎪⎩,两式相减,得26160x y --+=,即1833y x =-+, 此方程也就是l 的方程,由(1)知,M 的轨迹方程是22(1)(3)2x y -+-=,设此方程的圆心为N ,则(1,3)N ,所以|198|10d +-=又22||(12)(32)2NP =-+-=所以2410||2255MP =-=,O 到l 的距离810h =,所以,184101625510POM S ∆=⨯⨯= 综上所述,l 的方程为1833y x =-+,POM ∆的面积为16521.(1)()(1)af x a x b x'=+--,由题设知(1)(1)0f a a b '=+--=,解得1b =……………………………………………………………………………4分(2)()f x 的定义域为(0,)+∞,由(1)知,21()ln 2a f x a x x x -=+-,1()(1)1()(1)1a a af x a x x x x x a -'=+--=---(ⅰ)若12a ≤,则11aa≤-,故当(1,)x ∈+∞时,()0,()f x f x '>在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1a f a <-,即1121a aa --<-, 解得2121a --<<-(ⅱ)若112a <<,则11a a >-,故当(1,)1a x a ∈-时,()0f x '<;当(,)1a x a ∈+∞-时,()0f x '>;所以()f x 在(1,)1a a -单调递减,在(,)1aa+∞-单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <-- 而21()ln 112(1)11a a a a f a a a a a a =++>-----,所以不合题意 (ⅲ)若1a >,则11(1)1221a a af a ---=-=<- 综上所述,a 的取值范围是(21,21)(1,)---⋃+∞……………………………12分 22.(1)证明:由题设得,A,B,C,D 四点共圆,所以,D CBE ∠=∠, 又CB CE =,CBE E ∴∠=∠所以D E ∠=∠………………………5分(2)证明:设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥, 故O 在直线MN 上.又AD 不是O 的直径,M 为AD 的中点, 故OM AD ⊥,即MN AD ⊥. 所以//AD BC ,故A CBE ∠=∠又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形.………………………………………………………10分23.(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为5|4cos 3sin 6|5d θθ=+- 则25|||5sin()6|sin 305d PA θα==+-,其中α为锐角,且4tan 3α= 当sin()1θα+=-时,||PA 取得最大值,最大值为2255.当sin()1θα+=时,||PA 取得最小值,. …………………………………10分24.(1)11a b =+≥,得2ab ≥,且当a b ==.故33a b +≥,且当a b ==.所以33a b +的最小值为. …………………………………………………………5分(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=. ………………………………10分。
2014年陕西省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)2.(5分)函数f()=cos(2+)的最小正周期是()A.B.πC.2πD.4π3.(5分)已知复数=2﹣i,则•的值为()A.5 B.C.3 D.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an =2n B.an=2(n﹣1)C.an=2n D.an=2n﹣15.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A .4πB .3πC .2πD .π6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为( )A .B .C .D .7.(5分)下列函数中,满足“f (+y )=f ()f (y )”的单调递增函数是( )A .f ()=3B .f ()=3C .f ()=D .f ()=()8.(5分)原命题为“若<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真、真、真B .假、假、真C .真、真、假D .假、假、假9.(5分)某公司10位员工的月工资(单位:元)为1,2,…,10,其均值和方差分别为和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .,s 2+1002B .+100,s 2+1002C .,s 2D .+100,s 210.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y=3﹣2﹣ B .y=3+2﹣3 C .y=3﹣ D .y=3+2﹣2二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y 2=4的准线方程是 .12.(5分)已知4a =2,lg=a ,则= .13.(5分)设0<θ<,向量=(sin2θ,cos θ),=(1,﹣cos θ),若•=0,则tan θ= .14.(5分)已知f ()=,≥0,若f 1()=f (),f n+1()=f (f n ()),n ∈N +,则f 2014()的表达式为 .选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma+nb=5,则的最小值为 .几何证明选做题16.如图,△ABC 中,BC=6,以BC 为直径的半圆分别交AB 、AC 于点E 、F ,若AC=2AE ,则EF= .坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 .三、解答题(共6小题,共75分)18.(12分)△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c .(Ⅰ)若a ,b ,c 成等差数列,证明:sinA+sinC=2sin (A+C );(Ⅱ)若a ,b ,c 成等比数列,且c=2a ,求cosB 的值.19.