当前位置:文档之家› 响应面法在试验设计中的应用

响应面法在试验设计中的应用

响应面法在试验设计中的应用
响应面法在试验设计中的应用

响应面法在试验设计中应用

科研过程中,为了提高目标产物产量.品质,或者是减低成本,都需要做试验。

如何安排试验,有一个方法问题

Lk不好的试验设计方法,即使做了大量的试

验,也未必能达到预期的目的;

一个好的试验设计方法,既可以减少实验次数,缩短试验时间和避

免盲目性,又能迅速得到有效的结果。

?什么叫做(优化)试验设计方法?

-把数学上优化理论、技术应用于试验设计中,

科学的安排试验、处理试验结果的方法。

-采用科学的方法去安排试验,处理试验结果, 以最少的人力和物力消费,在最短的时间内取得更多.更好的生产

和科研成果的最有效的技术方法。

■随后,

F?Yates,R?C.BoseQ?Kempthome,W?G?Coch ran,D.R.Cox和G.E.P.Box对试验设计都作出了杰出的贡献,使该分支在理论上日趋完善,在应用上日趋广泛。

■ 50年代,日本统计学家田口玄一将试验设

计中应用最广的正交设计表格化,在方法

解说方面深入浅出为试验设计的更广泛使用作出了众所周知的贡献。

■ 1978年,七机部由于导弹设计的要求,提出了一个

五因素的试验,希望每个因素有多余10个水平,而试验总数又不超过50,显然优选法和正交设计都不能用,随后,方开泰教授(中国科学院应用数学研究所)和王元院士提出“均匀设计”法,这一方法在导弹设计中取得了成效。

试验设计流程

建立试验目标。

朗确试验指标。

识别可控因素和噪步因素。

选择适用的试验设计方法安排和卖施渕验O

分析试验数据,寻找因素水平的最优组合。

验证和应用试验结果,评价试验绩效O

响应面试验设计Response surface methodology 缩

写RSM

1960-2007 The number of SCI papers using RSM design 80000 -

S

」①ded jo

」QqEnu £160000 -

40000 -

20000 -

537

78861

Yea「

the 爲證 爲密

Uni

St

密爲>埠矍名

10,452

Joumd

of

B g SJ g i

c a M s s..

r

妙営 6.352 Bi

會恶

3.799

>ppli^MigbgQgy

E

Bis^hwlQgy 2

?

35g

Journal 爲

>

邕畐 1

E

F

養 chemg-ry

2327

Food ChemisUy

1,535

BioresQurce

Technology 1,387

Process

Biochemistry 1,375

爲『更

-

.209

W

J i s E

.0X4

Journal of

Food

Science

0,99

2000-2007 The number of Chinese papers using RSM design

什么是RSM?

A响应面设计方法(Response Surface Methodology,

RSM)是利用合理的试验设计方法并遇过实验得到一定

数据,采用垒西三空旦旦方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数. 解决多变量问题的一种统计方法。

qsas

在响应分析中,观察值y可以表述为:

y= f(X], X?,…,X])+ F

其中f(X], Xj,…,X])是自变量X],卷,…,X]的函数,0是误差项。

在响应面分析中,首先要得到回归方程,然后通过对自变量

X], X?,…,X]的合理取值,求得使y = f(X], X?,…,X]) 最优的值,这就是响应面设计试验的目的。

适用范E

A 确借或怀疑因素对指标存在非线性够响; A 因 素个数2-7个,一般不趙过4个;

>基于2水平的全因子正交试验。

?所有

A 试验区域已接近最优区域;

