当前位置:文档之家› 实验一 两水相系统相图的制作

实验一 两水相系统相图的制作

实验一  两水相系统相图的制作
实验一  两水相系统相图的制作

制水工艺规程

制水工艺 MPI-012(01) 分发部门: 质量部(QA、QC),保障部(制水岗位)。 1.目的 建立纯化水、注射用水生产工艺规程,使产品生产工艺标准化,确保生产有依据,质量有保证。 2.范围

纯化水、注射用水生产工艺。 3.职责 保障部部长、质量部部长、QA、QC。 4.定义 纯化水:为饮用水经蒸馏法、离子交换法、反渗透法或其他适宜的方法制得的供药用的水,不含任何添加剂。 注射用水:指去离子水经蒸馏所得的水。 纯蒸汽:指由去离子水经蒸馏产生的蒸汽。 反渗透膜:由高分子材料制成的人工半透膜,在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来,能够有效地去除水中的溶解盐类、胶体、微生物、有机物等。 电离子交换(EDI):是将电渗析膜分离技术与离子交换技术有机地结合起来的一种新的制备超纯水(高纯水)的技术,它利用电渗析过程中的极化现象对填充在淡水室中的离子交换树脂进行电化学再生。 5.内容 5.1.概述 5.1.1.产品名称及质量标准 5.1.2.系统简述 制水岗位共有两套纯化水和注射用水生产设备,分别由山东潍坊精鹰医疗器械有限公司(以下简称精鹰系统)和广州万冠制药设备有限公司(万冠系统)设计制,万冠系统生成的纯化水可进入精鹰系统纯化水储罐。具体组成如下:

5.1.3. 工艺流程图 5.1.3.1. 纯化水制备工艺流程 精鹰系统 万冠系统

5.1.3.2.注射用水制备工艺流程 5.2.纯化水系统 5.2.1.工作原理 5.2.1.1.反渗透(RO),即施加压力超过溶液的天然渗透压,则溶剂便会流过半透膜,在相 反一侧形成稀溶液,而在加压的一侧形成浓度更高的溶液。如施加的压力等于溶液的天然渗透压,则溶剂的流动不会发生;如施加的压力小于天然渗透压,则溶剂自稀溶液流向浓溶液。 5.2.1.2.电再生离子交换(EDI)即利用两端电极高压使水中带电离子移动,淡水室中充填 离子交换树脂,而树脂的存在可以大大地提高离子的迁移速度。在电压作用下使离子从淡水水流进入到邻近的浓水水流。 5.2.1.3.石英砂过滤器中装有颗粒度均匀的石英砂,可截留原水中的沙石和絮凝物等,降 低水的浊度,进一步提高水的澄明度。

反渗透设备原理,反渗透水处理系统工程工艺流程

奥凯〖反渗透设备〗概述; Okay reverse osmosis water treatment equipment(inverse)with high selectivity for reverse osmosis membrane element desalination rate can be high up to99.7%.So the choice of high salt rejection rate,low osmotic pressure,high flux membrane, can be the most salt ions removal from water. Ro(reverse osmosis)is a kind of pressure driven by a semipermeable membrane, the selection of interception function,the solution of the solute and solvent separation separation method.They are widely used in various liquid separation and concentration.Water treatment process,water,inorganic ion,bacteria,virus, organic matter and colloid and other impurities are removed,to obtain a high quality water. 奥凯反(逆)渗透水处理设备采用选择性较高的反渗透膜元件除盐率可以高达99.7%。所以选择脱盐率高,低渗透压力,高通量的膜,可以将水中的大部分的盐离子去除。 反渗透(逆渗透)是一种在压力驱动下,借助半透膜的选择截留作用,将溶液中的溶质与溶剂分开的分离方法。目前被广泛的应用于各种液体的分离与浓缩。水处理工艺中,将水中无机离子、细菌、病毒、有机物及胶质等杂质去除,以获得高质量的水。 奥凯〖反渗透设备〗原理: Ro(reverse osmosis)technology:reverse osmosis is REVERSE OSMOSIS,it is the United States of America NASA set international scientists,in support of the government,to spend billions of dollars,after many years of research into.Reverse osmosis principle is applied in water on one side than the natural osmotic pressure greater pressure,so that the water molecules from the high concentrations of a reverse osmosis to the low concentration of a party.Due to the reverse osmosis membrane pore size is much smaller than a virus and bacterial hundreds of times or even thousands of times,so a variety of viruses,bacteria,heavy metal,solid solubles,organic pollution,such as calcium and magnesium ions cannot pass reverse osmosis membrane,so as to achieve the purpose of purifying water quality softening. Reverse osmosis membrane of the epidermis is covered with many very fine pores of the membrane,the membrane surface selective adsorption of a layer of water molecules, salt solute is membrane rejection,higher valence ion exclusion of more distant, film hole surrounding water molecules in reverse osmosis pressure role,through the membrane of the capillary effect of water and salt to reach out.RO membrane pore size< 1.0nm,thus can remove at least one bacterium Pseudomonas aeruginosa (specifically10-10m3000influenza virus(800),specifically for10-10m), meningitis,virus(10-10m200specifically for various viruses,can even remove pyrogen