(12分)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB 、BD 、DC 、CA 于点E 、F 、G 、H .(Ⅰ)求四面体ABCD 的体积;(Ⅱ)证明:四边形EFGH 是矩形.20.(12分)在直角坐标系Oy 中,已知点A (1,1),B (2,3),C (3,2),点P (,y )在△ABC 三边围成的区域(含边界)上,且=m +n (m ,n ∈R )(Ⅰ)若m=n=,求||; (Ⅱ)用,y 表示m ﹣n ,并求m ﹣n 的最大值.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.22.(13分)已知椭圆+=1(a >b >0)经过点(0,),离心率为,左右焦点分别为F 1(﹣c ,0),F 2(c ,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l :y=﹣+m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足=,求直线l 的方程.23.(14分)设函数f ()=ln+,m ∈R .(Ⅰ)当m=e (e 为自然对数的底数)时,求f ()的极小值;(Ⅱ)讨论函数g ()=f ′()﹣零点的个数;(Ⅲ)若对任意b >a >0,<1恒成立,求m 的取值范围.2014年陕西省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)设集合M={|≥0,∈R},N={|2<1,∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={|≥0,∈R},N={|2<1,∈R}={|﹣1<<1,∈R},∴M∩N=[0,1).故选:D.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)函数f()=cos(2+)的最小正周期是()A.B.πC.2πD.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f()=cos(2+)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.3.(5分)已知复数=2﹣i,则•的值为()A.5 B.C.3 D.【分析】由求出,然后直接利用复数代数形式的乘法运算求解.【解答】解:由=2﹣i ,得•=(2﹣i )(2+i )=4﹣i 2=5.故选:A .【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.4.(5分)根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n ﹣1)C .a n =2nD .a n =2n ﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式.【解答】解:由程序框图知:a i+1=2a i ,a 1=2,∴数列为公比为2的等比数列,∴a n =2n .故选:C .【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4π B.3πC.2πD.π【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:C.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.6.(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A.B.C.D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:B.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(+y)=f()f(y)”的单调递增函数是()A.f()=3B.f()=3 C.f()=D.f()=()【分析】对选项一一加以判断,先判断是否满足f(+y)=f()f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f()=3,f(y)=y3,f(+y)=(+y)3,不满足f(+y)=f ()f(y),故A错;B.f()=3,f(y)=3y,f(+y)=3+y,满足f(+y)=f()f(y),且f()在R上是单调增函数,故B正确;C.f()=,f(y)=,f(+y)=,不满足f(+y)=f()f(y),故C错;D.f()=,f(y)=,f(+y)=,满足f(+y)=f()f (y),但f()在R上是单调减函数,故D错.故选:B.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若<an ,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真、真、真B.假、假、真C.真、真、假 D.假、假、假【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假.【解答】解:∵<an =⇔an+1<an,n∈N+,∴{an}为递减数列,命题是真命题;其否命题是:若≥an ,n∈N+,则{an}不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,∴命题的逆命题,逆否命题都是真命题.故选:A .【点评】本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键.9.(5分)某公司10位员工的月工资(单位:元)为1,2,…,10,其均值和方差分别为和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .,s 2+1002B .+100,s 2+1002C .,s 2D .+100,s 2【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论.【解答】解:由题意知y i =i +100,则=(1+2+…+10+100×10)=(1+2+…+10)=+100, 方差s 2=[(1+100﹣(+100)2+(2+100﹣(+100)2+…+(10+100﹣(+100)2]=[(1﹣)2+(2﹣)2+…+(10﹣)2]=s 2.故选:D .【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.10.