当前位置:文档之家› 活性污泥法工艺分类

活性污泥法工艺分类

活性污泥法工艺分类
活性污泥法工艺分类

活性污泥法主要工艺分类

各种工艺的主要优缺点和最佳适用条件

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

传统活性污泥工艺

传统活性污泥工艺:工艺特征:吸附和代谢的完整过程、完全生长周期、需氧量延池长逐渐降低。优点:处理效果好经验成熟。问题:前段缺氧后端富余能耗大、占地面积大基建费用高、对水质水量变化的适应性弱 曝气活性污泥工艺特点:分段进水多段进水、需氧和供氧平衡、耐冲击负荷能力强 完全混活性污泥工艺:特点:池中个点水质相同各部分有机物降解工况相同、抗冲击能力强、处理效果差与推流式、易出现污泥膨胀 吸附再生活性污泥工艺:特点:吸附池能接触时间短、占地面积小、耐冲击负荷能力强、处理效果低于传统法 SBR工艺(间歇式活性污泥法):特点:工艺简单可省略掉二沉池和污泥回流设备、反应推动力大效率高、沉淀效果好、调节运行方式可脱氮除磷、便于自动控制、适用于中小型污水处理 AB法工艺:特点:无初沉池、AB段有各自的微生物群体、A段起到微生物选择器作用、处理效果好、可分期建设 活性污泥工艺发展方向:提高氧利用率、减少占地面积、减少运行费用、提供自动化水平、强化净化功能 普通生物滤池:原理:污水时间以滴状喷洒在滤料表面,与生物膜中的微生物充分接触,有机污染物被微生物吸附并降解,使污泥得以净化。优点:BOD去除率高运行稳定节约能源。缺点:占地面积大进水负荷低易阻塞有气味问题 高负荷生物滤池:特征:大幅提高了滤池负荷、限制进水BOD值、采用处理水回流技术、均化水质加大水力负荷减轻臭味抑制滤池蝇 塔式生物滤池:特征:滤层内部的分层微生物的优势菌种、能抵御较高的冲击负荷、水量不超过10000m3/d、充氧效果好污染物降解速度快 曝气生物滤池:原理:过滤生物吸附与生物代谢作用净化污水。特征:三相接触充分O2的转移效率高、不需要沉淀池占地少、滤料3-5mm比表面积大微生物附着力强、不需要污泥回流无污泥膨胀。 向上曝气生物滤池的特点:在整个滤池高度上提供正压条件避免短流、延长反冲洗周期减少清洗时间和水,气的量 生物转盘:净水机理:当转盘浸没水中时有机物被生物膜吸附、转盘离开水面时固着水层从空气中吸收氧转移到生物膜和污水中、盘的搅动使大气中的氧进入水中、生物膜与水及空气交替接触去除BOD COD工艺特征:转速可调适用性强、耐冲击负荷、不需要污泥回流动力消耗低、不产生池蝇 生物接触氧化池:特征:采用蜂窝状波纹板状软性纤维状填料形成生物膜立体结构、完全混合型流态充氧抑制厌氧膜的增殖、负荷高处理时间短、可间歇运行、不需要污泥回流不产生污泥膨胀 厌氧法工艺:特征:污泥回流可降低停留时间、真空脱气设备可避免污泥上浮、冷却器使混合液降温抑制甲烷菌在沉淀池内活动 厌氧生物滤池:机理:涂料表面形成厌氧生物膜污水淹没通过滤料水中的有机物被截流吸附及分解。特征:生物量浓度高、抗冲击负荷能力强、不需污泥回流运行管理方便、适合于处理多种浓度的有机废水 升流式厌氧污泥槽:特征:适合处理高中低浓度的有机废水、无需设沉淀池和污泥回流装置、无需填料节约费用提高了容积利用率

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

8.1活性污泥法工艺流程

活性污泥法工艺流程 (活性污泥法、微孔曝气器、管式曝气器、污水厂、水处理工艺)活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。 活性污泥法工艺流程图: 一、活性污泥法由五部份组成: ①曝气池:反应主体;②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度;③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况;④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行;⑤供氧系统:提供足够的溶解氧。 污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。 第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。 第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。 经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