污水处理厂工艺流程图(新

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D 型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后. 达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级. 二级和三级处理. 一级处理. 主要去除污水中呈悬浮状态的固体污染物质. 物理处理法大部分只能完成一级处 理的要求.经过一级处理的污水.BOD一般可去除30%左右. 达不到排放标准.一级处理属于二级处理的预处理.二级处理. 主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD 物质). 去除率可达90%以上. 使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物. 氮和磷等能够导致水体富营养化的可溶性无机物等. 主要方法有生物脱氮除磷法. 混凝沉淀法.砂率法.活性炭吸附法. 离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后. 经过格删或者筛率器. 之后进入沉 砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理). 初沉池的出水进入生物处理设备. 有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池. 氧化沟等. 生物膜法包括生物滤池. 生物转盘. 生物接触氧化法和生物流化床). 生物处理设备的出水进入二次沉淀池. 二沉池的出水经过消毒排放或者进入三级处理. 一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法. 二沉池的污泥一部分回流至初次沉淀池或者生物处理设备. 一部分进入污泥浓缩池.之后 进入污泥消化池. 经过脱水和干燥设备后. 污泥被最后利用. 各个处理构筑物的能耗分析 1. 污水提升泵房进入污水处理厂的污水经过粗格删进入污水提升泵房. 之后被污水泵提升至沉砂池的前池. 水泵运行要消耗大量的能量. 占污水厂运行总能耗相当大的比例. 这与污水流量和要提升的扬程有关. 2. 沉砂池沉砂池的功能是去除比重较大的无机颗粒. 沉砂池一般设于泵站前. 倒虹管前. 以便减轻无机颗粒对水泵.管道的磨损, 也可设于初沉池前. 以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池. 多尔沉砂池和钟式沉砂池. 沉砂池中需要能量供应的主要是砂水分离器和吸砂机. 以及曝气沉砂池的曝气系统. 多尔沉砂池和钟式沉砂池的动力系统. 3. 初次沉淀池初次沉淀池是一级污水处理厂的主题处理构筑物. 或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面. 处理的对象是SS和部分BOD5.可改善生物处理构筑物的运行条件并降低其BOD5负荷.初沉池包括平流沉淀池. 辐流沉淀池和竖流沉淀池. 初沉池的主要能耗设备是排泥装置.比如链带式刮泥机.刮泥撇渣机. 吸泥泵等. 但由于排泥周期的影响. 初沉池的能耗是比较低的. 4. 生物处理构筑物污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例. 它和污泥处理的单元过程 耗能量之和占污水厂直接能耗的60%以上. 活性污泥法的曝气系统的曝气要消耗大量的电能