(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A.y=3﹣2﹣B.y=3+2﹣3C.y=3﹣D.y=3+2﹣2【分析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案.【解答】解:由函数图象知,此三次函数在(0,0)上处与直线y=﹣相切,在(2,0)点处与y=3﹣6相切,下研究四个选项中函数在两点处的切线.A、,将0,2代入,解得此时切线的斜率分别是﹣1,3,符合题意,故A正确;B、,将0代入,此时导数为﹣3,不为﹣1,故B错误;C、,将2代入,此时导数为﹣1,与点(2,0)处切线斜率为3矛盾,故C错误;D、,将0代入,此时导数为﹣2,与点(0,0)处切线斜率为﹣1矛盾,故D错误.故选:A.【点评】本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一.二、填空题(共4小题,每小题5分,共25分)11.(5分)抛物线y2=4的准线方程是=﹣1 .【分析】先根据抛物线的标准方程形式求出p,再根据开口方向,写出其准线方程.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是=﹣1.故答案为=﹣1.【点评】根据抛物线的方程求其焦点坐标和准线方程,一定要先化为标准形式,求出的值,再确定开口方向,否则,极易出现错误.12.(5分)已知4a=2,lg=a,则= .【分析】化指数式为对数式求得a,代入lg=a后由对数的运算性质求得的值.【解答】解:由4a=2,得,再由lg=a=,得=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ= .【分析】由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ【解答】解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣cosθ=0,∴tanθ=,故答案为:.【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.14.(5分)已知f ()=,≥0,若f 1()=f (),f n+1()=f (f n ()),n ∈N +,则f 2014()的表达式为 .【分析】由题意,可先求出f 1(),f 2(),f 3()…,归纳出f n ()的表达式,即可得出f 2014()的表达式 【解答】解:由题意...…故f 2014()=故答案为: 【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征.选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15.(5分)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma+nb=5,则的最小值为 .【分析】根据柯西不等式(a 2+b 2)(c 2+d 2)≥(ac+bd )2当且仅当ad=bc 取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.几何证明选做题16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.坐标系与参数方程选做题17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题(共6小题,共75分)18.(12分)△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.【点评】此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键.19.(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H.(Ⅰ)求四面体ABCD的体积;(Ⅱ)证明:四边形EFGH是矩形.【分析】(Ⅰ)证明AD⊥平面BDC,即可求四面体ABCD的体积;(Ⅱ)证明四边形EFGH是平行四边形,EF⊥HG,即可证明四边形EFGH 是矩形.【解答】(Ⅰ)解:由题意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V==;(Ⅱ)证明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH ∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形,∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)在直角坐标系Oy中,已知点A(1,1),B(2,3),C(3,2),点P(,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R)(Ⅰ)若m=n=,求||;(Ⅱ)用,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)由点的坐标求出向量和的坐标,结合m=n=,再由=m+n求得的坐标,然后由模的公式求模;(Ⅱ)由=m+n得到,作差后得到m﹣n=y﹣,令y﹣=t,然后利用线性规划知识求得m﹣n的最大值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),∴,又m=n=,∴.∴;(Ⅱ)∵,∴,两式相减得,m﹣n=y﹣.令y﹣=t,由图可知,当直线y=+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为:1.【点评】本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.21.(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.【分析】(Ⅰ)设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决.(Ⅱ)设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率.【解答】解:(Ⅰ)设A 表示事件“赔付金额为3000元,”B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=,P (B )=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(Ⅱ)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2×120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为, 由频率估计概率得P (C )=0.24.