当前位置:文档之家› Low Luminosity Type II Supernovae Spectroscopic and Photometric Evolution

Low Luminosity Type II Supernovae Spectroscopic and Photometric Evolution

Low Luminosity Type II Supernovae Spectroscopic and Photometric Evolution
Low Luminosity Type II Supernovae Spectroscopic and Photometric Evolution

a r X i v :a s t r o -p h /0309264v 1 9 S e p 2003

Mon.Not.R.Astron.Soc.000,000–000(0000)Printed 2February 2008

(MN L A T E X style ?le v2.2)

Low Luminosity Type II Supernovae:

Spectroscopic and Photometric Evolution

?

A.Pastorello 1,2,5,L.Zampieri 2,M.Turatto 2,E.Cappellaro 3,W.P.S.Meikle 4,S.Benetti 2,D.Branch 5,E.Baron 5,

F.Patat 6,M.Armstrong 7,

G.Altavilla 2,1,M.Salvo 8,M.Riello 2,1

1Dipartimento di Astronomia,Universit`a di Padova,Vicolo dell’Osservatorio 2,I-35122Padova,Italy 2INAF -Osservatorio Astronomico di Padova,Vicolo dell’Osservatorio 5,I-35122Padova,Italy 3INAF -Osservatorio Astronomico di Capodimonte,Via Moiariello 16,I-80131Napoli,Italy

4Astrophysics Group,Blackett Laboratory,Imperial College,Prince Consort Road,London SW72BZ,England,UK 5Department of Physics and Astronomy,University of Oklahoma,440W.Brooke St.,Norman,OK 73019,USA 6European Southern Observatory,Karl-Schwarzschild-Strasse 2,D-85748,Garching bei Munchen,Germany 7Rolvenden,Kent,UK

8

Australian National University,Mount Stromlo Observatory,Cotter Road,Weston ACT 2611,Australia

Accepted .....;Received ....;in original form ....

ABSTRACT

In this paper we present spectroscopic and photometric observations for four core collapse supernovae (SNe),namely SNe 1994N,1999br,1999eu and 2001dc.Together with SN 1997D,we show that they form a group of exceptionally low–luminosity events.These SNe have narrow spectral lines (indicating low expansion velocities)and low luminosities at every phase (signi?cantly lower than those of typical core–collapse supernovae).The very low luminosity during the 56Co radioactive decay tail indicates that the mass of 56Ni ejected during the explosion is much smaller (M Ni ≈2–8×10?3M ⊙)than the average (M Ni ≈6–10×10?2M ⊙).Two supernovae of this group (SN 1999br and SN 2001dc)were discovered very close to the explosion epoch,allowing us to determine the lengths of their plateaux (≈100days)as well as establishing the explosion epochs of the other,less–completely observed SNe.It is likely that this group of SNe represent the extreme low–luminosity tail of a single continuous distribution of SN II–P events.Their kinetic energy is also exceptionally low.Although an origin from low mass progenitors has also been proposed for low–luminosity core–collapse SNe,recent work provides evidence in favour of the high mass progenitor scenario.The incidence of these low–luminosity SNe could be as high as 4–5%of all type II SNe.

Key words:supernovae:general -supernovae:individual:SN 1994N,SN 1997D,SN 1999br,SN 1999eu,SN 2001dc,SN 2000em,SN 2003Z,SN 1978A,SN 1994W -galaxies:individual:UGC 5695,NGC 4900,NGC 1097,NGC 5777

1INTRODUCTION

It is widely known that the early spectro–photometric evolu-tion of core–collapse supernovae (CC–SNe)is very heteroge-

?

Based on observations collected at ESO -La Silla (Chile),ESO VLT -Cerro Paranal (Chile),CTIO (Chile),TNG,WHT and JKT (La Palma,Canary Islands,Spain)and Asiago (Italy)

neous (see e.g.Patat et al.,1994).The radius of the progen-itor is believed to play a key role in shaping the early light curve.H–rich red giant progenitors with large initial radii are thought to produce type II plateau supernovae (SNe II–P).Their luminosity remains nearly constant for a relatively long period (plateau phase,lasting ~110–130days),during which the hydrogen envelope (in free expansion)starts to re-combine,releasing its internal energy.The observed length

2Pastorello et al.

of the plateau phase depends on the mass of the hydrogen envelope[Arnett(1980),Popov(1992)].

On the other hand,the unusual early light curve of SN1987A with a broad maximum about3months after the explosion is largely attributable to its compact progen-itor[Woosley et al.(1987),Arnett(1987)].The luminosity at early time is dimmer than expected for a“typical”SN II–P.Then,with expansion,most of trapped energy from radioactive decay of Ni is released and the luminosity rises producing a broad maximum in the light curve.After the plateau phase is?nished,all SNe II–P(including SN1987A) have a steep drop in luminosity,marking the passage from the photospheric phase to the nebular one.

The spectroscopic evolution of all SNe II–P is rather ho-mogeneous,showing hydrogen and metal lines with P–Cygni pro?les having typical widths ranging from about15000to 3000km s?1during the photospheric phase.

A common feature of most light curves of type II SNe is the linear tail,produced by the radioactive decay of56Co into56Fe(0.98mag/100d).While in some cases condensa-tion of dust grains in the ejecta and ejecta–CSM interaction phenomena may a?ect the late–time evolution,there is nev-ertheless general agreement that the radioactive tail of a “typical”CC–SN is powered by~0.06–0.10M⊙of56Ni[e.g. Turatto et al.(1990);Sollerman(2002)].

However,in recent years,systematic observations of non–interacting SNe in the nebular phase have shown that CC–SNe are also heterogeneous at late stages and a more complex picture has emerged as follows:

?a few CC–SNe,sometimes called hypernovae (Iwamoto et al.,1998),show evidence of exceptionally large Ni masses,0.3–0.9M⊙[Sollerman et al.(2000),Patat et al.(2001);see however H¨o?ich er al.(1999)who?nd~0.2M⊙of ejected56Ni assuming asymmetric explosions]. In addition,some otherwise“normal”type II–P SNe have produced unusually bright radioactive tails,again implying large amounts of56Ni[e.g.SN1992am(~0.3M⊙),Schmidt et al.(1994)].

?In most CC–SNe the late–time luminosity is produced by0.06–0.10M⊙of56Ni,e.g.SN1987A[II pec;Menzies et al.(1987);Catchpole et al.(1987);Catchpole et al.(1988); Whitelock et al.(1988),Catchpole et al.(1989);Whitelock et al.(1989)],SN1988A[II–P;Ruiz–Lapuente et al.(1990); Benetti et al.(1991);Turatto et al.(1993)],SN1993J[IIb; see e.g.Barbon et al.(1995)],and SN1994I[Ic;Young, Baron&Branch(1995);Richmond et al.(1996)and ref-erences therein].

?A few events exhibit a somewhat lower late–time lumi-nosity,such as SN1991G(Blanton et al.,1995),SN1992ba (Hamuy,2003)and SN1999gi[Leonard et al.(2002b); Hamuy(2003)].This may be attributable to the ejection of reduced amounts of56Ni(0.015–0.04M⊙).Conversely, it could be that the luminosity of these SNe is greater, but the distances and/or the e?ects of interstellar absorp-tion have been underestimated.This might be the case of SN1999em[Baron et al.(2000);Leonard et al.(2002a); Pooley et al.(2002);Hamuy et al.(2001);Elmhamdi et al.(2003)]for which recent Cepheid distance measurements (Leonard et al.,2003)suggest that the host galaxy dis-tance was previously underestimated and,consequently,the SN luminosity probably higher.The type II–P SN1994W (Sollerman et al.,1998),while having an exceptionally high luminosity during the photospheric era,was also particu-larly faint at late times with an ejected56Ni mass below 0.015M⊙,depending inversely on the assumed contribution to the luminosity of an ejecta–CSM interaction.

?Finally,there is a small group of events having very low late–time luminosities.The prototype is SN1997D(Turatto et al.,1998).As demonstrated in this paper,the SNe of this group are also exceptionally faint at early–times.The other SNe in this category which we study here are SN1994N(Tu-ratto,1994),SN1999br(King,1999),SN1999eu(Nakano &Aoki,1999)and SN2001dc(Armstrong,2001).As we shall see,the late–time light curves of this group require very small amounts of56Ni,at least one order of magnitude smaller than in SN1987A.

In a companion paper(Zampieri et al.,2003)we performed an analysis of the data of SN1997D and SN1999br,deriving information about the nature of the progenitor stars and the explosion energies.The early observations of SN1999br allowed us to constrain the models discussed in previous papers[Turatto et al.(1998);Chugai&Utrobin(2000)]. We found that these explosions are under–energetic with respect to a typical type II SN and that the inferred mass of the ejecta is large(M ej≥14–20M⊙).

In this paper we present the spectroscopic and photo-metric observations of the very low luminosity SNe1999br, 1999eu,1994N and2001dc.Together with the SN1997D data[Turatto et al.(1998);Benetti et al.(2001)]these make up almost all that is available for this group of SNe.The plan of the paper is as follows:in Sect.2we describe the SNe and their parent galaxies.In particular,we estimate distances, crucial for the derivation of the luminosity and,in turn,of the56Ni mass.The observations are summarised in Sect.3. In Sect.4we present photometric data and in Sect.5we an-alyze light and colour curves,focusing on the common prop-erties of this group of SNe and making comparisons with the prototype SN1997D.In Sect.6spectroscopic observations are presented.In Sect.7we discuss the data with particu-lar focus on the progenitors nature.Sect.8is devoted to an estimate of the frequency of these low–luminosity events.A short summary follows in Sect.9.

Throughout this paper we adopt H0=65km s?1 Mpc?1.In all the images,North is up,East is to the left and the numbers label stars of the local calibration sequence. 2THE SNE AND THEIR HOST GALAXIES.

In Tab.1we summarize the main observational data for our sample of SNe and their host galaxies.For completeness,we show also the parameters for SN1997D in this table.

(i)SN1999br was discovered by King(1999)in the course of the Lick Observatory Supernova Search on1999April 12.4UT,and con?rmed the following day,when its magni-tude was about17.5.It was located atα=13h00m41.s8,δ=+02?29′45.′′8(equinox2000.0),about40′′East and19′′South from the nucleus of NGC4900and near a bright fore-ground star(12.′′5West and15.′′6South)of eleventh mag-nitude(see Fig.1).SN1999br is the?rst1997D–like event discovered a few days after the explosion.There was no ev-idence of the SN on frames taken on1999March27.4UT

Low Luminosity Type II Supernovae3 Table1.Main observational data for the low–luminosity SNe II and their host galaxies.

α(J2000.0)04h11m01.s00?13h00m41.s80△02h46m20.s79?10h29m46.s8?14h51m16.s15?

δ(J2000.0)?56?29′56.′′0?+02?29′45.′′8△?30?19′06.′′1?+13?01′14′′?+58?59′02.8?O?set SN-Gal.Nucleus11′′E,43′′S?40′′E,19′′S△23′′E,157′′S?1.′′8E,9.′′8N?26′′W,28′′N?Discovery Date(UT)1997Jan14.15?1999Apr12.4△1999Nov5?1994May10.0?2001May30.96?Discovery Julian Date2450462.65?2451280.9△2451487.5?2449482.5?2452060.46?Explosion Epoch(JD)2450361×2451278×2451394×2449451×2452047×Discovery Magnitude16.3(Jan15.05)?m=17.5△m=17.3?R=17.5?m=18.5?V(max)≤19.8×≤16.8?17.5×≤17.3×≤18.5×Total Extinction A B,tot0.089×0.102×0.113×0.169× 1.7×Host Galaxies Data NGC1536NGC4900NGC1097UGC5695NGC5777

4Pastorello et al.

centric velocity of UGC5695corrected for Virgo infall and for the peculiar motion inside the group(+48km s?1),we derive a distance modulusμ=33.34.

Because evidence of strong internal extinction is missing from our spectra,we

have applied only the galactic extinc-tion correction A B=0.169(Schlegel et al.,1998).

(iv)M.Armstrong(2001)discovered SN2001dc atα= 14h51m16.s15andδ=+58?59′02.′′8(equinox2000.0),26′′West and28′′North of the center of NGC5777(see Fig.

8).A prediscovery upper limit indicates that SN2001dc was discovered only a few days after explosion.From early photometric monitoring,Meikle and Fassia(2001,IAU Circ.7662)noted that this event could be classi?ed as a SN II–P and concluded that the event was unusually under–energetic,with an absolute magnitude very low compared with normal SNe II–P.

The host galaxy NGC5777is an edge-on Sbc galaxy,crossed by a spectacular equatorial dust lane (Bottinelli et al.,1990).From LEDA we derive a heliocen-tric velocity of2140km s?1and,after correcting for Virgo infall,v vir≈2419km s?1,μ=32.85(see Tab.1).