03-第三章活性污泥法030916

第三章废水好氧生物处理工艺(1)——活性 污泥法 第一节、活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002 1.006);

粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水中难于生物降 解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: ① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed V olatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge V olume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge V olume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 )/() /((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?= = 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过 高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。

简述活性污泥法污水处理新工艺详细说明

简述活性污泥法污水处理新工艺详细说明伴随着经济发展和城市化进程的不断推进,城市环境问题日益突出,给自然环境造成了巨大的压力。由于在相当长的一段时期,人们对环境污染的后果缺乏认识,致使城市环境污染问题日益严重。用污泥处理设备处理造纸厂白液,可回收白液中的纸浆,提高造纸厂回收率。若都用振动脱水机对酿酒厂的酒槽和造纸厂的白液进行脱水处理,对废弃物的回收再利用和消除污染公害,具有十分重要的意义。 活性污泥法污水处理机械设备的设计 活性污泥是当前应用最为广泛的一种生物处理技术。活性污泥就是生物絮凝体,上面栖息、生活着大量的好氧微生物,这种微生物在氧分充足的环境下,以溶解型有机物为食料获得能量、不断生长,从而使污水得到净化。该方法主要用来处理城市污水和低浓度的有机工业污水。所用设备一般由曝气池、二沉池、污泥回流和剩余污泥排出系统构成,曝气池是其中最主要的系统。 活性污泥法的基本流程 由初沉池、曝气池、二沉池、供氧装置以及回流设备组成。由初沉池流出的污水与二沉池底部流出的回流污泥混合后进入 曝气池,并在曝气池充分曝气,使活性污泥处于悬浮状态,并与

污水充分接触,同时保持曝气池好氧条件,保证好氧微生物的正常生长和繁殖。污水中的可溶性有机物在曝气池内被活性污泥吸附、吸收和氧化分解,使污水得到净化。二次沉淀的作用:一是将活性污泥与已被净化的水分离;二是浓缩活性污泥,使其以较 高的浓度回流到曝气池。二沉池的污泥也可以部分回流至初沉池,以提高初沉效果。 活性污泥法的工艺 曝气池实际上是一种生化反应器,是活性污泥系统的核心设备,活性污泥系统的净化效果,在很大程度上取决于曝气池的功能是否能够正常发挥。混合液的流态曝气池可分为推流式、完全混合式和二池结合型三类。严格来说,推流式和完全混合式只具理论上的意义,工程实践中曝气池的构造和曝气方式密切相关。根据曝气方式的不同,曝气池又可分为鼓风曝气式曝气池和机械曝气式曝气池。 污水处理的主要任务就是用各种方法将生活污水和生产废 水中所含的污染物分离出来,或将其转化为无害的物质,从而使污水得以净化。按其作用原理可将污水处理方法分为不溶态污染物的分离技术(简称为物理法)、污染物的化学转换技术(简称化 学法)、溶解态污染物的物理化学转换技术(简称物化法)、污染 物的生物化学转换技术(简称生化法)等4大类。而按照处理程度

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析 活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术,是废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。 1.活性污泥法的特点 曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值; 废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定; 回流污泥量约为进水流量的25%—50%左右; BOD和悬浮物去除率都很高,达到90%—95%左右。 2.作用原理 普通活性污泥法是依据废水的自净作用原理发展而来的。 3.不足之处 对水质变化的适应能力不强; 所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。 因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。 阶段曝气活性污泥法 阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。 曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。 渐减曝气法

克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。 该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。 吸附再生活性污泥法 吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。 特点: 回流污泥量比普通活性污泥法多,回流比一般在50%—100%左右 吸附池和再生池的总容积比普通活性污泥法曝气池小得多,空气用量并不增加,因此减少了占地和降低了造价。 具有较强的调节平衡能力,以适应进水负荷的变化 缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水,处理效果不理想。 完全混合活性污泥法 完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。 (a)采用扩散空气曝气器的完全混合活性污泥法工艺流程; (b)采用机械曝气的完全混合活性污泥工艺流程; (c)合建式圆形曝气沉淀池。 1.优点: 微生物的代谢速率甚高; 废水水力停留时间往往较短,系统的负荷较高; 构筑物的占地较省。 2.缺点: 导致出水水质较差; 较易发生丝状菌过量生长的污泥膨胀等运行间题。 序批式活性污泥法