【点评】本题主要考查了用频率表示概率,属于中档题.22.(13分)已知椭圆+=1(a >b >0)经过点(0,),离心率为,左右焦点分别为F 1(﹣c ,0),F 2(c ,0).(Ⅰ)求椭圆的方程;(Ⅱ)若直线l :y=﹣+m 与椭圆交于A 、B 两点,与以F 1F 2为直径的圆交于C 、D 两点,且满足=,求直线l 的方程.【分析】(Ⅰ)由题意可得,解出即可.(Ⅱ)由题意可得以F 1F 2为直径的圆的方程为2+y 2=1.利用点到直线的距离公式可得:圆心到直线l 的距离d 及d <1,可得m 的取值范围.利用弦长公式可得|CD|=2.设A (1,y 1),B (2,y 2).把直线l 的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长|AB|=.由=,即可解得m .【解答】解:(Ⅰ)由题意可得, 解得,c=1,a=2. ∴椭圆的方程为. (Ⅱ)由题意可得以F 1F 2为直径的圆的方程为2+y 2=1.∴圆心到直线l 的距离d=, 由d <1,可得.(*)∴|CD|=2==.设A (1,y 1),B (2,y 2). 联立,化为2﹣m+m 2﹣3=0,可得1+2=m ,. ∴|AB|==. 由=,得, 解得满足(*).因此直线l的方程为.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交的弦长问题、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.23.(14分)设函数f()=ln+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f()的极小值;(Ⅱ)讨论函数g()=f′()﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f()=ln+,利用f′()判定f()的增减性并求出f()的极小值;(Ⅱ)由函数g()=f′()﹣,令g()=0,求出m;设φ()=m,求出φ()的值域,讨论m的取值,对应g()的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h()=f()﹣在(0,+∞)上单调递减;h′()≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f()=ln+,∴f′()=;∴当∈(0,e)时,f′()<0,f()在(0,e)上是减函数;当∈(e,+∞)时,f′()>0,f()在(e,+∞)上是增函数;∴=e时,f()取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g()=f′()﹣=﹣﹣(>0),令g()=0,得m=﹣3+(>0);设φ()=﹣3+(>0),∴φ′()=﹣2+1=﹣(﹣1)(+1);当∈(0,1)时,φ′()>0,φ()在(0,1)上是增函数,当∈(1,+∞)时,φ′()<0,φ()在(1,+∞)上是减函数;∴=1是φ()的极值点,且是极大值点,∴=1是φ()的最大值点,∴φ()的最大值为φ(1)=;又φ(0)=0,结合y=φ()的图象,如图;可知:①当m>时,函数g()无零点;②当m=时,函数g()有且只有一个零点;③当0<m<时,函数g()有两个零点;④当m≤0时,函数g()有且只有一个零点;综上,当m>时,函数g()无零点;当m=或m≤0时,函数g()有且只有一个零点;当0<m<时,函数g()有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h()=f()﹣=ln+﹣(>0),则h(b)<h(a).∴h()在(0,+∞)上单调递减;∵h′()=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣2+=﹣+(>0),∴m≥;对于m=,h′()=0仅在=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法解答问题,是难题.。
2014年高招全国课标1(文科数学解析版)第Ⅰ卷选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}13M x x =-<<, {}21N x x =-<<,则M N =( ))1,2(- B. )1,1(- C. )3,1( D. )3,2(- 【答案】:B 【解析】: 在数轴上表示出对应的集合,可得MN = (-1,1),选B若0tan >α,则0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 【答案】:C【解析】:由tan0可得:kk2π(k Z ),故2k 2 2k(k Z ),正确的结论只有sin 20. 选C设i iz ++=11,则=||z A.21B. 22C. 23D. 2【答案】:B【解析】:11111222i z i i i i -=+=+=++,2z ==,选B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1 【答案】:D【解析】:由双曲线的离心率可得2a=,解得1a =,选D.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是)()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBAD B.12AD C. 12BC D.【答案】:A【解析】:()()EB FC EC BC FB BC EC FB +=-++=+ =()111222AB AC AB AC AD +=+=, 选A.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 【答案】:A【解析】:由cos y x =是偶函数可知cos 2cos2y x x == ,最小正周期为π, 即①正确;y| cos x |的最小正周期也是,即②也正确;cos 26y x π⎛⎫=+⎪⎝⎭最小正周期为π,即③正确;tan(2)4y x π=-的最小正周期为2T π=,即④不正确.即正确答案为①②③,选A8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱. 选B9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,xF A 045=,则=x( )A. 1B. 2C. 4D. 8 【答案】:A 【解析】:根据抛物线的定义可知001544AF x x =+=,解之得01x =. 选A.11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 【答案】:B 【解析】:画出不等式组对应的平面区域, 如图所示. 在平面区域内,平移直线0x ay +=,可知在点 A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a 5或a3.但a5时,z 取得最大值,故舍去,答案为a3. 选B.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