The galactic extinction is A B=0.046(Schlegel et al.,1998). The position of the SN,not far from the nucleus and pro-

jected onto a background rich in gas and dust,leads us to suspect the presence of some internal extinction.We shall discuss this point in Sect.5.

3SUMMARY OF THE OBSER V ATIONS

Our observations of SNe1999br,1999eu,1994N and2001dc were obtained with the ESO,CTIO,ING,TNG and Asi-ago telescopes.Images and spectra were reduced using stan-dard IRAF or FIGARO procedures.The photometric data are presented in Sect.4.The magnitudes of the SNe were obtained using either PSF?tting and template subtraction techniques,depending on the background complexity and the availability of suitable template images.

The journal of spectroscopic observations is reported in Tab.

2.The spectra of SNe1999eu,1994N and2001dc are pre-sented here for the?rst time.All the spectra were?ux cal-ibrated using standard stars[selected from Hamuy et al. (1992),Hamuy et al.(1994),Stone(1977),Stone&Bald-win(1983),Baldwin&Stone(1984)]observed during the same nights.

The photometric and spectroscopic observations of SN1999br provide good coverage of the plateau phase,but only sparse data are available in the nebular phase.In par-ticular no post–plateau spectra are available.The discovery epoch of SN1999eu was probably long after the explosion, at the end of the plateau,although it was well observed both photometrically and spectroscopically at late epochs. The data for SN1994N are sparse,although they do span a period of about22months.The photometric coverage of SN2001dc began about one month after discovery.Because of its faintness,it was not possible to observe it long after the end of the plateau.Three spectra were also obtained, all during the plateau phase.Clearly,the temporal cover-age of individual low–luminosity SNe is incomplete and er-ratic.However,we shall argue that these events form a fairly homogeneous group and so,taken together,they provide a Figure1.V band image of SN1999br and the host galaxy NGC 4900(image obtained on1999July6with ESO–Danish1.54m telescope+DFOSC.)

reasonably complete picture of the photometric and spec-troscopic evolution of this type of supernova.

4LIGHT CUR VES

4.1SN1999br

The Tololo Group performed an intensive follow–up of SN1999br during the plateau phase with the CTIO and ESO telescopes(Hamuy,2003;Hamuy et al.,in prep.). This SN was also observed by us using the ESO telescopes and TNG.Our optical photometry in the UBVRI bands is shown in Tab.3.The SN magnitudes were calibrated by mean of a local sequence(Hamuy et al.,in prep.)after com-parison with Landolt standard stars(Landolt,1992).The photometric measurements of SN1999br were performed using the template subtraction technique.The template images were obtained on2000April2(NTT+EMMI)and 2001February1(ESO3.6m+EFOSC2).The errors were computed by placing some arti?cial stars(having the same magnitude as the SN)at positions close to the SN,and hence estimated the deviations in the measured magnitudes.

The?rst season UBVRI light curves are shown in Fig.2, which also includes the data from Hamuy et al.(in prep.).A prediscovery limit from IAU Circ.7143allows us to?x the explosion epoch between JD=2451264.9and2451280.9. Another limit obtained on JD=2451272.9is less stringent. Hereafter we adopt as the explosion epoch JD=2451278±3, which is compatible with the assumptions of Zampieri et al. 3Hamuy&Phillips,private communication

Low Luminosity Type II Supernovae5 Table2.Journal of spectroscopic observations(JD+2400000).

10/05/9449482.5431.5 3.6m+EFOSC13700–985013,17

14/05/9449486.5635.6 2.2m+EFOSC24500–715011

05/06/9449508.5357.5 3.6m+EFOSC13700–690018

30/01/9549747.80296.8NTT+EMMI3850–89509

23/04/99351291.7313.7LCO1003700–93005

26/04/99351294.6416.6 1.54m+DFOSC3500–980014,19

29/04/99351297.6819.7NTT+EMMI3350–102507,6

03/05/99351301.6423.6NTT+EMMI3300–101007,6

11/05/99351309.6931.7 1.54m+DFOSC3700–1010014,19

19/05/99351317.6839.7NTT+EMMI3400–101007,6

21/05/9951320.0242.0 3.6m+EFOSC23350–1025014,17

20/07/9951380.45102.5 1.54m+DFOSC3400–905012

10/11/9951492.6498.6 1.54m+DFOSC3450–905011

14/11/9951496.81102.8 3.6m+EFOSC23400–750017

05/12/9951517.74123.7 3.6m+EFOSC23350–1025014,17

18/12/9951530.71136.7 3.6m+EFOSC23400–745017

10/07/0152101.4854.5INT+IDS4850-960017

16/08/0152138.4491.4TNG+DOLORES3300-800015

24/08/0152146.4399.4WHT+ISIS3750-995014

Table3.Photometry of SN1999br(JD+2400000).

1=ESO3.6m+EFOSC2;2=TNG+OIG

3=Danish1.54m+DFOSC;4=NTT+EMMI;5=ESO VLT+FORS1

(2003).While the U and B band light curves decline mono-tonically after discovery(the slope of the B band light curve is3.66mag/100d during the?rst40days and0.61mag/100d later),the V band light curve shows a plateau of duration at least100days.Between about days30and100,the slope is γV≈0.20mag/100d.The R and I band magnitudes increase with time up to the last data point at~100days.During the era30–100days,the slopes are respectivelyγR≈?0.18and γI≈?0.25mag/100d.This evolution is typical of a SN II during the plateau phase(Popov,1992).Unfortunately,no measurements are available between1999July20,and2001 February1,and so the precise length of the plateau phase is undetermined.Only a few measurements or upper limits (see e.g.Fig.12)are available during the radioactive decay epoch,but they are of special interest due to their role in the determination of the56Ni mass.4.2SN1999eu

Our photometry,covering a period of~950days,is shown in https://www.doczj.com/doc/e63078809.html,cking a reference image,the SN magnitudes were obtained using a PSF–?tting technique.The errors were es-timated using arti?cial stars,as described above.In Tab.5 we give the magnitudes of the local sequence stars(see Fig.

3).SN1999eu was observed twice in the IR with NTT+ SOFI.The JHKs magnitudes are also reported in Tab.4. From these observations alone it is impossible to reach a de?nitive conclusion on the evolution of the light curve in the IR bands,but they can help in evaluating the bolomet-ric correction at selected https://www.doczj.com/doc/e63078809.html,parison with the IR light curves of CC–SNe compiled by Mattila&Meikle(2001) places the earlier JHK photometry of SN1999eu about1.2 magnitudes fainter than the average values for“ordinary”CC–SNe for this phase(~100days),and similar in magni-tude to SN1982R.We stress that the last very faint detec-tion could also be due to IR background emission.

About1week after discovery,the light curves under-went an abrupt fall in brightness(especially at shorter wave-

6Pastorello et

al.

Figure 2.UBVRI light curves of SN 1999br showing its ex-tended plateau.Two prediscovery limits (IAU Circ.7143),un-?ltered measurements,are also shown placed to correspond with the R magnitude scale (IAU Circ.7141).Photometry from Hamuy et al.(in prep.)is also shown.

Table 6.Slopes of the light curves of SN 1999eu in the B,V,R,I bands (in mag/100d ).The phase is with respect to the day of explosion (JD =2451394).

length bands).About 3weeks post–discovery,a slower de-cline took over.This was observed to continue until the SN was lost behind the Sun about 9weeks post–discovery.When the SN was recovered ~7months later,it was only marginally fainter.The second season light curves (espe-cially the bolometric curve,cfr.Sect.5)follow roughly the 56

Co decay exponential decline rate.

The slopes in the B,V,R and I passbands are given in Tab.6.The last two very faint detections possibly indicate a ?attening in the light curve,but we cannot exclude strong background contami-nation.By analogy with the other faint SNe (see Sect.6)we believe that SN 1999eu was discovered near the end of the plateau phase,about 3months after the explosion.Un-fortunately,useful constraints on the length of the plateau phase are not available since the latest prediscovery image was taken about 1year before discovery (Nakano and Aoki,1999).

Figure 3.SN 1999eu in NGC 1097(R band image with ESO–Danish 1.54m telescope +DFOSC)

ing star formation.The frame was taken on 1992October 16with NTT +EMMI (?lter R)and includes the type II SN 1992bd,indicated by an arrow.NGC 1097also hosted SN 1999eu,studied in this paper,as well as the type II SN 2003B.

4.3SN 1994N

The photometry of SN 1994N is sparse (see Tab.7).It was obtained using ESO–La Silla telescopes,often under poor weather conditions.The late–time photometry was per-formed using the template subtraction technique.Again,the errors were estimated using arti?cial stars.As standard stars we adopted the local sequence in the ?eld of UGC 5695cal-ibrated during some photometric nights in 1993(during the follow–up of SN 1993N).The magnitudes of the sequence stars are given in Tab.8.The light curve shows that this SN was discovered during the plateau phase.The prediscov-ery upper limits constrain the explosion epoch to no earlier than ~7weeks before discovery (see Fig.7).We measure the slope during the plateau and ?nd respectively γV ≈0and

Low Luminosity Type II Supernovae7 Table4.Optical and infrared photometry of SN1999eu(JD+2400000).

1=ESO Dan1.54+DFOSC;2=ESO3.6m+EFOSC2;3=ESO NTT+EMMI;

4=ESO2.2m+WFI+chip7,5=TNG+OIG;6=VLT+FORS1;7=NTT+SOFI

Table5.Magnitudes of the sequence stars in the?eld of NGC1097.The numbers in brackets are the r.m.s.of the available measurements. If no error is reported,only a single estimate is available.We estimated the errors in J,H,Ks as the deviation from the average of two available measurements.

Table7.Photometry of SN1994N(JD+2400000).

1=NTT+EMMI;2ESO3.6m+EFOSC1;3=ESO2.2m+EFOSC2;4=NTT+SUSI

Table8.Magnitudes of the sequence stars in the?eld of UGC5695.The numbers in brackets are the r.m.s.of the available measurements. Uncalibrated U and I magnitudes of sequence stars obtained on1994May13are also reported.

8Pastorello et

al.

Figure 5.BVRI light curves of SN1999eu.Left:enlarge-

ment of the?rst two months.Right:complete light curves.

Two points in the U band are also reported.The star

(plotted with respect to the V magnitude scale)refers to

the discovery un?ltered magnitude(Nakano&Aoki,1999,

IAUC7304).The asterisks are taken from the web sites

https://www.doczj.com/doc/e63078809.html,/observation/SN/infc99eu.htm and VS-

NET(http://www.kusastro.kyoto-u.ac.jp/vsnet/),and are plot-

ted with respect to the R magnitude scale.

Figure6.SN1994N and the type IIn SN1993N in UGC5695

(R band image taken with the ESO3.6m telescope+EFOSC1

on1994May9).

Figure7.B,V,R band light curves of SN1994N.The dashed

lines represent the V and R band light curves of SN1997D shifted

in magnitude and in time to match the points of SN1994N,plot-

ted to guide the eye.

Figure8.SN2001dc in NGC5777(R band image taken with

JKT+IAG ccd on2001July13).

γR≈?0.3mag/100d,although,given that there are only a

few points in the V and R band light curves,we regard this

measurement as tentative.At late times,the observations

indicateγV≈1mag/100d,although the photometric errors

are sometimes quite large.

Low Luminosity Type II Supernovae

9

Table 9.Photometry of SN 2001dc (JD +2400000).

1=JKT +JAG;2=TNG +OIG;3=TNG +Dolores;4=Asi1.82m +AFOSC

Table 10.Magnitudes of the sequence stars in the ?eld of NGC 5777.The numbers in brackets are the r.m.s.of the available measure-ments.Uncalibrated U magnitudes of sequence stars obtained on 2001July 20are also

reported.

Figure 9.BVRI light curves of SN 2001dc.The un?ltered predis-covery limit and magnitudes (asterisks)are shown with respect to the R magnitude scale (Hurst et al.,2001).The magnitude at phases later than ~100days are a?ected by large errors.

4.4SN 2001dc

Our photometry measurements of SN 2001dc,lacking template images,were obtained using the PSF ?tting technique.The magnitudes are reported in Tab.9,while the light curves are shown in Fig.9.The large errors at late times (estimated with the arti?cial stars method)are caused by the complex background upon which the SN is projected.Tab.10gives the magnitudes of the local sequence stars (Fig.8).In the following,we adopt 2001May 17(JD =2452047±5)as the explosion epoch,this being intermediate between the upper limit of May 12and the ?rst (prediscovery)detection on May 21.98.

The light curve shows a plateau persisting to 90–100days post–explosion.The slope of the light curves for three representative epochs are reported in Tab.11.Despite the large errors due to the faintness of the SN and its position,the slopes in V and R during ~115–220days are rather close to the luminosity decline rate of 56Co.