。右茨国整uaM

u

?二

cl

。。

?U .E>S O C 1

a 七

右茨制猶

A

响应面设计方案

响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 1 确定实验因素 2 确定因素水平范围 3 试验设计安排与结果 4 用软件(Design-Expert)对实验数据统计分析 由方差分析可知:模型的F=19.08,P=0.0004<0.001,表明实验所采用的二次模型是极显著的,在统计学上是有意义的。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0855>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 因素A提取温度的P值<0.0001,说明因素A提取温度对提取率%的影响是极显著的。而A的2次方,B的2次方,C的2次方的P值均小于0.05,说明A2、B2、C2 对提取率均有显著影响。而因素B的P值=0.5035,因素C的P值=0.104,均大于0.05,所以因素B、因素C,即乙醇体积分数和提取功率对提取率没有显著影响。 交互项AB、AC、BC的P值均大于分别为:0.0653、0.6788、0.6455,均大 于0.05,所以交互项对提取率没有显著性影响。

响应面法实验

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.等等………… 2注意事项 对于构造高阶响应面,主要有以下两个问题: 1,抽样数量将显著增加,此外,普通的实验设计也将更糟。 2,高阶响应面容易产生振动。 响应面法(response surface methodology,记为RSM)最早是由数学家Box和Wilson于1951年提出来的。就是通过一系列确定性的“试验”拟合一个响应面来模拟真实极限状态曲面。其基本思想是假设一个包括一些未知参量的极限状态函数与基本变量之间的解析表达式代替实际的不能明确表达的结构极限状态函数。响应面方法是一项统计学的综合试验技术,用于处理几个变量对一个体系或结构的作用问题,也就是体系或结构的输入(变量值)与输出(响应)的转换关系问题。现用两个变量来说明:结构响应Z与变量x1,x2具有未知的、不能明确表达的函数关系Z=g(x1,x2)。要得到“真实”的函数通常需要大量的模拟,而响应面法则是用有限的试验来回归拟合一个关系Z= g’(x1,x2),并以此来代替真实曲面Z=g(x1,x2),将功能函数表示成基本随机变量的显示函数,应用于可靠度分析中。响应面方法实际上源于一种试验设计方法,试验设计方法是用来研究设计参数对模型设计状况影响的一种取样策略,决定了构造近似模型所需样本点的个数和这些点的空间分布情况。目前广泛应用于计算机仿真试验设计的主要方法是拉丁超立方体抽样和均匀设计,这两种试验设计能应用于多种多样的模型,且对模型的变化具有稳健性。 3响应面分析

DesignExpert响应面分析实验设计案例分析和CCD设计详细教程

食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。 2.1 数据的输入

2.2 Box-Behnken响应面试验设计与结果 2.3 选择模型

2.4 方差分析 在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,

B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 图 5 由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。

《实验设计方法》教案

教师教案( 2005 —2006 学年第 1 学期 ) 课程名称:试验设计方法 授课学时:32 授课班级:23034010-11 任课教师:何为 教师职称:教授 教师所在学院:微电子与固体电子学院电子科技大学

绪论 1学时 教学内容及要求 试验设计方法在科学研究中的作用 1. 科学研究的基本过程 2. 科学研究的基本方法 3. 试验设计方法的主要内容 ●试验设计方法在科学技术发展中的地位和作用。 ●试验设计方法的起源。 ●我国试验设计方法的发展和现状。 ●使用试验设计方法的目的、内容和应用。 ●试验设计方法是当代科技和工程技术人员必须掌握的技术方法。 ●教学内容:正交试验法、优选法基础、回归分析法、均匀设计法、单 纯形优化法 参考资料 ?项可风.试验设计与数据分析.上海科技出版社.1991年 ?陈宝林.最优化理论及算法.清华大学出版社.1990年 ?邓正龙.化工中的优化方法.化学工业出版社.1991年 ?陈魁.试验设计与分析.清华大学出版社.1996年 ? (日)田口玄一.实验设计法.魏锡,王世芳译.机械工业出版社.1987 ? Phadke, M.S. "Quality Engineering Using Robust Design" Prentice Hall, Englewood Cliff, NJ. November 1989 ? Taguchi, Genichi. "System of Experimental Design" Edited by Don Clausing. New York: UNIPUB/Krass International Publications, Volume 1 & 2, 1987 ? Montgomery, D. C.. Design and analysis of experiment. New York: Wiley.1997 ?杨德.试验设计与分析.中国农业出版社.2002 第一章正交试验基本方法 5学时 授课时数: 一、教学内容及要求 ●多因素试验问题、正交试验、正交表符号的意义。 ●因素、水平、自由度、试验指标、交互作用。均衡分散性、整齐可比