1 2014年陕西高考文科数学试题(文) 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|0},{|1,}MxxNxxxR,则MN( ) .[0,1]A .(0,1)B .(0,1]C .[0,1)D
【答案】 D 【解析】 DNMNM选,).1,0[∩∴),11-(),∞,0[==+=
2.函数()cos(2)4fxx的最小正周期是( ) .2A .B .2C .4D
【答案】 B 【解析】
BT选∴,π2π2||π2===ω
3.已知复数 Z = 2 - 1,则Z .z 的值为( ) A.5 B.5 C.3 D.3 【答案】 A 【解析】 Azziziz选.514,2∴,-2=+=+==
4.根据右边框图,对大于2的整数N,得出数列的通项公式是( ) .2nAan .2(1)nBan .2nnCa 1.2nnDa
【答案】 C 【解析】 Cqaaaaan选的等比数列是.2,2∴,8,4,21321=====
5.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得集合体的侧面积是 2
( ) A.4 B.8 C.2 D. 【答案】 C 【解析】 CrSr选个圆:,则侧面积为,高为为旋转体为圆柱,半径.2ππ*22112==
6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 1.5A 2.5B 3.5C 4.5D
【答案】 B 【解析】
Bp选种,的顶点共是中心到种,距离小于边长只能共有中取.52104441025==∴
7.下列函数中,满足“fxyfxfy”的单调递增函数是( ) (A)12fxx (B)3fxx (C)12xfx (D)3xfx 【答案】 B 【解析】 ByfxfyxfBDyxyxyx选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+
8.原命题为“若12,zz互为共轭复数,则12zz”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) (A)真,假,真 (B)假,假,真 (C)真,真,假 (D)假,假,假 【答案】 A 【解析】
Aaaaaaannnnnn选个命题全真真原命题为真,逆命题为为递减数列,,逆命题和否命题等价原命题和逆否名称等价.4}{2.11∴∴⇔<⇔<+++
9.某公司10位员工的月工资(单位:元)为x1,x2,''',x10 ,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这个10位员工下月工资的均值和方差分别为( )
(A)x,s2+1002 (B)x+100, s2+1002 (C) x,s2 (D)x+100, s2 【答案】 D 【解析】 D选不变均值也加此数,方差也样本数据加同一个数,.
10.如图,修建一条公路需要一段环湖弯曲路段与两条直道为某三次函数图像的一部分,则该函数的解析式为( ) 3
(A)xxxy232121 (B)xxxy3212123 (C)xxy341 (D)xxxy2214123 【答案】 A 【解析】
Abaxxxxfxxxyff选经计算得出也可设符合经检验只有,且),三次函数过点.))(2-()(.-21-21.3)2(1-)0(,02(),0,0(23+===′=′
二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.抛物线24yx的准线方程为___________. 【答案】 -1x= 【解析】 .-1x(1,0),∴,42==准线方程焦点xy
12.已知,lg,24axa则x=________. 【答案】 10 【解析】 .1010,21lg12a∴,lg,224212aa========xaxax所以,
13. 设20,向量)cos,1(),cos,2(sinba,若0ba,则tan______. 【答案】 21 【解析】
.21tanθθ,cosθcosθsin20,θcos-θ2sin∴0).θcos-,1(),θcos,θ2(sin22解得即,baba
14.已知f(x)=xx1,x≥0, f1(x)=f(x),fn+1(x)=f(fn(x)),nN+, 则f2014(x)的表达式为__________. 【答案】 xx20141+ 【解析】 4
.20141)(,31211,21)(,2111,1)(∴)),(()(,,1)()(,20143211xxxfxxxxxxxfxxxxxxxfxffxfxxxfxfnn+=+=+++=+=+++==+==+经观察规律,可得 15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) .A(不等式选做题)设,,,abmnR,且225,5abmanb,则22mn的最小值
为 .B(几何证明选做题)如图,ABC中,6BC,以BC为直径的半圆分别交,ABAC
于点,EF,若2ACAE,则EF
.C(坐标系与参数方程选做题)在极坐标系中,点(2,)6到直线sin()16的距
离是 【答案】 A 5 B 3 C 1 【解析】 A
5.≤5)φθsin(∴5)φθsin(5osθ5θsin5,osθ5,θsin5∴,52222222222的最小值为所以,,则设nmnmnmnmcnmnbmacbaba++=++=++=+=+===+
B .3,2,6∴Δ=∴===ΔEFAEACBCCBEFACAEACBAEF,且相似与 C
1|1323-3|023-1,3(∴,2-3121osθρ-23θsinρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=dyxxyc的距离)到直线点即对应直线)对应直角坐标点极坐标点
16. (本小题满分12分) ABC的内角CBA,,所对的边分别为cba,,.