双水相萃取实验

一、双水相系统的相图绘制 1.实验目的 了解制作双水相系统的相图的方法,加深对相图的认识。 2.实验原理 相图是研究两水相萃取的基础,双水相形成条件和定量关系常用相图来表示。图1是典型的高聚物-高聚物-水双水相体系的直角坐标相图,两种聚合物A、B以适当比例溶于水就会分别形成有不同组成、度的两相,上相组成用T点表示,下相组成用B点表示,由图1可知上下相所含高聚物有所偏重,上相主要含B,下相主要含A。曲线TCB称为结线,直线TMB称为系线。结线上方是两相区,下方为单相区,若配比取在曲线上,则混合后,溶液恰好从澄清变为混浊。组成在系线上的点,分为两相后,其上下相组成分别为T和B,T、B量的多少服从相图的杠杆定律。即T和B相质量之比等于系线上MB与MT的线段长度之比。又由于两相密度相差很小,故上下相体积之比也近似等于系线上MB与MT线段长度之比。 图1 A-B-水双水相体系相图 O aqueous two-phase system Figure 1 The phase diagram of the A-B-H 2 3.实验器材和试剂 (1)器材:电子台秤,漩涡混合器,大试管,滴定管,密度计,温度计。(2)试剂:聚乙二醇,硫酸铵,硫酸镁。 4.操作方法 (1)溶液的配制 配制40%的盐(硫酸铵或硫酸镁)溶液 配制40%的聚乙二醇溶液,液体聚乙二醇可用纯溶液。 (2)相图的制作

精确称取一定质量(0.7000g 左右)PEG 溶液于大试管中,按表1所列第1列数据,加入0.5mL 去离子水,用滴定管缓慢滴加已配好的40%的盐溶液,并不断在漩涡混合器上混合,观察溶液的澄清程度,直至试管内液体出现浑浊为止。记录盐溶液的加量(g)。然后,按表格所列第2列数据加入水,溶液澄清,继续向试管中滴加盐溶液并不断混匀,直至再次达到浑浊,如此反复操作。计算每次达到浑浊时,PEG 和盐在系统总量中的质量分数,将实验数据填入表中,以PEG 的质量分数为纵坐标,某种盐的质量分数为横坐标作图,即得到一条双节线的相图。 表1相图制作表 编 号 水 /g (NH 4)2SO 4溶液加量/g 纯(NH 4)2SO 4累计量/g 溶液累计总量/g (NH 4)2SO 4质量分 数/% PEG 质量分数/% 1 0.5 3.1315 0.895 4.3786 20.4 4.79 2 0.3 2.1792 1.5186 5.9511 21.85 3.02 3 0.3 2.0456 2.1 9.2867 22.65 2.26 4 0.3 3.1372 3.0 12.6738 23.68 1.65 5 0.5 6.0769 4.7 19.3276 24.52 1.08 6 0.5 6.1909 6.5 26.0138 25.02 0.8 7 0.5 6.8585 8.5 33.4596 25.32 0.62 根据以上数据以(NH 4)2SO 4质量分数为横坐标,以PEG 质量分数为纵坐标即可做出相图。 二、双水相系统比例的选择 根据相图,选择五个成相比例。 三、蛋白酶酶活标准曲线的绘制—— Folin 酚法或紫外分光光度法 PEG4000与MgSO4双水相图 y = 0.0995x 2 - 5.3887x + 73.334 2012345 6 20 21 22 2324 25 26 MgSO4% P E G 4000%

单片机原理及应用实验报告

单片机原理实验报告 专业:计算机科学与技术 学号: :

实验1 计数显示器 【实验目的】 熟悉Proteus仿真软件,掌握单片机原理图的绘图方法 【实验容】 (1)熟悉Proteus仿真软件,了解软件的结构组成与功能 (2)学习ISIS模块的使用方法,学会设置图纸、选元件、画导线、修改属性等基本操作 (3)学会可执行文件加载及程序仿真运行方法 (4)理解Proteus在单片机开发中的作用,完成单片机电路原理图的绘制【实验步骤】 (1)观察Proteus软件的菜单、工具栏、对话框等基本结构 (2)在Proteus中绘制电路原理图,按照表A.1将元件添加到编辑环境中(3)在Proteus中加载程序,观察仿真结果,检测电路图绘制的正确性 表A.1

Switches&Relays BUT BUTTON 【实验原理图】 【实验源程序】 #include sbit P3_7=P3^7; unsigned char x1=0;x2=0 ; unsigned char count=0; unsigned char idata buf[10]= {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void delay(int time) { int k,j;

for(;time<0;time--) for(k=200;k>0;k--) for(j=500;j<0;j--); } void init() { P0=buf[x1]; delay(10); P2=buf[x2]; delay(10); } void main() { init(); while(1) { x1=count/10; x2=count%10; P0=buf[x1]; delay(10);