5

COLOR EVOLUTION,ABSOLUTE

LUMINOSITY AND BOLOMETRIC LIGHT CUR VES

In order to establish the intrinsic luminosity of our sample of supernovae,it is essential to establish their distances,phases and the extent to which they are subject to ex-tinction.We have already estimated the distance moduli

10Pastorello et

al.

Figure10.Evolution of(B-V)and(V-R)colours of the sample SNe,compared with those of SN1987A and SN1999em.The SN2001dc colours are not plotted beyond~120days because of their large uncertainty.Corrections for galactic extinction only have been applied to the sample CC–SNe.The SN1987A and SN1999em colours have been corrected for the total extinction to these events,using respectively A V=0.6and A V=0.31

. Figure11.Same as Fig.10,but correcting for the total extinc-tion towards SN2001dc,using E(B-V)=0.42,E(V-R)=0.33 magnitudes.Table11.Slope of the light curve of SN2001dc in the B,V,R, I bands(in mag/100d).The phase is relative to JD=2452047.

(Section2)and these are listed in Tab.1.

As explained in Section4,prediscovery limits for SNe1999br and2001dc allow us to pin down their explo-sion epochs to within a few days and hence establish clearly the phase of these events at any given date.In addition, below we shall show that the similarity of the spectrum of SN1999br at a phase of~100days to the earliest available spectra of SNe1997D and1999eu allows us to?x the phases of these two events.Likewise,we determined the phase of SN1994N through the similarity of its earliest spectrum to a spectrum of SN1999br at~30days.Thus, we deduce that the phases of our?ve CC–SNe at discovery were:SN1994N:31.5days,SN1997D:101.7days,SN 1999br:2.9days,SN1999eu:93.5days,SN2001dc:4.5days.

For extinction,we have argued that for SNe1994N, 1997D,1999br and1999eu we need only to consider the e?ect of the Milky Way ISM.However,to estimate the extinction towards SN2001dc,we must?rst consider the colours and colour evolution of the?ve CC–SNe.This is also valuable as an additional mean of testing the degree of homogeneity of the sample.The(B–V)and(V–R)colours are shown as a function of phase and compared with those of the peculiar SN1987A and the“normal”type II–P SN1999em in Fig.10.Corrections for galactic extinction only have been applied to the sample CC–SNe.The SN 1987A and SN1999em colours have been corrected for the total extinction to these events,using respectively A V= 0.6(West et al.,1987)and A V=0.31(Baron et al.,2000). For SN2001dc,the similarity of its colour evolution and its spectra to those of SN1999br at similar epochs during the plateau phase,plus its location close to a dusty region in NGC5777,leads us to argue that its redder colours (relative to SN1999br)are due to strong extinction in the host galaxy(see Fig.8)as well as in the Milky Way. Therefore,in Fig.11,we show the same data,but with the SN2001dc colours dereddened to match those of SN1999br. From this,we deduce the total reddening to SN2001dc to be E(B-V)=0.42and E(V-R)=0.33,corresponding to A B =1.7.The adopted extinction values for all the SNe are shown in Table1.

Inspection of Fig.11shows that,during the?rst100 days,the data are consistent with there being a similar colour evolution for the5sample SNe.During the plateau phase the(B–V)colour reddens for the?rst~60days reaching(B–V)~1.5.It then remains at about this value for the next60days.Beyond~100days,good photometric coverage is available for only2of the5sample SNe viz.for

Low Luminosity Type II Supernovae

11

Figure 12.V band absolute light curves of the sample CC–SNe discussed in this paper,SN 1987A and SN 1999em.By comparison of spectra (Sect.6),we conclude that the explosion epochs of SNe 1997D,1999eu and 1994N were,respectively 101.7,93.5and 31.5days before discovery.Prediscovery upper limits (un?ltered)are also shown along with some late–time upper limits.The SN 1987A light curve (see Patat et al.,1994and references therein)are corrected for total extinction A V =0.6,that of SN 1999em (Hamuy et al.,2001;Leonard et al.,2002a;Elmhamdi et al.,2003;Leonard et al.,2003)for A V =0.31.The SN 2001dc photometry has been corrected for a total estimated extinction of A V =1.28(Sect.5).The host galaxy extinction for the other 4SNe is probably negligible,and so the photometry for these SNe has been corrected for Galactic extinction only (Schlegel et al.1998).

SNe 1997D and 1999eu.At ~120days,the (B–V)colour of these two events suddenly reddens further to (B–V)~2.5.This coincides with the epoch of the steep post–plateau decline (cf.Figs.5and 12).After this,the (B–V)colour of these two SNe become bluer,with SN 1999eu showing a particularly rapid change.The plot of (V–R)versus time shows a rather similar behaviour.SNe 1987A and 1999em show a somewhat di?erent behaviour,and in particular does not show a rapid change at 120–160days.

Having established the distances,phases and extinc-tions for the ?ve CC–SNe,we derived M V light curves for these events.These light curves are plotted in Fig.12and compared with that of SNe 1987A and 1999em.It can be immediately seen that for all epochs at which photome-try is available,i.e.during both the plateau and nebular phases,the 5sample SNe are fainter than both SNe 1987A and 1999em.In the case of SN 1999br,this includes epochs as early as just ~1week after explosion.Given that SN 1987A itself was unusually under–luminous,we conclude that our CC–SNe,at least when observed,were all excep-tionally faint.For example,during the plateau phase,SN 1999br had a magnitude of just M V ≈?13.76,while for SN 2001dc M V ≈?14.29.We conclude that,in spite of the in-complete coverage of individual light curves,it is likely that

the ?ve CC–SNe considered here were all exceptionally sub-luminous throughout both the plateau phase and the later radioactive tail.

The pseudo–bolometric “OIR”light curves (shown in Fig.13)were computed integrating the emitted ?uxes in the B,V,R and I passbands at the epochs for which mea-surements were available,and interpolating between points adjacent in time when a measurement was missing.In the case of SN 1994N only a single point was available in the I band and the integration had to be restricted to the BVR bands.To illustrate the e?ect of this limitation,we show also the equivalent BVR light curve of SN 1997D as a dotted line.The 5SNe are fainter than SN 1987A at any epoch:i.e.the plateau luminosity of SN 1999br (the best monitored event)is L BV RI ≈5×1040erg s ?1,a factor of 10times lower than luminosity of SN 1987A at the epoch of the broad max-imum.The earlier light curves of SNe 1994N and 2001dc show similar magnitudes and evolution,while SN 1999br is about a factor 2times fainter.Between ~100and 200days,SNe 1997D,1999eu and 2001dc show somewhat di?erent magnitudes and/or evolution.SN 1999eu shows a partic-ularly dramatic drop in luminosity during this time.Be-tween days 270and 550,the magnitudes and decline rates of SNe 1999br and 1999eu are roughly consistent with their

12Pastorello et

al.

Figure https://www.doczj.com/doc/e63078809.html,parison of the pseudo–bolometric “OIR”light curves of the sample CC–SNe.The data of SN 1997D are from Turatto et al.(1998)and Benetti et al.(2001).The bolometric light curve of SN 1987A (Patat et al.,1994and reference therein)is also shown for comparison.For SN 1994N,the integration is limited to the BVR bands.To illustrate the e?ect of this limita-tion,we show also the equivalent BVR light curve of SN 1997D (dotted line).

being powered at this time by a small amount of 56

Ni (see

also Sect.7).

6SPECTROSCOPY

The SNe discussed in this paper have also been observed spectroscopically,and despite their faintness,later cover-age extends into the nebular phase for some events.In this section we present spectra for SNe 1994N,1999br,1999eu and 2001dc.We discuss these spectra together with those of SN 1997D (Benetti et al.,2001).In particular,we shall illus-trate the use of spectral similarities to determine the phases of some of the CC–SNe.6.1

Individual Properties

(i)SN 1999br,the supernova for which we have the best coverage at early

times,shows the typical features of a type II event (Fig.14).

The earliest spectrum indicates a phase of about +10days post-explosion,viz.a blue continuum,with relatively broad P–Cygni lines of H I and Fe II.This is consistent with the phase derived previously from the light curve.The narrow lines arise from poor subtraction of an underlying H II re-gion.During the ?rst month,the spectra exhibit P–Cygni lines pro?les of H I,Fe II (main lines are identi?ed as:mul-tiplets 27,28,37,38between 4100and 4700A;multiplet 42at 4924A,5018A and 5169A;multiplets 48and 49at

Figure 15.Spectral evolution of SN 1999eu.The spectrum of 1999December 18(JD =2451530.71)is smoothed because of the poor signal to noise ratio.

λbetween 5200and 5500A;multiplets 40,74,162,163be-tween 6100and 6500A),Ca II (H&K and the IR triplet),Na I (λλ5890–5896A),Ti II (many multiplets below ~5400A),Ba II (multiplet 1at 4554A,4934A;multiplet 2at 5854A,6142A,6497A)and Sc II (e.g.multiplets 23,24,28with the strong line at λ6246A,29with a strong blend at ~5660A,31with line at λ5527A).With age the continuum becomes redder,and the absorption lines become deeper and less blue–shifted.After a gap of 60days,the ?nal spectrum was taken at about 100days after explosion,and this shows that a signi?cant evolution had taken place in the intervening interval.Numerous P–Cygni pro?les domi-nate the spectrum,and their narrow width indicates very low expansion velocities (~1000km s ?1).The most promi-nent ones are identi?ed as Ca II,Ba II and Sc II (see Section 6.3).The spectrum at this stage closely resembles that of SN 1997D at discovery (see Fig.18).The line identi?cations at phase ~100days will be discussed in detail in Sect.6.3.(ii)Four spectra are available for SN 1999eu (Fig.15).The ?rst two,taken just after discovery,are strikingly simi-lar to those of SN 1999br at about 100days post–explosion (Fig.18),i.e.the continuum is very red and the lines show expansion velocities of only ~1000km s ?1.The remaining two spectra,taken during the fast post–plateau drop,show even redder continua in agreement with the colour evolution discussed above.

(iii)The earliest two spectra of SN 1994N (Fig.16)show the typical appearance of SNe II during the photo-spheric phase (Turatto et al.,1994).The expansion velocity deduced from the H αminimum (4500km s ?1)is substan-tially lower than that measured in “normal”SNe II (see e.g.20),but is similar to those of SN 1999br 3–4weeks post–explosion.The latest spectrum was taken when the

Low Luminosity Type II Supernovae13

Figure14.Spectral evolution of SN1999br.The numbers on the right are JD+2451000.The sequence of the?rst7spectra covers a period of about one month from discovery,while the last spectrum(1999July20,JD=2451380.45)is taken2months later,at the end of the plateau.

Figure16.Spectral evolution of SN1994N.The spectrum of 1994June5(JD=2449508.53)is smoothed because of the poor signal to noise ratio.Figure17.Spectral evolution of SN2001dc.The spectra have not been corrected for reddening.

14Pastorello et

al.

Figure18.Spectra of SN1999eu,SN1997D and SN1999br at

about the end of the plateau.

supernova was well into its nebular phase,and is reminis-

cent of

the spectrum of SN1997D at about11months post–

explosion(Benetti et al.,2001).Besides Hα(FWHM≈1200

km s?1),the main spectral features are the[Ca II]λλ7291–

7323A doublet,the Ca II IR triplet,and the strong emission

lines of[O I]6300–6364A.We also tentatively identify Mg

I]4571A,Hβ,Na ID and[Fe II]7155A.

(iv)Only three spectra of SN2001dc are available(Fig.

17),taken during the plateau phase,at~54,~91and~99

days post–explosion.The continuum is red and there is little

evolution in the spectral features during this time interval.

The last2spectra of SN2001dc resemble those of1999br

and SN1999eu at~100days post–explosion,especially the

strong and narrow P–Cygni lines of Ba II and Sc II.These

spectra correspond to the beginning of the departure from

the plateau phase.A strong P–Cygni line is present in the

last spectrum with its emission peak at~9245A.We ten-

tatively identify this with Sc IIλ9234A.

In Fig.18,we compare the spectra of SN1997D(1997

January15),SN1999br(1999July20)and SN1999eu(1999

November14).It can be seen that these are strikingly simi-

lar both with respect to the continua and line components.

We suggest,therefore,that these spectra were acquired at

similar phases(see also Zampieri et al.,2003).The light

curves of these SNe indicate that this phase was probably

about the end of the plateau phase,with the SN1999br light

curve indicating that this was~100days post–explosion.