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ① 曝气池:反应主体 ② 二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③ 回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④ 剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤ 供氧系统: 提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ① 废水中含有足够的可容性易降解有机物; ② 混合液含有足够的溶解氧; ③ 活性污泥在池呈悬浮状态; ④ 活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤ 无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ① 物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水 中难于生物降解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: 剩余活性污泥 回流污泥 二次 沉淀池 废曝气池 初次 沉淀池 出水 空气

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法工艺分类

活性污泥法工艺分类

————————————————————————————————作者:————————————————————————————————日期:

活性污泥法主要工艺分类 类型具体工艺 普通活性污泥法及其变型普通活性污泥法硝化工艺 A/O脱氮工艺 A/O脱磷工艺 A2/O脱氮除磷工艺AB法 氧化沟卡鲁赛尔氧化沟双沟式氧化沟三沟式氧化沟奥贝尔氧化沟一体化氧化沟 SBR工艺传统SBR工艺ICEAS CAST DAT-JAT UNITANK 各种工艺的主要优缺点和最佳适用条件 工艺名称主要优缺点最佳适用条件 优点: 1、去除有机物效果好 2、硝化工艺可去除氨氮 3、技术成熟,十分安全可靠

普通活性污泥法及硝化工艺4、污泥经厌氧消化达到稳定 5、用于大型污水厂费用较低 6、沼气可回收利用 缺点: 1、生物脱氮除磷效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 不要求脱氮除磷的大 型和较大型污水处理 厂 A/O除磷工艺优点: 1、去除有机物的同时可生物除磷 2、污泥沉降性能好 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 4、污泥渗出液需化学除磷 要求除磷但不要求硝 化脱氮的大型和较大 型污水处理厂 A/O脱氮工艺优点: 1、去除有机物的同时可生物除氮,效率高 2、污泥经厌氧消化达到稳定 3、用于大型污水厂费用较低 4、根据不同的脱氮要求可灵活调节运行工况 要求脱氮但不要求除

5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、反应池和二沉池容积较普通活性污泥法大幅增加 3、污泥内回流量大,能耗较高 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差磷的大型和较大型污水处理厂 A2/O脱氮除磷工艺优点: 1、去除有机物的同时可生物脱氮除磷 2、出水水质很好,有利于回用 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、污泥内回流量大,能耗较高 2、反应池容积比A/O脱氮工艺还要大 3、污泥渗出液需化学除磷 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差 要求脱氮除磷或硝化 除磷的大型和较大型 污水处理厂 优点: 1、污水有机物浓度高时刻显著节省基建投资和 运行费用 2、污泥经厌氧消化达到稳定 3、有利于分期修建

活性污泥法工艺流程2

活性污泥法 一.二级处理的详细工艺流程 污水的二级处理又称为生物处理 污水的生物处理就是利用微生物的氧化分解及转化功能,以污水的有机物(少数以无机物)作为微生物的营养物质,采取一定的人工措施,创造一种可控制的环境,通过微生物的代谢作用,使污水中的污染物质被降解、转化,污水得以净化。污水生物处理分类:好氧生物处理、厌(兼)氧生物处理 活性污泥法工艺流程其中工艺有: (1)传统的SBR法:SBR工艺即间歇活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后 ,上清液排出池外即完成一个运行周期。每个工作周期顺序完成进水、反应、沉淀、排放 4 个工艺过程。 SBR工艺的特点是具有一定的调节均化功能,可缓解进水水质、水量波动对系统带来的不稳定性。工艺处理简单,处理构筑物少,曝气反应池集曝气、沉淀、污泥回流于一体,可省去初沉池、二沉池及污泥回流系统,且污泥量少,易于脱水,控制一定的工艺条件可达到较好的除磷效果,但也存在自动控制和连续在线分析仪器仪表要求高的缺点。