双水相萃取

实训1 双水相萃取相图的制作 一、实训目的 1. 学习双水相分离萃取的原理和方法 2. 学习双水相萃取相图的制作 二、实训原理 双水相萃取法是利用物质在互不相容的两个水相间分配系数的差异来进行萃取的方法。 两水相的形成:高聚物与无机盐在水中由于盐析的作用会形成两个相,如PEG 与硫酸盐或碱性磷酸盐。两种亲水性高聚物在水中由于聚合物的不相容性也会形成两个相。但是它们只有达到一定的浓度时,才能形成两相,双水相形成的定量关系可用相图来表示。 相图是一根双节线, 把均匀区和两相区分隔开来。 当成相组分的配比取在:线的下方时,为均相区; 曲线的上方时,为两相区;在曲线上,则混合后,溶液恰好从澄清变为浑浊。 相图中TMB 称为系线;T 代表上相组成;B 代表下相组成;同一条系线上各点分成的两相具有相同的组成,但体积比不同。 V T / V B = BM / MT 三、实训器材、试剂、材料 1.器材:试管,离心机,天平,离心管,三角瓶,滴定管。 2.试剂:聚乙二醇2000(PEG2000),硫酸铵。 四、实训操作步骤 1.PEG2000(NH 4)2SO 4双水相体系相图的测定 (1)取10%(g/ mL )PEG2000溶液10mL 于三角瓶中。 (2)用40%(g/mL )(NH 4)2SO 4溶液装入滴定管中滴定至三角并中溶液出现浑浊,记录)NH4)2SO 4溶液消耗的体积。加入1mL 水使溶液澄清,继续用(NH 4)2SO 4溶液滴定至浑浊,重复7~8次,记录每次(NH 4)2SO 4溶液消耗的体积,计算每次出现浑浊时体系中PEG2000和(NH 4)2SO 4的浓度(g/mL )。 (3) 以(NH 4)2SO 4的浓度(g/mL )为横坐标,PEG2000的浓度(g/mL )为纵坐标,绘制PEG2000- (NH 4)2SO 4双水相体系相图。 2. 相图制作表 10%PEG2000 10mL 温度T=20℃ PEG2000 % (NH 4)2SO 4 % 两相 均相

计算机组成原理与汇编实验报告

计算机组成原理与汇编 实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

计算机组成原理与汇编课程设计 实验报告 目录 一、课程设计目标 (3) 二、课程设计基本要求 (3) 三、课程设计的内容 (3) 四、课程设计的要求 (5) 五、实验详细设计 (5) 1.统计文件中各字母出现的频率 (5) 2.用递归计算50以内Fibonacci 数, 以十进制数输出 (9) 3.虚拟平台模拟机实验 (11) 六、使用说明 (19) 七、总结与心得体会 (19) 八、参考文献 (20) 九、附录 (20) 1.字符统计.asm (20) 2.斐波那契数(小于50).asm (29) 一、课程设计目标 通过课程设计使学生综合运用所学过的计算机原理与汇编知识,增强解决实际问题的能力,加深对所学知识的理解与掌握,提高软硬件开发水平,为今后打下基础。 课程设计的目的和要求: 1、使学生巩固和加强《计算机原理与汇编语言》课程的基本理论知识。

2、使学生掌握汇编语言程序设计的方法及编程技巧,正确编写程序。 3、使学生养成良好的编程习惯并掌握调试程序的基本方法。 4、使学生养成规范书写报告文档的能力,撰写课程设计总结报告。 5、通过查阅手册和文献资料,培养学生独立分析问题和解决问题的能力。 二、课程设计的基本要求 1、认真查阅资料,独立完成设计任务,每道题都必须上机通过。 2、编写预习报告,写好代码,上机调试。 3、独立思考,培养综合分析问题解决问题和调试程序的能力。 4、按时完成课程设计,写出课程设计报告。 三、课程设计的内容 1、给定一个英文ASCII码文件,统计文件中英文字母的频率,以十进制形式输出。 2、用递归计算50以内Fibonacci 数, 以十进制数输出. 3、虚拟平台的模型机实验,具体要求如下: 1)选择实验设备,将所需要的组件从组件列表中拖到实验设计流程栏中 2)搭建实验流程:根据原理图1和电路图(见附件),将已选择的组件进行连线。 3)输入机器指令:选择菜单中的“工具”,再选择“模型机调试”,在指令输入窗 口中输入如下指令: 00000000 00010000 00001001 00100000 00001011 00110000 00001011 01000000 00000000 00000001 本实验设计机器指令程序如下:

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

研究生数字图像处理实验内容及要求(新)

《数字图像处理》实验内容及要求 实验内容 一、灰度图像的快速傅立叶变换 1、 实验任务 对一幅灰度图像实现快速傅立叶变换(DFT ),得到并显示出其频谱图,观察图像傅立叶变换的一些重要性质。 2、 实验条件 微机一台、vc++6.0集成开发环境。 3、实验原理 傅立叶变换是一种常见的图像正交变换,通过变换可以减少图像数据的相关性,获取图像的整体特点,有利于用较少的数据量表示原始图像。 二维离散傅立叶变换的定义如下: 11 2( )00 (,)(,)ux vy M N j M N x y F u v f x y e π---+=== ∑∑ 傅立叶反变换为: 112( )00 1 (,)(,)ux vy M N j M N u v f x y F u v e MN π--+=== ∑∑ 式中变量u 、v 称为傅立叶变换的空间频率。图像大小为M ×N 。随着计算机技术和数字电路的迅速发展,离散傅立叶变换已经成为数字信号处理和

图像处理的一种重要手段。但是,离散傅立叶变换需要的计算量太大,运算时间长。库里和图基提出的快速傅立叶变换大大减少了计算量和存储空间,因此本实验利用快速傅立叶变换来得到一幅灰度图像的频谱图。 快速傅立叶变换的基本思路是把序列分解成若干短序列,并与系数矩阵元素巧妙结合起来计算离散傅立叶变换。若按照奇偶序列将X(n)进行划分,设: ()(2) ()(21)g n x n h n x n =??=+? (n=0,1,2,…,12N -) 则一维傅立叶变换可以改写成下面的形式: 1 0()()N mn N n X m x n W -==∑ 11220 ()()N N mn mn N N n n g n W h n W --===+∑∑ 1122(2)(21) (2)(21)N N m n m n N N n n x n W x n W --+===++∑∑

电厂化学水处理工艺流程

化学水处理系统一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (口mol/L)溶解氧 (卩g/L)电导率 (s/cm)二氧化硅 (口g/L) PH值 (25 C )二氧化碳 (u g/L) 标准 < 30 < 50 10 < 20 8.8 ?9.2 < 20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离 子(Ca2+)和镁离子(Mg廿)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2 +内含6.02 X 1023个钙离子)。如果1L溶液中含有1g Ca2 +,那么它的摩尔浓度是1/80 = 0.0125mol/L = 12.5mmol/L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危

害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物, 这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下, 就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中, 结有1mm厚的水垢时,其燃料用量就比原来的多消耗1.5 %? 2.0%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低, 从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后, 必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2. 热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO,离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时, 还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

双水相萃取相图制作实验

实验一:双水相萃取的相图制作 一、试验目的 1了解双水相萃取的原理和发展历史、趋势 2 掌握用浊点法制作双水相系统相图的方法。 二、试验原理 某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相中水分占很大比例,即形成双水相。常见的双水相系统可分为两类,即双聚合物体系和聚合物/盐体系。双水相形成的条件和定量关系可用相图来表示,它是研究双水相萃取的基础。相图是一根双节线,当成相组分的配比在曲线的下方时,系统为均匀的单相,混合后溶液澄清透明,称为均相区;当配比在曲线的上方时,能自动分成两相,称为两相区;若配比在曲线上,混合后,溶液恰好由澄清变为浑浊。 连接双节线上的两点的直线称为系线,它由三点确定,即M(初始混合物组成情况)、T(上相组成情况)、B(下相组成情况),其中T/B互为共扼相。系线越长,两相间的差别越大,当系线长度趋向零时,两相差别消失。系线上系统的总浓度不同,但均分成组成相同体积不同的两相,两相体积服从杠杆规则:VT/VB=BM/MT 三、主要仪器设备 漩涡振荡器、微量滴管装置、电子天平 四、试验步骤 1 双水相系统的制作 精确配制43%(g/ml)的(NH4)2SO4溶液,并测定其密度。另精确称取PEG400液体0.7g 于试管中,按表格中所列第一号数据,用吸管加入0.5毫升水,缓慢滴加已配制好的(NH4)2SO4溶液,并在混合器上混合,观察溶液的澄清程度,直至试管内溶液开始出现浑浊为止,记录(NH4)2SO4的加入量,根据密度求出重量。然后按下表列出的第2号数据加入水,使其澄清,继续向试管中滴加(NH4)2SO4溶液,使其再次达到浑浊。如此反复操作,计算每次达到浑浊时PEG400和(NH4)2SO4在系统总量中的百分含量。