For SN1994N,in spite of the paucity of observations,com-

parison of the?rst spectrum taken on1994May10with a

spectrum of SN1999br obtained on1999May11,suggests

that SN1994N was discovered about1month after the ex-

plosion.Indeed the two spectra show the same features and

similar expansion velocities(~2500km s?1,deduced from

the minimum of Fe II5018A line).The adopted epochs of

Figure20.Photospheric velocity of low luminosity SNe II de-

duced from the minima of P–Cygni absorption of Hαand Sc II

6246A and comparison with SN1999em(data from the Padova–

Asiago SNe Archive and Leonard et al.,2002a).The x-axis shows

the phase with respect to explosion.

explosion for all?ve CC–SNe are given in Tab.1.These were

used in the analysis of colour and light curves in Sect.5.

6.2The Common Spectro–photometric Evolution

of the Low Luminosity SNe II

We have used similarities in the spectra of the low-

luminosity SNe to date the explosions.In order to bet-

ter illustrate the properties of this group of SNe,we now

use all the available data to describe the general spectro–

photometric evolution of this class.In Fig.19we show the

temporal evolution of selected spectral windows.

The?rst~40days of evolution(spectra1–8)are cov-

ered mainly by the SN1999br spectra(cfr.also Fig.14).

The spectra evolve from a continuum dominated by Balmer

lines to a more complex appearance with strong lines of Na

I,Ba II and the Ca II IR triplet.The expansion velocities

are relatively low compared with“normal”SNe II,slowing

from5000to3000km s?1during this early era.The spectra

of SN1994N(No.5)and SN2001dc(No.8)?t well into

the evolutionary sequence of SN1999br.During this phase,

the absorption trough velocities exhibit rapid movement to-

wards lower velocities(see Fig.19and below).

The next spectrum(No.9)takes us well into the sec-

ond half of the plateau phase.Clearly the spectroscopic form

has changed signi?cantly in the intervening~37days.The

remainder of the plateau era(spectra9–12in Fig.19)is rep-

resented by a single spectrum each from SNe1997D,1999br,

1999eu and2001dc.As described earlier,we used the rela-

tive similarity of these spectra at about this epoch to pin

down the phases of SNe1997D and1999eu.By this time

(phase~80–100days),the absorption troughs of the more

Low Luminosity Type II Supernovae

15

Figure 19.Top:evolution of selected regions of the spectra of low luminosity SNe II.The name of the supernova is given in the left column,while the phase (relative to explosion epoch)is on the right.The numbers in brackets correspond to the epochs shown on the schematic light curve (bottom panel),obtained by combining the V band light curve of SN 1999br (solid curve)and SN 1997D (line–dotted curve).The magnitudes of both SNe are scaled so that their V magnitudes match at phase ~102days post–explosion.

prominent lines indicate relatively low velocities at the pho-tosphere,e.g.H αand Sc II 6246A give velocities of ~1000–1500km/s (Fig.20).In addition,new narrow lines of low excitation elements like Ba II,Sc II,Fe II,Sr II,Ti II have appeared (see also Figs.23–26)and the continuum becomes

redder (see e.g.Fig.14).In particular the Ba II lines become the strongest features in the spectra.Note that the contri-bution of Sr II at short wavelengths is also supported by the detection of strong lines of multiplet 2(at 10037A,10327

16Pastorello et

al.

Figure https://www.doczj.com/doc/e63078809.html,parison of the spectra of SN 1987A with those of faint SNe II at similar phases.The phases with respect to the explosion epoch are shown in the upper–left corner.

A and 10915A)in the IR spectrum of SN 1997D presented by Clocchiatti et al.(2001).

The evolution up to ~1month after the plateau (spectra from about 13to 16)is characterized by the transition to a nebular spectral form,with the gradual fading of permitted metallic lines and P–Cygni pro?les.In this phase,narrow forbidden lines have steadily strength-ened (in particular [O I]λλ6300–6364A and [Ca II]λλ7291–7323A,but also some multiplets of [Fe I],[Fe II]and Mg I]),as reported also in Fig.5of Benetti et al.(2001).The spectra of the latest phase (Nos.17–20)resem-ble those of normal SNe II,with the usual (though nar-rower)emission features attributed to forbidden transitions (Turatto et al.,1993).Nevertheless,the most prominent line is H α,and Na ID is still visible as a faint emission line after almost 1.5years.

A comparison between the spectra of the faint SNe II with those of SN 1987A at comparable phases is shown in Fig.22.At the ~20day and ~90day epochs,the main spectral lines are the same,but the lines of our sublumi-nous CC–SNe have narrower widths implying lower ejecta expansion velocities.In addition,at ~90days the sublumi-nous SNe show stronger absorption components of Ba II.As noted by Turatto et al.(1998)for SN 1997D,this is probably

not an e?ect of overabundance,but is simply a consequence of a lower ejecta temperature.

We conclude that a characteristic property of sublu-minous CC–SNe is the very low expansion velocity of the ejecta.Indeed the photospheric velocities inferred from the absorption minima of H αand Sc II 6246A show a common evolutionary path (Fig.20).During the ?rst ~50days the line velocities decrease monotonically from 5000to 1000–1500km s ?1.Somewhere towards the end of the plateau the velocities level o?at a value ≤1000km s ?1.At all epochs line velocities are lower than those of the “typical”SN II–P 1999em (cf.Fig.20).

We have also analyzed the continuum temperature from the spectra of the SNe by performing a Planckian ?t in re-gions not a?ected by line blanketing (e.g.between about 6000and 8000A).The results,shown in Fig.21,are fairly consistent with a common evolution.Starting from a ~8000K at phase ~13days,the temperature falls reaching a value of 5000–6000K after 30–40days.During the remainder of the plateau the temperature remains almost constant at ~5500K.Presumably this corresponds to the recombina-tion temperature of the hydrogen as the photophere recedes through the H–envelope.The end of the plateau phase is marked by the onset of a steep temperature decline,settling at T ~4000K as the supernova enters its nebular phase.

18Pastorello et al.

490054005900

6400

6900

R e l a t i v e F l u x

F e I ,F e I I ,T i I ,T i I I ,C r I

S c I I ,T i I

T i I I ,F e I ,F e I I F e I I ,M g I ,T i I I T i I I ,F e I ,F e I I ,M n I

S c I ,T i I ,T i I I ,F e I F e I ,C r I I ,C r I

T i I I ,C r I I ,F e I ,F e I I ,S c I S c I I ,F e I I ,S c I

F e I I ,M n I I ,F e I ,O I

S c I I ,S c I

B a I I

N a I D

B a I ,F e I I ,T i I I M n I

S c I I ,F e I I ,T i I I ,T i I ,F e I

B a I I ,

C a I

S c I I ,F e I I

O I ,F e I I ,S c I I ,S c I F e I I O I

F e I I ,C a I B a I I ,B a I ,T i I I F e I I

H ,T i I I S c I I ,T i I I ,B a I T i I I

F e I

B a I ,F e I ,F e I I ,M n I I

Figure 25.Like Fig.24,but in the wavelength range 4900–6900A.

69007400

79008400

8900

R e l a t i v e F l u x

T i I I

B a I

F e I I

T i I I

T i I I

T i I I

M n I I

O I

K I

C I

M g I I

M g I I

C a I I

C a I I

C a I I

F e I

F e I ,F e I I N a I

C I ,B a I I

C a I I

Figure 26.Like Fig.24,but in the wavelength range 6900–9000A.

6.3Identi?cation of the Spectral Lines

The multiplicity of narrow P–Cygni features in the late pho-tospheric spectra of the faint SNe II can help us to identify unambiguously the species responsible.To exploit this op-

portunity we have modelled the spectra of SN 1999br at phase 102.5days.

We used the parameterized code,SYNOW (Fisher,2000),to construct synthetic photospheric spectra which were then compared with the observations.The

Low Luminosity Type II Supernovae

19

Figure 21.Evolution of continuum temperature derived from Planckian ?ts to the SNe spectra.The continuum of SN 2001dc is corrected for reddening of A B,tot =1.7,as discussed in Sect.5.The x-axis shows the phase with respect to explosion.

code works in the Sobolev approximation and includes a number of simplifying assumptions.The line–forming envelope surrounding the continuum–emitting region ex-pands homologously and with spherical symmetry.The line source function is taken to be that of resonance scattering.The optical depth τof the strongest optical line of each ion is a free parameter.For all the other lines of a given ion,τis found assuming Boltzmann excitation (Je?ery &Branch,1990).Other free parameters are the velocity at the photosphere (v ph ),the continuum blackbody temperature (T bb ),the excitation temperature (T exc )of each ion and the radial dependency of the optical depths.We adjusted these parameters to produce a plausible spectral match to the ~102day spectrum of SN 1999br.In the ?nal model we adopted a power–law radial dependency of index n =4with T bb =5600K and v ph =970km s ?1;T exc varies among the ions,but it is about 4000–5000K for neutral ions and 8000–10000K for ionized species.The resulting spectral model,obtained including 22di?erent ions,is compared with the whole observed spectrum in Fig.23,and with expanded sections shown in Figs.24–26.The main spectral features are generally quite well reproduced.In addition the strong line–blanketing behaviour in the blue (λ≤4600A)is,at least qualitatively,also seen in the model (Fig.24).

The line–blanketing is due to the presence of many strong metallic lines,including contributions from neutral and singly–ionized ions of Fe,Ti,Cr,Sc,Mn,Ca and Sr.The Sr II lines are particularly deep,while the Balmer lines are fainter than is observed in normal SNe II.

The region between 4600and 6500A (Fig.25)is dominated by lines of Fe II,Ti II,Sc II and Ba II,although contri-butions from lines of neutral ions cannot be excluded.At

this phase the absorption lines of Ba II are exceptionally strong,exceeding in depth the Na ID and H αlines.The reproduction of the spectrum in the H αregion is poor due to the inadequacy of the pure resonance–scattering assumption for the H αline.Nevertheless,to reproduce the complex pro?le in this region,we require the simultaneous presence of Ba II,H αand Sc II.

On the red tail of H αup to ~7700A (Fig.25and Fig.26)many narrow,faint Ti II and Fe II lines are superimposed on a strong continuum.However,also present may be growing contributions from nebular emission lines,in particular [Fe II]and [Ca II]λλ7291,7324A.As we move still further to the red,the spectrum becomes dominated by the Ca II IR features.Other tentatively identi?ed lines include:K I,O I,Mg II,Na I,C I,Fe I,Fe II,Ba II and Ti II (Fig.26).

7DISCUSSION

Following our determination of the explosion epochs,we can conclude that our observations are consistent with low–luminosity SNe having plateaux of duration ~100days,similar to that seen in more normal SN II–P events.This may constitute evidence for the presence of massive en-velopes around low–luminosity SNe (Zampieri et al.,2003).We attribute a ~100day plateau to SN 1997D.This is signi?cantly longer than that estimated by Turatto et al.(1998)and Benetti et al.(2001).In general,the plateau luminosities of the faint CC–SNe are unusually low,and show a range of values between the di?erent events spanning more than 1magnitude (see Sect.5,Fig.12and Fig.13).Although spectroscopic coverage is incomplete for individ-ual events,the data are consistent with the low–luminosity SNe having a similar spectroscopic evolution,characterised by unusually narrow line widths.

At the end of the plateau the light curves show a steep decline,typically 3magnitudes in 30–50days.This e?ect has also been observed in other type II–P SNe [e.g.SN 1994W,Sollerman et al.(1998);SN 1999em,Elmhamdi et al.(2003)].Thereafter,for 3of the 4SNe for which we have post–plateau light curves,the decline rate is consis-tent with the power source being the radioactive decay of 56Co.The exception is SN 1999eu,discussed below.Assuming complete trapping of the γ–rays,we compare the “OIR”pseudo–bolometric luminosities (Fig.13)with those of SN 1987A at similar epochs and,using the relation M SN (Ni)=0.075×L SN

20Pastorello et al.

As mentioned above,SN1999eu is noticeably di?erent from either SN1997D or SN2001dc in that it exhibits a

particularly large post–plateau decline of about5magni-

tudes.The large decline refers to the entire duration of the observations prior to the disappearance of SN1999eu

behind the sun.It’s remarkable that a similar behaviour

was already observed in SN1994W(Sollerman et al.,1998). Moreover,its luminosity drops to a level which is about3

times lower than would be expected from a simple backward

extrapolation of the later56Co radioactively–driven tail. Two possible explanations present themselves.One is the

early condensation of dust in the ejecta,causing much of

the luminosity to be shifted into the unobserved mid–and far–infrared.Then as the ejecta expanded,the dust became

optically transparent to the optical luminosity and so the

light curve increasingly followed the radioactive decline rate,with a luminosity corresponding to0.003M⊙of56Ni.

A similar phenomenon was seen in SN1987A but at a later

epoch.Di?culties with the dust hypothesis are:(a)the rather early epoch of the condensation,while the tempera-

ture is still rather high in at least some of the ejecta;(b)its

rather“convenient”coincidence with the decline at the end of the plateau.Unfortunately,nebular spectra of SN1999eu

are not available and so we cannot check for the occurrence

of a red–wing truncation that dust condensation might be expected to produce(cf.SN1987A and SN1999em).