Design-Expert软件在响应面优化法中的应用

Design-Expert 软件在响应面优化法中的应用 (王世磊郑州大学450001) 摘要:本文简要介绍了响应面优化法,以及数据处理软件Design-ExpertDesign-Expert的相关知识,最后结合实例,介绍该软件在响应面优化法上的应用实例。 关键词:数据处理,响应面优化法,Design-Expert软件 1.响应面优化法简介 响应面优化法,即响应曲面法( Response Surface Methodology ,RSM),这是一种实验条件寻优的方法,适宜于解决非线性数据处理的相关问题。它囊括了试验设计、建模、检验模型的合适性、寻求最佳组合条件等众多试验和统计技术;通过对过程的回归拟合和响应曲面、等高线的绘制、可方便地求出相应于各因素水平的响应值[1]。在各因素水平的响应值的基础上,可以找出预测的响应最优值以及相应的实验条件。 响应面优化法,考虑了试验随机误差;同时,响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量、解决生产过程中的实际问题的一种有效方法[2]。 响应面优化法,将实验得出的数据结果,进行响应面分析,得到的预测模型,一般是个曲面,即所获得的预测模型是连续的。与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的实验点进行分析。 当然,响应面优化法自然有其局限性。响应面优化的前提是:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法师不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。 结合文献报道,一般实验因素与水平的选取,可以采用多种实验设计的方法,常采用的是下面几个: 1.使用已有文献报道的结果,确定响应面优化法实验的各因素与水平。 2.使用单因素实验[3],确定合理的响应面优化法实验的各因素与水平。 3.使用爬坡实验[4],确定合理的响应面优化法实验的各因素与水平。 4.使用两水平因子设计实验[5],确定合理的响应面优化法实验的各因素与水平。 在确立了实验的因素与水平之后,下一步即是实验设计。可以进行响应面分析的实验设计有多种,但最常用的是下面两种:Central Composite Design-响应面优化分析、Box-Behnken Design-响应面优化分析。 Central Composite Design,简称CCD,即中心组合设计,有时也成为星点设计。其设计表是在两水平析因设计的基础上加上极值点和中心点构成的,通常实验表是以代码的形式编排的,实验时再转化为实际操作值(,一般水平取值为0,±1,±α,其中0为中值,α为极值, α=F*(1/ 4); F 为析因设计部分实验次数, F = 2k或F = 2 k×(1/ 2 ),其中 k为因素数,F = 2 k×(1/ 2 一般 5 因素以上采用,设计表有下面三个部分组成[6]:(1) 2k或 2 k×(1/ 2 )析因设计。(2)极值点。由于两水平析因设计只能用作线性考察,需再加上第二部分极值点,才适合于非线性拟合。如果以坐标表示,极值点在相应坐标轴上的位置称为轴点(axial point) 或星点( star point) ,表示为(±α,0,…, 0) , (0,±α,…, 0) ,…, (0, 0,…,±α)星点的组数与因素数相同。(3)一定数量的中心点重复试验。中心点的个数与CCD设计的特殊性质如正交

响应面法 试验设计与优化方法

响应面法试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型 作图. 建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验 数据().假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建 立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方 程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的 大致过程. 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验 (试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应 的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进 行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试 验值,为计算值,则两者的相关系数R定义为其中 对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.