(2)CASS工艺:CASS工艺是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,且除磷脱氮效果明显。这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域 ,在各分格中溶解氧、污泥浓度和有机负荷不同 ,各池中的生物也不相同。整个过程实现了连续进、出水。同时在传统的SBR池前或池中设置了选择器及厌氧区 , 提高了除磷脱氮效果(3)MSBR 法:MSBR工艺是20世纪80,年代初期发展起来的污水处理工艺,经过不断改进和发展,目前最新的工艺是第三代工艺。 二.工艺设计和运行参数 1.污泥负荷 在活性污泥法中,一般将有机污染物量与活性污泥量的比值(F/M),也就是曝气池内单位质量(1kg)的活性污泥,在单位时间(1 d)内,能够接受,并将其 技降解到预定程度的有机污染物(BOD)的量,称为污泥负荷常用N s 表示。即: F/M=N s=OS a/VX [kg BOD/(kg MLSS.d)] 式中: Q—污水流量,m3/d s—原污水中有机污染物(BOD) 浓度,mg/L V—曝气池容积,m3

技术:活性污泥处理新工艺

技术 | 活性污泥处理新工艺 废水生物处理方式是以微生物作用为主题的新治理工艺,活性污泥法非常有代表性。本文从活性污泥处理工艺的特点、原理、优缺点以及多种不同活性污泥处理技术运用方式来进行全方位介绍。 废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。代表:活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术。 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。 所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。 有机污染物好氧微生物处理的一般途径 废水好氧生物处理过程中有机物的代谢及微生物的合成,可用下列基本图式来表示:

1914年在英国建成第一座活性污泥污水处理试验厂是目前城市污水处理的 主要方法。 一、基础介绍 1.活性污泥法的特点 曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值; 废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定; 回流污泥量约为进水流量的25%—50%左右; BOD和悬浮物去除率都很高,达到90%—95%左右。 2.作用原理 普通活性污泥法是依据废水的自净作用原理发展而来的。

3.不足之处 对水质变化的适应能力不强; 所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量 不足、后端供氧量过剩的情况。 因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。 二、阶段曝气活性污泥法 阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单 的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。 曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通 活性污泥法。 三、渐减曝气法 克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气 池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。

各种活性污泥法工艺大全

各种活性污泥法工艺大全 迄今为止,在活性污泥法工程领域,应用着多种各具特色的运行方式。主要有以下几种:1)传统推流式活性污泥法; 2)完全混合活性污泥法;3)阶段曝气活性污泥法;4)吸附—再生活性污泥法;5)延时曝气活性污泥法;6)高负荷活性污泥法;7)纯氧曝气活性污泥法;8)浅层低压曝气活性污泥法; 9)深水曝气活性污泥法;10) 深井曝气活性污泥法。下面分别介绍活性污泥法的各种工艺,其设计参数见最后附表:各种活性污泥法工艺参数表1.传统推流式活性污泥法:推流式活性污泥法1)工艺流程:2)供需氧曲线:3)主要优点:A.处理效果好:BOD5的去除率可达90-95%;B.对废水的处理程度比较灵活,可根据要求进行调节。4)主要问题:A.为了避免池首端形成厌氧状态,不宜采用过高的有机负荷,因而池容较大,占地面积较大;B.在池末端可能出现供氧速率高于需氧速率的现象,会浪费了动力费用;C.对冲击负荷的适应性较弱。5)一般所采用的设计参数(处理城市污水):2.完全混合活性污泥法合建式完全混合活性污泥法1)主要特点:A.可以方便地通过对F/M的调节,使反应器内的有机物降解反应控制在最佳状态;B.进水一进入曝气池,就立即被大量混合液所稀释,所以对冲击负荷有一定的抵抗能力;C.适合于处理较高浓度的有机工业废水。2)主要结构形式:A.合建式