The second possibility is that the late–time tail is,in

fact,powered mostly by ejecta–CSM interaction and not by radioactive decay.This would imply an extremely low

ejected mass of56Ni(<0.001M⊙).A possible di?culty is

that if the light curve is being mostly driven by such an interaction,then there is no obvious reason why it should

be close to the decay rate of56Co between350and550days.

In summary,the group of?ve CC–SNe considered

here are similar to more typical CC–SNe in that a clear

plateau phase occurs lasting for~100days,followed by a late–time decline driven by the decay of56Co.A similar

temperature behaviour is seen(Fig.21),and the identities

of the spectral lines at all phases are also typical.However, these SNe di?er in that(a)during the plateau phase the

luminosity is at least a factor10times less than found in

typical CC–SNe,(b)the expansion velocity is unusually slow(Fig.20),both during the photospheric and nebular

phases,and(c)the mass of56Co which drives the late–time

tail is at least a factor~10lower than normal.

A key issue to address is whether or not the?ve low–luminosity CC–SNe are members of a separate class

of CC–SNe arising from a distinctly di?erent progenitor

type and/or explosion process,or are they simply samples from the extreme low–luminosity tail of a continuous dis-

tribution of otherwise normal explosions.We are currently

investigating this problem through the study of SNe II having luminosities intermediate between normal objects

(like SN1988A or SN1969L)and the faint events discussed

here.Hamuy(2003)has already considered24type II plateau SNe,deriving a wide range of plateau luminosities

(~5magnitudes),expansion velocities(~×5)and ejected 56Ni masses(>×150).His sample includes two of our low–luminosity events viz.SNe1999br and1997D.He

found that both the mid–plateau M V and ejecta velocity correlate with the mass of56Ni ejected as deduced from the exponential tail.For a subset of16SNe II–P the explosion energy and total ejected mass also correlate with the observed properties of plateau luminosity and velocity.Hamuy asserts that the physical properties of SNe II–P exhibit a continuous range of values,and concludes that SNe II–P form a one–parameter family.We note that the four low–luminosity SNe for which we have a fair estimate of M V follow the trend of M V at50days versus M(Ni56)shown in Hamuy’s Fig.3.It therefore seems reasonable to incline towards the single continuous distri-bution scenario.Given Hamuy’s correlation between ejecta kinetic energy and mass of56Ni ejected,this implies that low–luminosity CC–SNe are also low–energy events.Similar results for a large sample of SNe II–P support Hamuy’s conclusion that a continuous trend of physical parame-ters in SNe II–P exists,also including extremely low and moderately low luminosity events(Zampieri et al.,in prep.).

To account for the low–luminosity CC–SNe,a natural approach is to examine the extreme ends of the mass spectrum of progenitors from which SNe II–P are believed to arise.The high–mass scenario has been proposed by Turatto et al.(1998),Benetti et al.(2001)and Zampieri et al.(2003).Turatto et al.(1998)found that the observed behaviour of SN1997D could be reproduced by the explo-sion of a progenitor with M>25M⊙,radius R≤300R⊙and explosion energy E≈4×1050erg.They also suggested that the central remnant was a black hole(BH)and that signi?cant fallback of stellar material onto the collapsed remnant may have taken place.Zampieri et al.(2003) studied the behaviour of both SN1997D and SN1999br. They found that the light curves and the evolution of the continuum temperature and expansion velocity are well reproduced by a comprehensive semi–analytical model in which the envelope is≤1013cm(140R⊙),the ejecta masses are~14–20M⊙and explosion energy is E≤1051 erg.They deduced somewhat lower progenitor masses than did by Turatto et al.,estimating a progenitor with mass≥19M⊙for SN1997D and≥16M⊙for SN1999br.From the large ejected masses and low explosion energy,Zampieri et al.conclude that SN1997D and SN1999br are intermediate mass,BH–forming CC–SNe.

A contrary conclusion was reached by Chugai& Utrobin(2000).In their analysis of the early–and late–time spectra of SN1997D,they found that model spectra for a supernova resulting from a24M⊙progenitor were incompatible with the observed nebular spectra.They considered also a low–mass progenitor model in which the observed behaviour of SN1997D is reproduced by the low energy explosion(E≈1050erg)of a low–metallicity progenitor.The star has a radius R≤85R⊙and a total main sequence mass of M=8–12M⊙(of which6 M⊙becomes H rich ejecta).In this case,the remnant is expected to be a neutron star.They found that this model gave more successful reproduction of the spectra at both early and late times.However,in their analysis Chugai& Utrobin assumed a plateau duration of~60days.The new observational evidence provided here and in Zampieri et al. (2003)indicates that the plateau of low–luminosity SNe is >

~100days.Therefore,it is not clear if the low mass model

数据管理系统之数据可视化设计

数据管理系统企业级数据可视化项目Html5 应用实践 项目经理:李雪莉 组员:申欣邹丽丹陈广宇陈思 班级:大数据&数字新媒体 一、项目背景 随着大数据、云计算和移动互联网技术的不断发展,企业用户对数据可视化的需求日益迫切。用户希望能够随时随地简单直观的了解企业生产经营、绩效考核、关键业务、分支机构的运行情况,即时掌握突发性事件的详细信息,快速反应并作出决策。随着企业信息化的不断推进,企业不断的积累基础信息、生产运行、经营管理、绩效考核、经营分析等以不同形式分布在多个系统或个人电脑文档内的业务数据。如何将大量的数据进行分析整理,以简单、直观、高效的形式提供给管理者作为经营决策的依据是当前企业数据应用的迫切需求。传统的企业数据可视化方案多基于Java Applet、Flash、Silverlight 等浏览器插件技术进行开发,在当前互联网和移动互联网技术高速发展的背景下,Web技术标准也随之高速发展,用户对互联网技术安全性和使用体验的要求越来越高。Java Applet、Flash、Silverlight 等浏览器插件技术因为落后和封闭的技术架构,以及高功耗、高系统资源占用,已经被微软、谷歌、苹果、火狐等主流操作系统和浏览器厂商逐步放弃,转而不断支持和完善基于HTML5的新一代Web技术标

准 对数据进行直观的拖拉操作以及数据筛选等,无需技术背景,人人都能实现数据可视化无论是电子表格,数据库还是 Hadoop 和云服务,都可轻松分析其中的数据。 数据可视化是科学、艺术和设计的结合,当枯燥隐晦的数据被数据科学家们以优雅、简明、直观的视觉方式呈现时,带给人们的不仅仅是一种全新的观察世界的方法,而且往往具备艺术作品般的强大冲击力和说服力。如今数据可视化已经不局限于商业领域,在社会和人文领域的影响力也正在显现。 数据可视化的应用价值,其多样性和表现力吸引了许多从业者,而其创作过程中的每一环节都有强大的专业背景支持。无论是动态还是静态的可视化图形,都为我们搭建了新的桥梁,让我们能洞察世界的究竟、发现形形色色的关系,感受每时每刻围绕在我们身边的信息变化,还能让我们理解其他形式下不易发掘的事物。 二、项目简介 目前,金融机构(银行,保险,基金,证劵等)面临着诸如利率汇率自由化,消费者行为改变,互联网金融崛起等多个挑战。为满足企业的发展需要,要求管理者运用大数据管理以更为科学的手段对企业进行精准管理,从而更好地把握市场在竞争中胜出。德昂BI商务智能解决方案基于业务的数据分析正是帮助企业实现科学化管理的关键,因而获得客户的高度重视与高频度使用。 激烈的市场竞争下,通过对金融机构业务数据的汇总与整理实现

语文S版六年级上册练习

六年级上册句子练习 一、把下列句子改为陈述句。 1.她以前哪里笑过? 2.她脸上满是皱纹,倒像风干的橘子,哪里会露出笑脸容来呢? 3.冼星海斩钉截铁地说“我有把握把曲谱好!一定能!” 4.哪里有死的东西会自己走动,并且能自动地发出和谐的声音呢? 5.这种老师算什么老师? 6.难道你没有想过吗? 7.难道让学生绝对信从自己的老师就是好老师吗? 8.难道你们愿意跟我拼命,给他们看着好玩吗? 9.这高耸云天的的坚固城墙上的一块块砖石,哪一处没洒落过我们英雄祖先的殷红热血? 二、改变句型,使句子语气加重 1.对于别人的大恩大德,我们不能忘记。 2.老师带病坚持工作,无微不至地关心我们,我们不会忘记。 3.要想取得好成绩,必须刻苦学习。 4.我不会辜负老师对我的期望。 5.认识万物之灵。 6.知识是学生成长的摇篮,是人类进步的阶。 7.这雄关外面的乱石纵横、野草丛生的一片片土地,处处都洒落过入侵者的累累白骨。 三、缩句: 1.悠扬的旋律有一次打动了人们的心。 2.朴实的士兵庄严地表达他们对祖国的忠诚! 3.国旗是祖国母亲最俊美的脸庞。 4.我们都迫不及待地放起自己亲手制作的风筝。 5.看台上的观众笑得前俯后仰。 6.现在他已经飘到了看不到陆地的海面上。

7.雄关是我们伟大民族历史的见证人,是一个热血沸腾、顶天立地的英雄好汉。 8.冬季常青的松树上堆满了蓬松的、亮晶晶的雪球。 9.在那块透明的琥珀里,两个小东西仍旧好好地躺着。 四、改为转述句: 1.太阳说:在我看来升旗场是荒凉哨所上最美的一片风景。” 2.他笑着对我说:“我给你看看表里是什么在响,可是只许看,不许动!” 3.一位同伴焦急地对向导说:“你得想想办法啊!” 4.蔺相如对秦王说:“这块璧有点小毛病,让我只给您看。” 5、张强对妈妈说:“妈妈,李明今天生病了,我去帮他辅导功课。” 6.妈妈对我说:“明天我要出差,你能不能照顾好自己?” 五、按要求,写句子 1.书籍是人类进步的阶梯,他能引领我们登上知识的殿堂;书籍是 ,它是(仿写)2.爱是无形的,它需要用心灵去感受;爱是 爱是(仿写)3.爱心是冬日里的一片阳光,使饥寒交迫的人分外感到人间的温暖。 爱心是 爱心是 爱心是 4.老人把勾丝放在脊背上,又把钩丝握紧在手里。(改为被字句) 5.我们犯了错误后才想办法补救。我们事前三思而后行。(用关联词连成一句) 六、用下列词语写句子: 1.……像…… 2.……般的…… 七、修改下列句段:(在原句上修改)

语文S版六年级语文上册课内阅读复习题及答案

语文S版六年级语文上册课内阅读复习题 班级姓名 1.《稻草人》的作者是(1894—1988)原名,著名、编辑家、出版家和社会活动家。童话集有《》、《》等。 2.《自相矛盾》选自《韩非子·难一,作者,时期思想家。《画蛇添足》选自《》。 3.查字典,理解词语。 自相矛盾:。 画蛇添足:。 4.查资料填空。 安徒生(1805—1875),国19世纪著名创始人。被称为,他一生共计写了童话篇,代表作有《》、《》、《》等。小女孩共次擦烧了火柴,分别看到了、、、、,最后她。 5.《刺猬汉斯》是国作家写的(体裁)。我还读过他的其他的童话有《》、《》、《》等。课文中的刺猬汉斯遇见了个国王,第一个国王是,第二个国王是。 6.(1)于右任(1879—1964),陕西三原人,中国,早年参加,追随,进行反对的革命。《望大陆》于公开发表,立刻打动了无数。这首诗是于右任先生的一首。 7.背诵并墨写《望大陆》 8.查资料填空。 (1)香港,简称“港”,包括、和。因地产沉香在此出口而得名,故又称“”、“”。年月日,中国政府对香港恢复行使主权,香港特别行政区成立。 (2)祖国母亲的代称有华夏、、、等。