响应面分析实验的设计案例分析

学校 食品科学研究中实验设计的案例分析 —响应面法优化超声波辅助酶法制备燕麦ACE抑制肽的工艺研究 摘要:选择对ACE 抑制率有显著影响的四个因素:超声波处理时间(X1)、超声波功率(X2)、超声波水浴温度(X3)和酶解时间(X4),进行四因素三水平的响应面分析试验,经过Design-Expert优化得到最优条件为超声波处理时间28.42min、超声波功率190.04W、超声波水浴温度55.05℃、酶解时间2.24h,在此条件下燕麦ACE 抑制肽的抑制率87.36%。与参考文献SAS软件处理的结果中比较差异很小。 关键字:Design-Expert 响应面分析 1.比较分析 表一响应面试验设计 因素 水平 -1 0 1 超声波处理时间X1(min) 20 30 40 超声波功率X2(W) 132 176 220 超声波水浴温度X3(℃) 50 55 60 酶解时间X4(h) 1 2 3 2.Design-Expert响应面分析 分析试验设计包括:方差分析、拟合二次回归方程、残差图等数据点分布图、二次项的等高线和响应面图。优化四个因素(超声波处理时间、超声波功率、超声波水浴温度、酶解时间)使响应值最大,最终得到最大响应值和相应四个因素的值。 利用Design-Expert软件可以与文献SAS软件比较,结果可以得到最优,通过上述步骤分析可以判断分析结果的可靠性。

2.1 数据的输入 图 1 2.2 Box-Behnken响应面试验设计与结果 图 2

2.3 选择模型 图 3 2.4 方差分析 图 4

在本例中,模型显著性检验p<0.05,表明该模型具有统计学意义。由图4知其自变量一次项A,B,D,二次项AC,A2,B2,C2,D2显著(p<0.05)。失拟项用来表示所用模型与实验拟合的程度,即二者差异的程度。本例P值为0.0861>0.05,对模型是有利的,无失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。 图 5 由图5可知:校正决定系数R2(adj)(0.9788>0.80)和变异系数(CV)为0.51%,说明该模型只有2.12%的变异,能由该模型解释。进一步说明模型拟合优度较好,可用来对超声波辅助酶法制备燕麦ACE抑制肽的工艺研究进行初步分析和预测。

响应面优化实验方案设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 7.0 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域; ④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。 响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过 0.45μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。

响应面法

响应面 所谓的响应面是指响应变量η与一组输入变量(ζ1,ζ2,ζ3...ζk)之间的函数关系式:η=f(ζ1,ζ2,ζ3...ζk)。依据响应面法建立的双螺杆挤压机的统计模型可用于挤压过程的控制和挤压结果的预测。 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件. 显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图.建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据.假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵B如下将B阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图. 模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程.在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为X坐标和y坐标,以相应的由上式计算的响应为Z坐标作出三维空间的曲面(这就是2因素响应曲面). 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数R定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述. 什么叫响应面法? 试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应 曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图 形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.

最新响应面优化实验方案设计

响应面优化实验方案 设计

食品科学研究中实验设计的案例分析 ——响应面法优化超声辅助提取车前草中的熊果酸 班级:学号:姓名: 摘要:本文简要介绍了响应面曲线优化法的基本原理和使用步骤,并通过软件Design-Expert 7.0软件演示原文中响应面曲线优化法的操作步骤。验证原文《响应面法优化超声辅助提取车前草中的熊果酸》各个数据的处理过程,通过数据对比,检验原文数据处理的正确与否。 关键词:响应面优化法数据处理 Design-Expert 7.0 车前草 前言: 响应曲面设计方法(Response SufaceMethodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法(又称回归设计)。 响应面曲线法的使用条件有:①确信或怀疑因素对指标存在非线性影响;②因素个数2-7个,一般不超过4个;③所有因素均为计量值数据;试验区域已接近最优区域;④基于2水平的全因子正交试验。 进行响应面分析的步骤为:①确定因素及水平,注意水平数为2,因素数一般不超过4个,因素均为计量值数据;②创建“中心复合”或“Box-Behnken”设计;③确定试验运行顺序(Display Design);④进行试验并收集数据;⑤分析试验数据;⑥优化因素的设置水平。