(曝气沉淀池):B.分建式3、阶段曝气活性污泥法——又称分段进水活性污泥法或多点进水活性污泥法阶段曝气活性 污泥法1)工艺流程:2)主要特点:A.废水沿池长分段注入曝气池,有机物负荷分布较均衡,改善了供养速率与需氧速率间的矛盾,有利于降低能耗;B.废水分段注入,提高了曝气池对冲击负荷的适应能力;4、吸附再生活性污泥法——又称生物吸附法或接触稳定法。吸附再生活性污泥法主要特点是将活性污泥法对有机污染物降解的两个过程——吸附、代谢稳定,分别在各自的反应器内进行。1)工艺流程:2)主要优点:A.废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,再生池接纳的仅是浓度较高的回流污泥,因此,再生池的容积也较小。吸附池与再生池容积之和低于传统法曝气池的容积,基建费用较低;B.具有一定的承受冲击负荷的能力,当吸附池的活性污泥遭到破坏时,可由再生池的污泥予以补充。3)主要缺点:处理效果低于传统法,特别是对于溶解性有机物含量较高的废水,处理效果更差。5、延时曝气活性污泥法——完全氧化活性污泥法延时曝气活性污 泥法1)主要特点:A.有机负荷率非常低,污泥持续处于内源代谢状态,剩余污泥少且稳定,勿需再进行处理;B.处理出水出水水质稳定性较好,对废水冲击负荷有较强的适应性; C.在某些情况下,可以不设初次沉淀池。2)主要缺点:A.池容大、曝气时间长,建设费用和运行费用都较高,而且占地

活性污泥法的工艺设计及原理

活性污泥法工艺的设计与运行管理 一、曝气池设计 在进行曝气池容积计算时,应在一定范围内合理地确定污泥负荷(Ns )和污泥浓 度(X )值,此外,还应同时考虑处理效率、污泥容积指数(SVI)和污泥龄等参数。 设计参数的来源主要有两个途径,一是经验数据,另一个是通过实验获得。以生 活污水为主体的城市污水,主要设计参数已比较成熟,可以直接取用于设计,但是对于工业废水,则应通过实验和现场实测以确定其各项设计参数。在工程实践中,由于受实验条件的限制,一般也可根据经验选取。 1.曝气池容积的设计计算 (1)污泥负荷的确定 (2)混合液污泥浓度的确定 2.需氧量和供气量的计算 ( 1 )需氧量 ( 2 )供气量 ①影响氧转移的因素 A.氧的饱和浓度 B.水温 C. 污水性质 a.污水中含有的各种杂质对氧的转移产生一定的影响,将适用于清水的KLa用于 污水时,需要用系数a进行修正。 污水的KLa = a清水的KLa 修正系数a值可通过实验确定。一般a值为0.8?0.85。 b.污水中的盐类也影响氧在水中的饱和度(Cs),污水Cs值用清水Cs值乘以3

值来修正,3值一般介于0.9?0.97之间。 c?大气压影响氧气的分压,因此影响氧的传递,进而影响Cs。气压增高,Cs值升高。对于大气压不是 1.013 xi05Pa的地区,Cs值应乘以压力修正系数p p =所在地区的实际气压/ (1.013 xi05Pa )。 d. 对于鼓风曝气池,空气压力还与池水深度有关。安装在池底的空气扩散装置出口处的氧分压最大,Cs 值也最大。但随着气泡的上升,气压逐渐降低,在水面时,气压为1.013 X105Pa (即1大气压),气泡上升过程中一部分氧已转移到液体中。鼓风曝气池内的Cs 值应是扩散装置出口和混合液表面两处溶解氧饱和浓度的平均值。 另外,氧的转移还和气泡的大小、液体的紊动程度、气泡与液体的接触时间有关。空气扩散装置的性能决定气泡直径的大小。气泡越小,接触面积越大,将提高KLa 值,有利于氧的转移;但另一方面不利于紊动,从而不利于氧的转移。气泡与液体的接触时间越长,越利于氧的转移。 氧从气泡中转移到液体中,逐渐使气泡周围液膜的含氧量饱和,因而,氧的转移效率又取决于液膜的更新速度。紊流和气泡的形成、上升、破裂,都有助于气泡液膜的更新和氧的转移。 从上述分析可见,氧的转移效率取决于气相中氧分压梯度、液相中氧的浓度梯度、气液之间的接触面积和接触时间、水温、污水的性质和水流的紊动程度等因素。 ②供气量的计算 1.空气扩散装置 空气扩散装置的类型较多,目前应用较多的是微孔曝气器。该类型曝气器氧利用率高,阻力损失小,混合效果好,不易堵塞,并且联接部位具有可靠、有效的密封性能。 微孔曝气器直径为215?260mm,服务面积为0.3?0.8m2/个。根据曝气池 池底面积和曝气器的服务面积,可以计算出所需曝气器的数量。

相关主题
文本预览
相关文档 最新文档