(3)中国人可以称华夏儿女,也可称子孙,还可以称的传人。 9.查资料填空。 长城:秦始皇来六国完成统一后,为了防御北方匈奴的南侵,将、、三国的北边长城予以修缮,连贯为一,俗称“”,也叫秦长城。明代前后修筑长城达18次,西起,东至,总长,俗城明长城,是世界历史上的伟大工程之一。 10.《山海关》的作者是,文章向我们介绍了。 11.读课文,填空。 (1)中国“东方第一哨”在,位于东经,北纬,是祖国大陆的。 (2)课文采用了和对话的方式,主要写了:○1;○2;○3。三方面的内容,表达了的思想感情。 12.阅读课文片段,回答问题。 在大人们的责骂和追问声中,我们委屈地献上了革药和小鱼。老师一下子搂住我们脏乎乎的身子,哭了,泪水一滴一滴掉在我们脸上…… (1)老师为什么一下子搂住了我们脏乎乎的身子,哭了? 。 (2)这里没有写老师说话,如果老师说话,她会说些什么呢? 。 13.《秋天的怀念》的作者是,文章通过对母亲关心,照顾“我”的细致描写,表达了“我”对母亲。 14.阅读课文片段,回答问题。 这些年来,我少年时代听到的两种声音一直交织在我的耳际:“精彩极了”,“糟糕透了”;“精彩极了”,“糟糕透了”……它们像两股风不断地向我吹来。我谨慎地把握住我生活的小船,使它不被哪一股风刮倒。我从心底里知道,“精彩极了”也好,“糟糕透了”也好,这两个极端的断言有一个共同的出发点——那就是爱。在爱的鼓舞下,我努力地向前驶去。 (1)文中的这两种声音是指什么? 。 (2)作者说“‘精彩极了’也好,‘糟糕透了’也好,这两个极端的断言有一个共同的出发点——那就是爱”。的原因是什么? 。

人力资源管理制度控制程序

人力资源管理控制程序

————————————————————————————————作者:————————————————————————————————日期:

l目的 对相关人员要求和能力进行有效控制,确保从事影响产品质量符合性和工作人员受到适当的教育、培训,使其具有必要的技能和经验,并能胜任其工作。 2范围 适用于本公司所有从事影响产品质量和工作的人员能力的控制,包括临时雇佣人员,必要时包括供方人员。 3职责 3.1管理部是本公司人力资源管理部门,负责对各岗位任职条件的确定,并负责有关培训及其他措施的策划、实施和评价工作。 3.2相关部门配合进行专业技能培训及其它措施的实施。 4工作程序 人力资源控制流程图:附后。 4.1岗位能力需求的确定 4.1.1根据上汽-大众《上海大众汽车大众品牌经销商运营标准》的岗位职责描述及公司管理部组织相关人员编制本公司的《岗位职责和任职条件》,明确各岗位人员有关学历教育、培训、技能及工作经验的适用要求。 4.1.2岗位设置应符合上汽-大众要求,并满足实际工作需要,同时还需符合AuditII 等要求。 4.2各岗位质量意识要求 4.2.1公司通过宣传、会议、培训等方式,确保各岗位人员树立“以顾客满意为最终目标”的质量意识和环境意识执行上汽-大众有关标准、规范的要求,提高整车销售、车辆维修及备件提供的产品及服务质量,为实现公司的质量环境方针和质量环境目标,努力做好本职工作。 4.2.2总经理应加强质量意识方面的检查,对发现的问题应及时采取相应措施。 4.3 员工招聘 4.3.1 确定岗位及岗位能力要求,不同岗位的人员应由部门负责人根据上汽-大众有关规定,从教育、培训、技能和经验方面提出相应的资格要求,报管理部进行汇总形成文件。 4.3.2各部门根据其岗位设置及岗位能力情况提出需求,报管理者代表审核,总经理批准,管理部按照《岗位职责和任职条件》有关教育、培训、技能和经验方面的要求,通过各种途径实施招聘。

人力资源管理程序(体系文件)

1目的 为强化和规范人力资源管理,不断优化人力资源配置,持续提高全员素质与绩效,为公司经营和发展提供有力的人力资源保证,特制定本程序。 2范围 本程序适用于我公司的人力资源管理。 3职责 3.1人力资源部负责人力资源的综合管理,负责公司人力资源的整体规划、政策引导、监督管理、 干部考核、人才引进,以及招聘、考勤、分配、调配、退休和保险等事务性工作。 3.2各部门负责本部门人力资源的计划、调配、激励、奖惩、培训和考核。 4内容 4.1人力资源计划管理 4.1.1各部门根据各自的生产经营和管理需要,制订本部门的人力资源年度需求计划,报人力资源 部。 4.1.2人力资源部根据公司发展战略规划制订公司人力资源中长期规划,报总经理批准后实施。 4.1.3人力资源部根据公司人力资源规划及各部门人力资源需求计划,制订公司人员招聘计划,报 总经理批准后实施。 4.2绩效考核管理 4.2.1各部门按照公司审定后的《XX有限公司××月工作情况汇总》中的月度工作计划组织实施。 4.2.2人力资源部对各部门的考核过程以及有效性、合理性进行监督、评价、指导,并组织执行。 4.3岗位管理 4.3.1人力资源部对岗位进行规范、划分,对各部门进行定编定员管理。 4.3.2人力资源部根据岗位描述和招聘计划制定人员招聘条件和要求。 4.3.3对不能满足规定岗位资格、能力的人员,所在部门应按计划实施培训,并对 2013-0-批准2013-0-01实施 培训的有效性进行评价。确实无法胜任该岗位工作的人员,交人力资源部调配合适的人员。 4.4人员招聘管理 4.4.1人力资源部根据招聘计划和招聘条件制定人员招聘简章和招聘程序。 4.4.2人力资源部组织实施招聘过程,并组织相关部门,工厂人员参与面试、考试各筛选环节。 4.5工资分配管理 4.5.1公司工资考核领导小组制订相应的工资考核办法,报公司领导批准后实施。 4.5.2财务部根据工资考核办法制订月度工资考核方案,报工资考核领导小组讨论、经公司领导批

语S版六年级语文上册复习

六年级语文上册期末复习 一,词语(拼音见课本) 稻穗白喉耕种褐色烤鹅蜷腿冻僵擎着旗帜电钮蜿蜒无垠盔甲捍卫萦绕 遨游鼻涕拽住吆喝瘫痪侍弄捶打腼腆誊写谨慎要挟轻蔑陡坡测绘竣工藐视窑洞澎湃琥珀松脂粘稠美餐孵化巢穴颓丧蠢事明媚狡黠抿嘴警惕撞碎胆怯推辞削弱奴隶栅栏雌雄惦记海滨啤酒崛起镰刀垒球潇洒骨骼贪婪平庸 沉甸甸 火柴梗 二,成语(拼音见课本) 巍然耸立名不虚传浑然一体连绵起伏龇牙咧嘴悬崖峭壁攀山越岭如雷贯耳 惊涛骇浪碧波万顷愚不可及鱼贯而出面面相觑饶有兴趣郑重其事负荆请罪 身先士卒絮絮叨叨得意扬扬漫天彻地脍炙人口威风凛凛拈弓搭箭如饥似渴 三,诗词 石灰吟 明于谦 千锤万凿出深山,烈火焚烧若等闲。 粉骨碎身浑不怕,要留清白在人间。 《石灰吟》是明代政治家于谦的一首托物言志诗。这首咏物诗,采用象征手法,字面上是咏石灰,实际借物喻人,托物寄怀,表现了诗人高洁的理想。整首诗笔法凝炼,一气呵成,语言质朴自然,不事雕琢,感染力很强;尤其是作者那积极进取的人生态度和大无畏的凛然正气更给人以启迪和激励。 己亥杂诗 清龚自珍 九州生气恃风雷,万马齐喑究可哀。 我劝天公重抖擞,不拘一格降人才! 译文: 只有狂雷炸响般的巨大力量才能使中国大地发出勃勃生机,然而朝野臣民噤口不言终究是一种悲伤。我奉劝皇上能重新振作精神,不要拘泥一定规格选取更多的人才。 竹石 明郑燮 咬定青山不放松,立根原在破岩中。 千磨万击还坚韧,任尔东西南北风。 《竹石》是清代画家郑燮创作的一首七言绝句。这首诗是一首咏竹诗。诗人所赞颂的并非竹的柔美,而是竹的刚毅。前两句赞美立根于破岩中的劲竹的内在精神。开头一个“咬”字,一字千钧,极为有力,而且形象化,充分表达了劲竹的刚毅性格。再以“不放松”来补足“咬”字,劲竹的个性特征表露无遗。次句中的“破岩”更衬托出劲竹生命力的顽强。后二句再进一层写恶劣的客观环境对劲竹的磨练与考验。不管风吹雨打, 借物喻人,作者通过咏颂立根破岩中的劲竹,含蓄地表达了自己绝不随波逐流的高尚的思想情操。 夏日绝句 宋李清照 生当做人杰,死亦为鬼雄。 至今思项羽,不肯过江东。 《夏日绝句》是宋代词人李清照创作的一首五言绝句。这是一首借古讽今、抒发悲愤的怀古诗。诗的前两句,语出惊人,直抒胸臆,提出人“生当作人杰”,为国建功立业,报效朝廷;“死”也应该做“鬼雄”,方才不

9001内审文件-人力资源控制文件

人力资源控制程序编号GY-HP01 版本 A.0 页次Page 1 of 8 1.0目的 1.1规范人力资源任用管理工作,为人力资源的规划、招募、聘用、异动、考核、培训等提供指导。 2.0适用范围 2.1适用于*****全体员工 3.0定义 3.1 职级:根据适职资格要求的高低、工作内容的复杂程度等对不同工作岗位进行的等级划分。 3.2 职位:有特定工作内容、职责、职权的工作岗位的统称。 3.3 职称:对职位不同、工作性质相似、基本适职资格相同的工作人员归类总称。 3.4 职务:职级、职称、职位三者之总称。 3.5 直接人员:直接从事产品实际生产、检测的一线操作人员。 3.6 间接人员:公司内除直接人员以外的所有人员。 3.7 外招:面向公司以外的社会人群招募公司员工,称为外招。 3.8 内招:面向公司内部现有员工招选某一职位人员,称为内招。 3.9 扩招:人事招聘中,在原有人力配备的基础上增扩人手。 3.10 补缺:人事招聘中,因原有人力配备流失(离职或异动)而招募新员。 3.11 异动:员工职位、职级或在组织架构中所处位置(即所在部门)发生变化。 3.12 晋级:职位不改变而调升职级。

人力资源控制程序编号GY-HP01 版本 A.0 页次Page 2 of 8 3.13 降级:职位不改变而调降职级。 3.14 晋职:由原职级之职位调升到更高职级之职位。 3.15 迁职:职级保持不变,职位或在组织架构中所处位置(即所在部门)改变。 3.16 降职:由原职级之职位调降到更低职级之职位。 4.0职责及权限 人力资源部依此程序为标准,制定计划,安排各项工作,各部门依程序制订用人计划、招募、聘用、管理部门工作人员 5.0作业流程(见附件18/附件19/附件20/附件21) 6.0作业内容 6.1 组织编制 6.1.1 各部门根据实际工作之需,进行工作分析,设定工作岗位,明确各岗位工作内容,进而确定从事各职位工作的人员职称、职级、权责、适职条件、需要人数等,并以《岗位说明书》(见附件1)的形式确定。 6.1.2 根据各职位的工作内容、性质分成直接人员、间接人员两类和不同职级(见附件2) 6.1.3 根据权责分工及不同职位的相互关系,建立组织架构,并根据各职位人员配备数,确定组织编制,绘制《人事组织编制图》(见附件3),各部门负责制订本部门组织编制,人力资源部汇总制订全公司组织编制。每年12月份制订下年编制,如因公司经营决策有重大调整或重大形势变化,经总经理同意可在需要时修订。 6.2 招聘计划 每年12月份各部门根据本部门工作需要编制拟定《人力需求计划》(见附件4),人力资源部汇总据以制订该年度

人力资源控制程序

文件编号:GF/QP001 第五章人力资源控制程序 1 目的 对承担质量管理体系职责的人员,规定相应岗位的能力要求,并进行培训以满足规定要求。 2 范围 适用于承担质量管理体系规定职责的所有人员,包括临时雇佣的人员,必要时还包括供方的人员。 3 职责 3.1 质量部 1) 负责企业“年度培训计划”的制定及监督实施。 2) 负责上岗基础教育。 3) 负责组织对培训效果进行评估。 3.2 各部门 1) 确定本部门员工任职要求。 2) 负责本部门员工的岗位技能培训。 3.3 总经理 批准企业培训计划和员工任职要求。 4 工作程序 4.1 人员安排 1) 承担质量管理体系规定职责的人员应是有能力的,对能力的判断应从培训、技能、经历等方面考虑。 2) 质量部通过对各级人员进行系统或专业培训,提高人员素质,保证所培训的人员能胜任本岗位的工作。

文件编号:GF/QP001 3) 各部门负责人编制本部门《岗位任职要求》,报管理者代表审核,总经理批准。 4) 《岗位任职要求》经审批后,作为办公室选择、招聘、安排人员的主要根据。 4.2 能力、培训和意识 4.2.1 应识别从事影响质量活动的人员的能力需求,分别对新员工、在岗员 工、转岗员工、各类专业人员、特殊工种人员、内审员等,根据他们的岗位责任制定并实施培训需求。 4.2.2新员工培训 1) 公司基础教育:包括公司简介;员工纪律;质量方针和质量目标;质量、安全和环保意识;相关法律法规;质量管理体系标准基础知识等的培训;公司的有关管理规章制度;公司的环境及工作性质介绍;公司产品的认识及品质的重要性。在进入公司一个月内,由办公室组织进行。 2) 部门基础教育:学习本部门有关文件的主要内容,由所在部门负责人组织进行。 3) 岗位技能培训:学习生产作业指导书、所用设备的性能、操作步骤、安全事项及紧急情况的应变措施等,由所在岗位主管负责组织进行,并进行操作考核,合格后方可上岗。 4.2.3 在岗人员培训 根据需要由质量部编制培训计划报总经理批准,并实施。 1)进行质量意识教育,使其理解公司的质量方针和质量目标,