响应面优化法的优点:①考虑了试验随机误差②响应面法将复杂的未知的函数关系在小区域内用简单的一次或二次多项式模型来拟合,计算比较简便,是降低开发成本、优化加工条件、提高产品质量,解决生产过程中的实际问题的一种有效方法③与正交试验相比,其优势是在试验条件寻优过程中,可以连续的对试验的各个水平进行分析,而正交试验只能对一个个孤立的试验点进行分析。 响应面优化法的局限性: 在使用响应面优化法之前,应当确立合理的实验的各因素和水平。因为响应面优化法的前提是设计的试验点应包括最佳的实验条件,如果试验点的选取不当,实验响应面优化法就不能得到很好的优化结果。 原文《响应面法优化超声辅助提取车前草中的熊果酸》采用经典的三因素三水平Box-Behnken 试验设计,以熊果酸的提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,并由此预测最佳的工艺条件。本文利用软件验证原文中的数据处理过程,以检验原文数据是否处理正确。 1 确定实验因素 原文利用超声波辅助提取车前草中的熊果酸,而影响熊果酸提取率的因素有很多,如超声波的功率、提取时间、溶剂温度、溶剂种类、液固比等。原文参考文献《柿叶中总三萜的提取以及熊果酸分离, 纯化研究》中提取熊果酸的方法提取熊果酸,即将干燥的车前草粉碎后过筛,取20~40 目的车前粉,用石油醚在 55℃脱脂 3 次,干燥备用。精密称取一定量的车前粉,加入一定量的乙醇,称量,在一定的超声波功率下提取一定时间后,擦干外壁,再称量,用乙醇补充缺失的质量,离心。用注射器抽取一定量上清液,过 0.45μm 滤膜,进行检测。每个实验进行 3 次平行实验。取其平均值。结果以提取率(E)的来表示。 C × V E/%= ———× 100

响应面分析法优化反应条件的中心组合设计

响应面分析法优化反应条件的中心组合设计分组 组数pH 时间温度摩尔比 一. 加热温度为130℃(17组) (1)(9组) 1 3 4.50 10.00 130.00 1.25 3 17 4.50 150.00 130.00 1.25 25 6 7.00 80.00 130.00 1.25 26 11 7.00 80.00 130.00 1.25 27 14 7.00 80.00 130.00 1.25 28 8 7.00 80.00 130.00 1.25 29 5 7.00 80.00 130.00 1.25 4 24 9.50 150.00 130.00 1.25 2 1 9.50 10.00 130.00 1.25 (2)(4组) 9 18 4.50 80.00 130.00 0.50 21 16 7.00 10.00 130.00 0.50 22 20 7.00 150.00 130.00 0.50 10 13 9.50 80.00 130.00 0.50 (3)(4组) 11 7 4.50 80.00 130.00 2.00 23 27 7.00 10.00 130.00 2.00 24 22 7.00 150.00 130.00 2.00 12 21 9.50 80.00 130.00 2.00 组数pH 时间温度摩尔比 二. 加热温度为110℃(6组) 5 19 7.00 80.00 110.00 0.50 7 10 7.00 80.00 110.00 2.00 13 28 7.00 10.00 110.00 1.25 14 26 7.00 150.00 110.00 1.25 17 12 4.50 80.00 110.00 1.25 18 23 9.50 80.00 110.00 1.25 三.加热温度为150℃(6组) 6 9 7.00 80.00 150.00 0.50 8 4 7.00 80.00 150.00 2.00 15 15 7.00 10.00 150.00 1.25 16 29 7.00 150.00 150.00 1.25 19 2 4.50 80.00 150.00 1.25 20 25 9.50 80.00 150.00 1.25

相关主题
文本预览
相关文档 最新文档