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导 实验三调度器设计基础 一、实验目的和要求 1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。 2.掌握Keil与Proteus的联调技巧。 3.掌握串行通信在单片机系统中的使用。 4.掌握调度器设计的基础知识:函数指针。 二、实验设备 1.PC机一套 2.Keil C51开发系统一套 3.Proteus 仿真系统一套 三、实验内容 1.甲机通过串口控制乙机LED闪烁 (1)要求 a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时 闪烁,关闭所有的LED。 b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。 i.甲机发送“A”,控制乙机LED1闪烁。 ii.甲机发送“B”,控制乙机LED2闪烁。 iii.甲机发送“C”,控制乙机LED1,LED2闪烁。 iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。 c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。两机的程序要 分别编写。 d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下: i.设置串口模式(SCON) ii.设置定时器1的工作模式(TMOD) iii.计算定时器1的初值 iv.启动定时器 v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。

(2)电路原理图 Figure 1 甲机通过串口控制乙机LED闪烁的原理图 (3)程序设计提示 a.模式1下波特率由定时器控制,波特率计算公式参考: b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。 2.单片机与PC串口通讯及函数指针的使用 (1)要求: a.编写用单片机求取整数平方的函数。 b.单片机把计算结果向PC机发送字符串。 c.PC机接收计算结果并显示出来。 d.可以调用Keil C51 中的printf来实现字符串的发送。 e.单片机的数码港显示发送的次数,每9次清零。

典型纯化水系统工艺流程示意图

典型纯化水系统工艺流程示意图 制药纯化水制备系统清单(以2t/h纯化水设备为例)

在纯化水管道系统的清洗和消毒时,不得安装紫外灯及除菌滤器过滤介质,不得安装呼吸器。纯化水系统贮罐及不锈钢管道的处理(清洗、消毒)分为纯化水循环预冲洗→碱液循环清洗→纯化水冲洗→消毒。 纯化水管道系统中纯化水循环预冲洗: 启动制水系统,待纯水箱内注入约500L纯化水时,启动水泵加以循环,待纯水箱内纯水降到低位时,关闭纯水泵,排尽纯水箱内积水和管道积水后,关闭纯水箱及纯水管道上所有的用水点阀门。 纯化水管道系统冲洗: 启动制水系统,将二级反渗透淡水同时注入配制碱液的清洗箱内和纯水箱内,并通过清洗泵,将清洗箱内的纯水输送到纯水箱内,使对清洗箱进行清洗。 待纯水箱内的纯水到中位时,启动纯水泵,将纯水输送管道各使用点用水阀同时打开,使其处于半开启状态,关闭纯水泵,打开纯水贮罐排污阀和各使用点阀门进行排空。 排空后,继续制备纯化水按以上相同冲洗方法对贮罐和管道进行循环冲洗、排放,总PH、电导率相一致结束。 冲洗结束后,应对纯水箱及各使用点阀门全部开启进行排空,排空结束后,关闭纯水箱及管道所有使用阀门,准备钝化。 消毒: 3%双氧水配制:开启制水系统,制取纯化水进入清洗箱内,输送完毕后,使纯水贮罐内的双氧水浓度为3%,体积为500L。 消毒:开启纯水泵,使3%双氧水消毒剂在纯水箱及管道内循环30分钟,并通过喷淋球对贮罐内壁循环消毒。 消毒剂排放:3%双氧水循环结束后,打开纯水各使用点阀门,使其处于半开启状态,使消毒液对阀门处进行消毒,直致消毒液排尽。 纯水最终冲洗:启动制水系统制备纯水入纯水贮罐中位时,启动纯水泵,对贮罐和管道循环冲洗30分钟后,打开纯水贮罐排污阀和各使用进行排空。 排空后,继续制备纯水输送到纯水贮罐中位,按以上冲洗方法对贮罐和管道进行循环冲洗、排放,直至二级反渗透淡水、纯水贮罐、总送、总PH、电导率符合标准要求为结束。