语文S版六年级上册全册导学案

第一单元童话寓言之旅 课题课时学习目标重点难点备注 1 稻草人2课时1.默读课文,把握课文的主要内容。 2.体会作者刻画的人物的思想感情,能对人物作出自己的评价。 3.会认“肤、怠、穗、瘪、搓”5个字,会写“肌、肤、懒、穗、 喉、耕、橘、祸、挽、甸”11个字,掌握“肌肉、皮肤、稻穗、勉 强、白喉、耕种、橘子、褐色、挽救、祸事、沉甸甸”等词语。 了解在稻田 里发生了怎样的 故事,稻草人看 到了什么,想到 了什么,是怎么 做的,结果如何。 理解作者刻 画的稻草人是个 怎样的人物。 2 寓言两则2课时1.朗读并背诵课文。 2.理解寓言内容,能联系实际理解寓言所比喻的意思。 3.会认“矛、弗、卮、遂”4个字,会写“矛、盾、弗、祠、遂”5 个字。 读懂课文内 容,理解寓意。 结合注释或 查字典理解文中 一些字的意思,进 而读懂课文内容。 3 卖火柴的小女孩2课时 1.有感情地朗读课文。 2.了解课文内容,边读边体会课文中蕴含的情感,同情小女孩悲惨 的遭遇。 3.会认“僵、梗”2个字,会写“裙、哆、嗦、烤、蜷、灌、僵、 焰、铜、烘、梗、腮”12个字,掌握“围裙、哆哆嗦嗦、烤鹅、蜷 腿、冻僵、火焰、暖烘烘、火柴梗、两腮通红”等词语。 理解课文内 容,学习运用在 阅读中进行旁批 的学习方法,深 入理解文章的语 言文字。 理解课文所 表达的思想感情。 4﹡刺猬汉斯1课时1.默读课文,把握课文主要内容。 2.学会对童话中的人物进行评价。 3.会认“讽、磕、诫、膏”4个字。读读记记“冷嘲热讽、告诫、 药膏、兑现、不屑一顾、言而无信、悉心照料”等词语。 读懂课文内 容,知道课文写 了哪几件事。 深入理解文 中作者塑造的人 物形象,领悟作者 的表达意图。 5﹡尼尔斯骑鹅历险记1课时 1.默读课文,把握课文的主要内容,了解尼尔斯是个勇敢、善良、有 爱心的孩子。 2.会认“戚、杈、蹑、陀、眩”5个字。读读记记“亲戚、树杈、蹑 手蹑脚、晕眩”等词语。 能独立读懂 课文内容。 理解尼尔斯 是个怎样的孩子。

人力资源管理程序体系文件

人力资源管理程序体系 文件 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

1 目的 为强化和规范人力资源管理,不断优化人力资源配置,持续提高全员素质与绩效,为公司经营和发展提供有力的人力资源保证,特制定本程序。 2 范围 本程序适用于我公司的人力资源管理。 3 职责 人力资源部负责人力资源的综合管理,负责公司人力资源的整体规划、政策引导、监督管理、干部考核、人才引进,以及招聘、考勤、分配、调配、退休和保险等事务性工作。 各部门负责本部门人力资源的计划、调配、激励、奖惩、培训和考核。 4 内容 人力资源计划管理 各部门根据各自的生产经营和管理需要,制订本部门的人力资源年度需求计划,报人力资源部。 人力资源部根据公司发展战略规划制订公司人力资源中长期规划,报总经理批准后实施。 人力资源部根据公司人力资源规划及各部门人力资源需求计划,制订公司人员招聘计划,报总经理批准后实施。 绩效考核管理 各部门按照公司审定后的《XX有限公司××月工作情况汇总》中的月度工作计划组织实施。 人力资源部对各部门的考核过程以及有效性、合理性进行监督、评价、指导,并组织执行。 岗位管理 人力资源部对岗位进行规范、划分,对各部门进行定编定员管理。 人力资源部根据岗位描述和招聘计划制定人员招聘条件和要求。 对不能满足规定岗位资格、能力的人员,所在部门应按计划实施培训,并对 2013-0-批准2013-0-01实施培训的有效性进行评价。确实无法胜任该岗位工作的人员,交人力资源部调配合适的人员。 人员招聘管理

人力资源部根据招聘计划和招聘条件制定人员招聘简章和招聘程序。 人力资源部组织实施招聘过程,并组织相关部门,工厂人员参与面试、考试各筛选环节。 工资分配管理 公司工资考核领导小组制订相应的工资考核办法,报公司领导批准后实施。 财务部根据工资考核办法制订月度工资考核方案,报工资考核领导小组讨论、经公司领导批准后交人力资源部实施。 员工培训管理 人力资源部负责员工培训管理,见《员工培训管理程序》。 5 引用文件 《员工培训管理程序》(/PD-010) 6 记录 无 附加说明: 本程序起草部门:人力资源部 本程序归口部门:人力资源部 本程序批准人:

知识产权人力资源控制程序

知识产权人力资源控制程 序 Prepared on 24 November 2020

知识产权人力资源控制程序 1目的 对公司知识产权人力资源进行控制,保证公司在知识产权获取过程中符合法律和保密性要求。 2适用范围 本该程序适用于本公司知识产权人力资源的控制。 3管理职责 人力资源部作为人力资源的归口管理部门。 知识产权部辅助人力资源部进行知识产权培训相关事宜。 4工作程序 知识产权工作人员任职要求 教育与培训 a)开展全体员工知识产权基础知识培训,并向全员进行知识产权方针、知识产权目标的宣传和有关培训,以确保公司成员具有一定的知识产权意识,鼓励员工为实现知识产权管理目标作出贡献; b)分部门按照知识产权体系中对每个部门相关的知识产权工作要求进行培训。a)邀请资深专家进行专门的知识产权培训,培训的内容建议和知识产权战略或知识产权布局相关; 人事合同 入职 人力资源部负责对新入职人员进行知识产权背景调查,填写《新入职员工知识产权背景调查表》,对新员工进行了解的同时避免新员工入职带来的知识产权侵权连带责任。

符合录用条件的新员工应签署《入职知识产权声明》。 离职 员工离职或退休,由知识产权部和员工原所在部门与之进行知识产权恳谈,提醒其相应的知识产权事项。在《离职交割清单》中明确保密的范围和义务。对涉及企业技术秘密、商业秘密的,告知其保密义务不因合同终止而失效,明确其保密责任和义务。并交回属于公司的可能造成公司秘密外泄的各种实物和资料。对于涉及核心知识产权的员工,与其签署《竞业限制协议》,明确其承担的权利和义务,以及保密责任和期限。 激励 公司实行知识产权奖惩制度。员工创造的知识产权给予相应的物资奖励和精神奖励,员工造成知识产权损失时,也应承担相应的责任,具体奖励标准参见《奖惩制度》。 人力资源部负责组织确定《知识产权奖励表》交管理者代表审批后,交由财务部发放。 5相关文件 《专利管理制度》 《奖惩制度》 《知识产权工作人员任职条件》 6相关记录 【()年度知识产权培训工作计划】 【知识产权培训实施情况记录】 【新入职员工知识产权背景调查表】

人力资源管理程序体系文件

人力资源管理程序体系 文件 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

1目的 为强化和规范人力资源管理,不断优化人力资源配置,持续提高全员素质与绩效,为公司经营和发展提供有力的人力资源保证,特制定本程序。 2范围 本程序适用于我公司的人力资源管理。 3职责 3.1人力资源部负责人力资源的综合管理,负责公司人力资源的整体规划、政策引导、监督管理、干部考核、人才引进,以及招聘、考勤、分配、调配、退休和保险等事务性工作。 3.2各部门负责本部门人力资源的计划、调配、激励、奖惩、培训和考核。 4内容 4.1人力资源计划管理 4.1.1各部门根据各自的生产经营和管理需要,制订本部门的人力资源年度需求计划,报人力资源部。 4.1.2人力资源部根据公司发展战略规划制订公司人力资源中长期规划,报总经理批准后实施。 4.1.3人力资源部根据公司人力资源规划及各部门人力资源需求计划,制订公司人员招聘计划,报总经理批准后实施。 4.2绩效考核管理 4.2.1各部门按照公司审定后的《XX有限公司××月工作情况汇总》中的月度工作计划组织实施。 4.2.2人力资源部对各部门的考核过程以及有效性、合理性进行监督、评价、指导,并组织执行。 4.3岗位管理 4.3.1人力资源部对岗位进行规范、划分,对各部门进行定编定员管理。 4.3.2人力资源部根据岗位描述和招聘计划制定人员招聘条件和要求。 4.3.3对不能满足规定岗位资格、能力的人员,所在部门应按计划实施培训,并对 2013-0-批准2013-0-01实施 培训的有效性进行评价。确实无法胜任该岗位工作的人员,交人力资源部调配合适的人员。 4.4人员招聘管理 4.4.1人力资源部根据招聘计划和招聘条件制定人员招聘简章和招聘程序。 4.4.2人力资源部组织实施招聘过程,并组织相关部门,工厂人员参与面试、考试各筛选环节。 4.5工资分配管理

图书管理系统数据流程图

图书管理系统数据流程图 2009-04-14 17:20 1.1 系统分析 1.1.1 图书馆管理信息系统的基本任务 该“图书馆管理信息系统”是一个具有万人以上的员工,并地理位置分布在大型企的图 书馆理系统,图书馆藏书 100 多万册,每天的借阅量近万册。在手工操作方式下,图书的编目和借阅等的工作量大,准确性低且不易修改维护,读者借书只能到图书馆手工方式查找书目,不能满足借阅需求。需要建立一套网络化的电子图书馆信息系统。 该图书馆管理信息系统服务对象有两部分人:注册用户和一般读者。一般读者经注册后成为注册用户,注册用户可以在图书馆借阅图书,其他人员只可查阅图书目录,但不能借阅图书。系统同时考虑提供电子读物服务,目前只提供电子读物的目录查询服务,不久的将来将提供电子读物全文服务。用户可通过网络方式访问读图书馆管理信息系统。 1.1.2 系统内部人员结构、组织及用户情况分析 为了对系统有一个全貌性的了解,首先要对系统内部人员结构、组织及用户情况有所了 解。图书馆系统的组织结构如图 1 - 1 所示。 图 1 - 1 图书馆管理信息系统的组织结构 图书馆由馆长负责全面工作,下设办公室、财务室、采编室、学术论文室、图书借阅室、电子阅览室、期刊阅览室和技术支持室。各部门的业务职责如下。

办公室:办公室协助馆长负责日常工作,了解客户需求,制定采购计划。 财务室:财务室负责财务方面的工作。 采编室:采编室负责图书的采购,入库和图书编目,编目后的图书粘贴标签,并送图书借阅室上架。 学术论文室:负责学术论文的收集整理。 图书借阅室:提供对读者的书目查询服务和图书借阅服务。 电子阅览室:收集整理电子读物,准备提供电子读物的借阅服务,目前可以提供目录查询和借阅。 期刊阅览室:负责情况的收集整理和借阅。 技术支持室:负责对图书馆的网络和计算机系统提供技术支持。 1.1.3 系统业务流程分析 系统的业务室系统要达到的业务目标,业务流程分析是系统分析的基础环节。图书馆管 理信息系统的业务流程如图 1 - 2 所示。

人力资源管理控制程序

XXXX-QP-01 人力资源管理控制程序 1 目的 对我站质量管理体系内的人员任职、能力、培训教育、考核等要求进行规定,不断提高全员综合素质和职业能力。 2 适用范围 适用于我站为加强人力资源管理所进行的所有活动。 3 职责 3.1 法定代表人 3.1.1 负责人力资源的配置决策和满足需求; 3.1.2 负责站级《年度培训计划》的批准; 3.1.3 培训者评估者的能力评估组组长。 3.1.4 负责 3.2 业务主管 3.2.1 负责审核站级《年度培训计划》; 3.2.2 负责批准各部门《年度培训计划》; 3.2.3 参与人力资源配置决策。 3.3 质量主管 3.3.1 负责人员能力的考核评估,负责站级培训计划的落实; 3.3.2 培训者能力评估组组长。 3.4 办公室 3.4.1 根据血站及部门需求,编制《人员需求计划表》,交站办公会讨论决策。 3.4.2 负责站级《年度培训计划》的组织实施。 3.4.3 配合站领导对做好站员工的招聘、录用、考核、调动和离职工作。 3.4.4 负责培训资料的收集、整理,负责人事档案的管理。 3.5 质控科 3.5.1 负责站级《年度培训计划》的制定。 3.5.2 负责新进人员岗前质量培训。 3.5.2 负责对各部门内年度培训计划落实情况的监督。 3.5.3 负责对培训及考核评估中未合格人员的再培训。