(I)若cba,,成等差数列,证明:CACAsin2sinsin; (II)若cba,,成等比数列,求Bcos的最小值.
【答案】 (1) 省略 (2) 43 【解析】 5
(1) C)sin(A2sinCsinA.∴C),sin(AsinBsinC.sinA2sinBc,ab2∴,,+=++=+=+=
即成等差,cba
(2)
.43cosB434a2a-4aa2acb-acosBa2b.∴2acb∴,,2222222222==+=+====所以,,,且成等比,caccba
17. (本小题满分12分) 四面体ABCD及其三视图如图所示,平行于棱BCAD,的平面分别交四面体的棱 CADCBDAB,,,于点HGFE,,,.
(1)求四面体ABCD的体积; (2)证明:四边形EFGH是矩形.
【答案】 (1) 32 (2) 省略 【解析】 (1)
32ABCD32122213131BCD-A.BCD-AAD∴BCD⊥ADDC,⊥BDΔ,ΔΔBCD-A的体积为所以,四面体
的体积所以,三棱锥的高为三棱锥面且为等腰由题知,=••••=•=ADSVRTBCDBCD
(2)
.FG.⊥BCD⊥,//∴,,AD//HGAD//EF,∴ADHGADEFEFGH⊂HGEF,EFGH,AD//HCAHEH//BC,∴EHBCEFGH,⊂EHEFGH,//BBCD⊥ADDC,⊥BDΔ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGFEFEFHGEFHGEFGCDGFBDFCRTBCD====
18.(本小题满分12分) 在直角坐标系xOy中,已知点)2,3(),3,2(),1,1(CBA,点),(yxP在ABC三边围成的 6
区域(含边界)上,且(,)OPmABnACmnR. (1)若23mn,求||OP; (2)用,xy表示mn,并求mn的最大值.
【答案】 (1) 22 (2) m-n=y-x, 1 【解析】 (1)
22|OP|22|OP|∴(2,2),OP∴(2,2))3,3(32)]1,2()2,1[(32)ACAB(32ACABOP∴32),,(),2,3(),3,2(),11(22==+====+=+=+===所以,,yxnmnmyxPCBA
(2)
1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x,(∴,ACABOP最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即nmxynmxyBCBAABCxyxynmnmynmxnmnm==+=+=+=+=
19.(本小题满分12分) 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(I)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率; (II)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机赔获金额为4000元的概率。 【答案】 (1)0.27 (2) 0.24 【解析】 (1)
27.01002710001201502800∴.120,1504000,300028004000,3000,2000,1000,0.1000120150100130500==+==++++=pn元的概率赔付金额大于投保金额,分别对应车辆数元有:投保金额大于赔付金额总车辆数
(2)
.24.04000.24.0100244000∴.24100201204000.100100101000)1(元的新司机所占概率为所以,赔付金额为元的新司机所占概率额为在所有投保中,赔付金人元的新司机为赔付金额为人知,新司机总人数由===•=•=pm