实验报告(原理图库的建立)

物理与电子科学学院PCB 实验 —原理图库的设计 教 案 姓名:刘斌 班级:物电 1105 班 学号: 2011112030560 指导老师:曹老师

实验三原理图库的设计教案 (物理与电子科学学院1105班刘斌2011112030560) 一、实验目的: 1.熟悉原理图工作环境,图形工具中各种命令的使用。 2.熟悉原理图符号的编辑,原理图库的建立。 二、实验内容 在protel DXP中完成,完成下列原理图符号的制作。 1.AT89c51单片机原理图符号制作 2.74LS00芯片的原理图制作

二、AT89c51单片机原理图符号制作实验步骤 第一步:新建工程;“打开软件—文件—新建—PCBproject”,步骤如图 第二步:保存工程;快捷保存方式:可以直接点击菜单栏中的保存按钮即可进行保存操作,或者”File—Save Project”,接着选择保存路径即可,步骤如图: 第三步:新建原理图文件;“在Project命令栏中,PCB Project右击,选择Add New to Project ——Schematic”,步骤如图 第四步:新建原件库文件;“Project—Add New to Project—Schematic Library”,步骤如图

第五步:绘制元器件;可以直接在工具栏选择想要的图形,步骤如图: 第六步:绘制元器件引脚;步骤如图: 第七步:绘制元器件;结构如图: 第八步:在原理图中查看绘制好的元器件图形;形状如图: 第九步:对绘制好的元件原理图,进行适当的调整和修改,使其形状尽量的合理美观。

三、74LS00芯片的原理图制作实验步骤 第一、二、三、四步重复:二、A T89c51单片机原理图符号制作实验步骤 第五步:在这里74LS00芯片原理图通过“分部分”来完成绘制;步骤如图: 第五步:添加五个Part,分别为(PartA、B、C、D、E),然后在Part BCDE绘制如下图形;步骤如图: 第六步:在Part A中绘制如下图形;步骤如图:

双水相相图制作

实验一双水相相图的制作 一、实验目的 1.了解双水相系统成相的原理和方法。 2.学习双水相相图的制作。 3.掌握双水相溶液配制与双水相萃取的操作。 二、实验原理 双水相系统中使用的双水相是由两种互不相溶聚合物(如聚乙二醇(PEG)与葡聚糖(Dextran))或者互不相溶的盐溶液和聚合物溶液(如PEG与(NH4)2SO4)组成。双水相系统的制备,一般是将两种溶质分别配制成一定浓度的水溶液,然后将两种溶液按照不同的比例混合,静止一段时间,当两种溶质的浓度超过某一浓度范围时,就会产生两相。两水相形成的条件和定量关系可用相图来表示,它是一根双节线,当成相组分的配比取在曲线下方时,系统为均匀的单相,混合后,溶液澄清透明,称为均相区;在曲线的上方时,能自动分为两相,称为两相区;若配比取在曲线上,则混合后,溶液恰好从澄清变为浑浊。相图是研究两水相萃取的基础。 双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等) 的存在和环境的影响,使其在上、下相中的浓度不同。对于某一物质,只要选择合适的双水相体系,控制一定的条件,就可以得到合适的分配系数,从而达到分离纯化之目的。 双水相萃取受许多因素的影响,如高分子聚合物种类、分子量及组成、无机盐种类及组成,pH等。本实验选用PEG—硫酸盐为相系统,点浊法绘制相图。 三、试剂及仪器 仪器:天平、离心机、刻度试管、吸管、分光光度计、试管、移液管等。 药品:PEG6000、硫酸铵、蒸馏水等。 四、实验内容 (一)PEG4000-硫酸铵双水相体系相图的测定 1. 取25%PEG4000溶液(w/v)10ml 于三角瓶中。 2. 用40%硫酸铵溶液(w/v)装入滴定管中滴定至三角瓶中溶液恰好浑浊,记录硫酸铵消耗的体积。加入1ml 水使溶液澄清,继续用硫酸铵滴定至恰好浑浊,重复7次记录每次硫酸铵消耗的体积,计算每次出现浑浊时体系中PEG和硫酸铵的浓度(w/v),并填入表1中。 3. 以硫酸铵的浓度(w/v)为横坐标,PEG浓度(w/v)为纵坐标,绘制出PEG4000-硫酸铵双水相体系相图。 表1 PEG4000-硫酸铵双水相体系相图制作表