3.6 各部门 3.6.1 负责新进员工的轮岗培训,在职员工转岗的部门培训和部门内员工的年度培训,负责部门培训计划的制定和落实。 3.6.2 科主任负责审核部门内《年度培训计划》。 3.3.2 参与科室员工资格、能力、业绩与质量的考核评估工作。 4 定义 4.1 组织结构:是反映组织内部构成和各个部门间所确定的关系的形式。 4.2 组织结构设计:是一个组织变革的过程,是把组织的任务、流程、权利和责任重新进行有效的组合和协调的一种活动,其目的是通过组织结构设计大幅度提高组织的运行效率。 4.3 岗位:也称职位,在组织中一定的时间内,当由一名员工承担若干项任务,并具有一定的职务、责任和权限时,就构成一个岗位。 5 管理程序 5.1 人员配置管理 5.1.1 岗位人员配置应符合《血站质量管理规范》、《血站实验室质量管理规范》中对组织人员的要求。应满足与岗位相适应的学历、技术职称或职业资格、教育培训经历等。 5.1.2 新增人员的资质必须符合《血站关键岗位工作人员资质要求》。 5.1.3 人员聘用 1)根据国家规定,我站实施全员聘用制。 2)各部门根据科室及血站业务需求,填写《人员需求计划表》,交站办公会讨论, 报上级主管部门及人社局批准,按照相关程序以“公开招聘、择优录取”的原则进行招聘。 5.1.4 人员任职要求 1)我站人员按照入职年限及岗位设置分为: 新进员工(进站工作不满一年人员); 在岗员工(经培训考核合格,在固定岗位工作满一年人员); 转岗人员(岗位调整后不满一年人员); 再入岗人员(因各种原因连续休假达6个月以上,或考核评估为“不合格” 后的重新入岗人员)。 2)新进员工必须取得采供血机构上岗合格证和相关专业技术任职资格。未取得采 供血机构上岗合格证和相关专业技术任职资格之前,无签字权。

人力资源控制程序(质量体系文件)

1.目的 为实现人力资源的合理配置,在岗人员均能达到岗位能力要求,为质量管理体系的良好运行提供保障,特制定本程序。 2.适用范围 本程序适用于公司范围内的人力资源管理,包括人员招聘、人员配置、人员经历、教育程度、技能和能力的考核及培训管理。 3.职责 3.1.人力资源部职责为: a)负责组织各部门编制公司各岗位的《员工岗位说明书》; b)负责人员的招聘,人力资源的计划及配置; c)负责员工教育培训计划的制订、组织、管理和考核; d)依据对员工的培训、考核结果,负责按本程序对达到资格条件的员工,组织上岗认 证工作。 3.2.综合办公室、生产设备、技术质量、销售等部门有义务支持和配合人力资源部实施教 育培训和人力资源配置计划。 4.程序 4.1.人力资源部组织各部门编制公司各岗位的《员工岗位说明书》,以规定各岗位人员的 最低任职资格和岗位职责,作为本公司招聘工作的依据。 4.2.人力需求提出、批准 4.2.1.各职能部门根据公司总的目标计划,结合本部门分目标计划,以及本部门工作内容 和最新的人员配置情况,确定本部门人力资源需求计划,向人力资源部提交《用员 申请表》,人力资源部根据各职能部门上报的详细资料,结合公司实际情况,审核 通过后实施招聘。 4.3.招聘、录用实施 4.3.1.人力资源部根据人员需求,通过以下方式,面向社会公开招聘,进行统一筛选。 a)委托各人才职业介绍所推荐; b)联系中、高等院校,适当输送应届毕业生或中、高等专业人才; c)联系参加现场招聘会; d)委托社会媒介发布招聘信息(报纸、网站、人才市场、职介所等)。 4.3.2.人力资源部自行或组织专业管理人员实施招聘。 4.3.3.招聘时,按照各岗位任职资格对应聘人员综合考察,有以下情形者,不予考虑: a)未满16周岁的童工; b)有精神病者或吸食毒品者; c)被依法追究刑事责任者; d)提供虚假简历、资质证者。 4.3.4.人力资源部初步面试 a)应聘人员交验相关证件(身份证、学历证、职称证、上岗证等),验证合格后填写 《入职登记表》; b)对应聘者的个性特征进行考察,包括谈吐形象、心理特征、个人能力等方面,确定 应聘者是否适合本公司的企业文化。 4.3. 5.用人部门复试

人力资源管理程序

1 目的 对承担质量体系职责的人员规定相应的管理能力要求,并通过培训、增强员工的质量意识和健康安全意识,提高工作技能与健康安全防范措施,确保管理体系有效运行,建设“以人为本”的高效和谐的生产工作环境。 2 范围 适用于从事影响产品质量对公司环境表现起作用的所有人员,包括临时雇用的人员,必要时还包括相关方的人员。 3 职责 3.1 总经理 3.1.1批准公司年度培训计划; 3.1.2批准《岗位职责说明书》; 3.1.3批准人员配置计划和管理规程。 3.2行政人事部 3.2.1负责编制各部门负责人的《岗位职责说明书》、《员工花名册》、《公司定员编制表》; 3.2.2负责《年度培训计划》的制定及监督实施、上岗基础教育、组织对培训效果进行评估; 3.2.3负责员工招聘、公司员工的劳动工资、福利待遇、社会保险和劳动防护用品的发放审核管理工作。 3.3各部门 3.3.1负责人按照《岗位职责说明书》规定,负责提供员工《岗位职责说明书》所需的内容和信息,并与行政人事部共同完成《岗位职责说明书》编制的相关工作; 3.3.2负责提出培训申请,并按公司统一制定的培训计划组织实施;

3.3.3对应聘人员的甄选,“双向选择”试用人员的考核等工作; 3.3.4负责本部门员工的岗位技能培训、缺编人员补充申报工作。 4 工作程序 4.1识别人员能力,实施竞聘上岗 4.1.1行政人事部负责确定《岗位职责说明书》编制要求; 4.1.2行政人事部负责组织编制《公司定员编制表》,上报总经理审批; 4.1.3行政人事部负责每本年进行检查修订各部门的《岗位员额编制表》,根据岗位员额编制变动情况,作为行政人事部制订人力资源规划的依据; 4.1.4人员增补申请作业程序 a各部门如需增补人员,按程序审核后报行政人事部办理; b行政人事部根据申请表,审查申请员额是否属于员额编制内所需求,其需要时机是否恰当等问题; c审阅后,即就申请人员来源做正确的拟办建议,对定员内缺员增补的呈总经理核准,对调整定员增补的经总经理办公会会议讨论通过后,根据指示办理调动或招聘准备工作。 4.2人员能力 4.2.1根据质量管理体系各工作岗位规定的职责对人员能力提出适当的要求,从事影响产品质量、环境的所有人员应是能胜任的。对能力的判断应从教育程度、接受的培训、工作技能和工作经验等方面考虑。 4.2.2行政人事部负责编制各部门负责人《岗位职责说明书》,对岗位的能力要求、职责做出规定,报总经理审批。部门负责人应至少满足下列条件之一: a 具备相关专业的技术职称; b专科及以上学历,工作经验1年以上; c 受过相关的职业培训; d 具备3年以上相关工作经历。 4.2.3 《岗位职责说明书》经审批后,作为行政人事部对员工的选择、招聘、岗位安排、教育培训、职业病防治、安全作业要求的重要依据。各部门负责人与行政人事部共同编制本部门《岗位职责说明书》,《岗位职责说明书》应确定所有从事对质量有影响的管理、执行和验证工作的人员的相互关系,并应确保完成这些任务所必要的独立性和权限。 4.3 培训 4.3.1培训原则

六年级上册语文s版

六年级上册语文试题姓名: 一、读拼音,写词语。 qiān chuíwàn záo fěn shēn suì g?fén shāo qīng mièmi?o shìyāo xié ()()()()()()kān cèd?u qiào níjiāng chà dào zhuó làng pái kōng jīng tāo hài làng ()()()( )( )( ) h? xiào lóng yín kēng qiāng h?pòshèn chūnián chóu xiáng xì ( )( )( )( )( )( ) róu héhéxiéchéng xiàn fūhuàmíng meìtuí sàng yú ch?n ( )( )( )()()()()k?i gēj?ng tìji?o xiámiàn miàn xiāng qùzhèng zhòng qí shìyōu y? ()()()()()()二、比一比,再组词。 挟()挠()藐()俊()桧() 狭()绕()蔑()峻()刽() 陕()饶()貌()竣()绘() 峡()脍() 戌()稠()宵()博()抿() 戊()调()霄()搏()眠() 戍() 三、补充词语。 ()崖()壁()风怒()全()以() ()山()岭()()人口惊()失() 阴谋()()大()()然()死不() ()然()气()()得意()言()语

()雷()耳心潮()()震()动() 披()斩()()向()敌低()婉() 抑()顿()斩()截()()不足() ()无()事( ) ( ) 而出()()云霄 ()先()后()不()及欲()又() 四、按要求填空。 1、“锤”字的读音是(),第五画是();“凿”的读音是(),第十一画是()。“千锤万凿”的意思是()。“浑”字的读音是(),第九画是();“岩”的读音是(),第一画是()。“勘”字是()结构,用音序查字法查字母(),用部首应查()部。 2、《石灰吟》中“吟”的意思是(),作者是()代的()。诗中最能表现思想感情的诗句是()。借写(),暗含诗人()精神。 3、《竹石》这首诗的作者是清代著名“扬州八怪”之一的()。诗人借咏竹石,表现人()的精神。 4、千磨万击还坚劲,任尔东西南北风。坚劲的意思是(),任尔的意思是()。这句话的意思是(),表达了诗人()。 5、粉骨碎身浑不怕,要留清白在人间。清白的意思是(),这句话的意思是(),表现

语文S版六年级上册

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 语文S版六年级上册 语文 S 版六年级上册 3、《卖火柴的小女孩》(第二课时)教学设计教学目标: 1、有感情地朗读课文, 把握课文内容, 关注课文中人物的命运, 体会作者的思想感情。 2、了解作者虚实结合的表达方法,体会这样表达的效果。 3、感受卖火柴的小女孩命运的悲惨和作者寄予的深切同情,能从中懂得珍惜现在的幸福生活。 教学重难点: 1. 从小女孩一次次擦燃火柴所看到的种种幻象中,体会她的悲惨生活及作者想象的合理。 2. 从含义深刻的语句中体会作者的思想感情。 教学过程: 一、听歌再次感受课文一首悲情的《火柴天堂》把我们再次带到了那个冰天雪地、寒风刺骨的大年夜,再次来到我们上一节课刚认识的那个卖火柴的小女孩身边,她的命运将何去何从呢?这节课我们来继续学习课文。 二、听完这首歌,同学们再默读课文用一个词形容读完这个故事的感受。 生: (凄美动人,凄美: 1 / 6

凄惨美丽。 )师: 小女孩命运很凄惨,可是大家为什么觉得又是美丽的呢?为什么说小女孩大年夜冻死街头是一个美丽的故事?在文中找出最能解答这个问题的一句话。 生: 他曾经看到过多么美丽的东西,他曾经多么幸福,跟着她的奶奶一起走向新年的幸福中去。 三、整体感知,重点感悟课文第二部分(511 自然段)她曾经看到过什么美丽的东西呢?又是怎样看到的呢?默读第 511 自然段,看看在寒冷和饥饿中小女孩几次擦然火柴,在火柴的亮光中她分别看到了什么?(找到答案在课文中批注出来)(师生共同填写表格)第几次擦然火柴幻象现实第一次大火炉寒冷第二次烤鹅饥饿第三次圣诞树孤独第四次奶奶痛苦第五次奶奶冻死街头四、深入研读第一次擦燃火柴的部分 1、师提示:第一次擦燃火柴看到了什么?你从小女孩看到的东西中体会到小女孩的现实生活是怎样的?说明什么?生答: 生活寒冷,需要温暖。 2、对于小女孩第 1 次擦燃火柴是的心理描写。 她敢从成把的火柴里抽出一根,在墙上擦燃了,来暖和暖和字的小手吗?她终于抽出了一根。 她开始敢不敢抽出一根?可是最后终于抽出了一根说明什

相关主题
文本预览
相关文档 最新文档