实验内容原理图

说明: (a)若I/O管脚冲突,则自行调整。每组至少完成8个实验。(b)每组根据自愿可自加实验内容1个(例如:数字电子钟、A/D 转换、D/A转换、4x4矩阵键盘、8*8点阵、乐曲、温度采集、步进电机控制等),将电路元件加入其中,并编制软件调试。(c)电路板在加工前一定要小组内仔细检查。 (d)建议每位同学搞清楚每个实验,切记不可抄袭。 (e)参考程序仅供参考。 表 1 端口分配表

参考供电电路: 实验一闪烁灯实验 1 实验任务及原理图 如图1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为1秒。

图1 闪烁灯原理图 2 C语言源程序 #include sbit L1=P1^0; void delay02s(void) //延时0.2秒子程序 {unsigned char i,j,k;//时间需要在keil中调试,这儿是随便给的循环次数 for(i=20;i>0;i--) for(j=20;j>0;j--) for(k=248;k>0;k--); } void main(void) {while(1) {L1=0;delay02s();L1=1;delay02s();} }

实验二模拟开关灯实验 1实验任务及原理图 如图2所示,监视开关K1(接在P3.0端口上),用发光二极管L1(接在单片机P1.0端口上)显示开关状态,如果开关合上,L1亮,开关打开,L1熄灭。 图2 模拟开关灯原理图 2 程序框图

3 C语言源程序 #include sbit K1=P3^0; sbit L1=P1^0; void main(void) { while(1) { if(K1==0) { L1=0; //灯亮 } else { L1=1; //灯灭 } } }

水泥生产工艺流程图

水泥生产工艺流程 水泥的生产工艺可以简述为两磨一烧,即原料要经过采掘、破碎、磨细和混匀制成生料,生料经1450℃的高温烧成熟料,熟料再经破碎,与石膏或其他混合材一起磨细成为水泥。 一、水泥生产的生料制备 1 破碎工艺 水泥生产过程中,很大一部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。 2生料的预均化工艺 原料预均化,实现原料的初步均化,。 3 生料的烘干工艺 烘干工艺是将生料通过烘干机加热干燥。 烘干设备有回转式和悬浮式烘干机、烘干塔等,回转式烘干机内温度约700℃,排放废气量约1300m3/t料。 4 生料的粉磨工艺 二、水泥生产的煅烧 目前大中型水泥厂多使用回转窑,小型水泥厂多使用立窑,我国还有50﹪以上的水泥仍使用立窑生产。 1 立窑煅烧 立窑工艺的设备是静止的竖窑,分为普通立窑和机械化立窑,属于半干法生产。 立窑的日产量已达250~300t/d。立窑又分普通立窑和机立窑,普通立窑采用间歇式生产,能耗热耗较高,产生的废气量约3900立米/吨熟料,粉尘浓度15g/m3。 2 新型干法旋窑煅烧

它是在旋窑煅烧增加预分解窑与悬浮预热工艺。生料在预热器以内悬浮状态或沸腾状态下与热气流进行热交换,又在分解炉中加入占总燃料用量50~60%的燃料,使生料在入窑前的碳酸钙分解率达80%以上。 预热分解 把生料的预热和部分分解由预热器来完成,代替回转窑部分功能。 (1)物料分散 换热80%在入口管道内进行的。喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。 (2)气固分离 当气流携带料粉进入旋风筒后,被迫在旋风筒筒体与内筒(排气管)之间的环状空间内做旋转流动,并且一边旋转一边向下运动,由筒体到锥体,一直可以延伸到锥体的端部,然后转而向上旋转上升,由排气管排出。 (3)预分解 预分解技术是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90%以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入。 据有关专家统计,每生产1t 水泥就要向环境排放1t 有害气体。我国水泥工业的CO2排放量约为7亿t左右,S02在80万t左右,NOx在100万t左右。

相关主题
文本预览
相关文档 最新文档