当前位置:文档之家› Cr6+的测定分析方法

Cr6+的测定分析方法

Cr6+的测定分析方法
Cr6+的测定分析方法

铬的分析测定方法(具体步骤)

Cr6+

一:方法名称:碘-淀粉分光光度法测定污水中的铬

实验原理:在酸性条件下,加入淀粉指示剂和KI溶液,Cr6+ 可与其反应,并且产生的I2或I3-可与淀粉生成灵敏度很高的蓝色络合物,在波长为590nm处测定其(络合物)吸光度—

进而测定水样中的六价铬的含量。

二:主要仪器:

721或722型分光光度计;电子分析天平;PH计;PH试纸

其他仪器:

1.试管(5ml,10ml。系列……)

2.量筒:5ml、10ml……

3.烧杯:50ml。100ml……

4.容量瓶:50ml、100ml、250ml、500ml……

6.比色管(50ml)

7.胶头滴管

8.比色皿(1cm)

9.滴定管(酸碱式均要)

10.PH试纸

11:水浴锅

三:具体的实验步骤

(首先,清洗将要用到的各个实验仪器,清洗干净并摆放整齐。准备实验。)1:实验试剂的配置与选取

a:用电子分析天平准确称取在1400C~1500C下烘干2h的K2Cr2O70.2829g。

b:将称好的K2Cr2O7溶于少量二次去离子水。尿素溶液:100g/l

c:用水定容于1000ml容量瓶中。

(1)NH4HF2溶液:20g/l

(2)KI溶液:50g/l(必须是新鲜配置的)。

(3)可容型淀粉溶液:1g/l

(4)硫脲溶液:20g/l

(5)1+1 H2SO4溶液

(6)

2:分别吸取铬标准溶液0、2.0、4.0、6.0、8.0、10.0ml于50ml容量瓶中。3:向各容量瓶中加入20g/l NH4HF2溶液40ml至溶液PH到3.0~4.0

4:向各容量瓶中加入20g/l硫脲溶液1.0ml并摇动。

5:加入50g/l KI溶液并摇匀后黑暗处放置5min使其完全反应。

6:5min后向容量瓶中加入1g/l可容型淀粉溶液1.0ml,用去离子水稀释至刻度并摇匀。

7:在5~8min以内,以试剂空白为参比,在590nm处测其吸光度,并于式样同时做空白实验。

9:测完后一吸光度为纵坐标,铬含量为横坐标绘制标准曲线。

10:水样处理

该实验所要处理的水样为不含悬浮物的底色度水样,无需进行预处理,可在酸性溶液中直接测定。

11:水样测定:

移取Cr6+含量不大于50mg的水样于50ml容量瓶中。加入NH4HF2溶液至溶液PH为3~4.以后步骤同上…………

12. 分光光度仪开机并试至工作状态,操作步骤见附录。

13.记录试验数据.

14..检查仪器波长的正确性和吸收他的配套性。

15.结束工作

测量完毕,关闭电源插头,取出吸收池, 清洗晾干后人盆保存.清理工作台,罩上一

仪器防尘罩,填写仪器使用记录.清洗容量瓶和其他所用的玻璃仪器并放回原处.

四:注意事项

1:水样必须在一天内测定

2:水样中的有机物可能干扰实验,但是通过加入KMnO4来进行处理,则又会带来新的物质——过量的KMnO4应该如何处理……

五:解释说明

1:NH4HF2(即NH4F·HF)溶液的作用:作为缓冲溶液即将溶液的PH值控制在3.0~4.0之间。同时他还能掩敝Fe3+的干扰(NH4HF2于Fe3+反应生成稳定的FeF63-络合物而消除Fe3+的干扰。)

2:硫脲溶液的作用:掩蔽共存的Cu2+

3:1+1 H2SO4溶液的作用:提供酸性条件。

4:KI溶液的作用:其实真正起作用的是I-,I-将Cr6+还原。

5:分光光度计、PH计、电子分析天平的使用规程见后面附录。

附录1:

721W分光光度计操作步骤:

1.熟悉光度计外部结构及各旋钮作用;

2.在关闭光门(打开样品室盖板)状态下,打开电源,将仪器预热30min;

3.调节波长旋钮至所需波长;

4.选择厚度合适的比色皿(使所测溶液的吸光度在0.8以内);

5.选择一套透光率一致的比色皿;

6.用待测液润洗2~3遍;

7.装入3/4杯待测液;

8.拿比色皿时,只能拿毛面;

9.用滤纸吸干比色皿外壁的水;

10.用擦镜纸轻轻擦拭透光面至洁净透明;

11.将参比液放在比色皿架第一格,待测液依浓度从稀到浓的顺序放入其它格;

12.在关闭光路状态下,调节透光率为“0”;

13.在开启光路状态下,调节透光率为“100%”;

14.重复14、15步操作几次;指示稳定后开始测量;

15.实验过程中适时关闭光路;

16.实验结束,选择合适洗涤剂将比色皿洗净、晾干;

17.将仪器复原,关闭电源.

附录2:ph计的使用规程

2 Procedures 步骤:

2.1 以旋转的方式把PH电极从保存液中拔出。

2.2 将PH电极用蒸馏水清洗后,将PH电极头浸入待测样品中(4cm)并搅拌30秒进行清洗。

2.3 将PH电极和温度探棒浸入待测样品约(4cm),并使样品处于均匀搅拌状态,按READ 鍵,启动测定过程,小数点会闪动。停几分钟让PH电极读数稳定。

2.4 将显示静止在终点数值上按READ鍵。

2.5 测量后,将电极用蒸馏水清洗,旋入保存液中。

2.6 启动一个新的测定过程,按READ鍵。

3 Note 注意:

3.1 测量时,温度探头要靠近PH电极。

3.2为避免电极受损,在关机前将PH电极从溶液中拿出。

3.3当仪器处于关机状态时,在电极浸入电极保存液之前,电极要与机器分开。

3.4 为减少阻塞确保反应速度,电极的薄膜玻璃和透析膜必须保持湿润不干燥且经常更换保护液。

3.5 不要用蒸馏水,去离子水,纯水长时间浸泡电极。

3.6 在将电极从一种溶液移入另一种溶液之前,用蒸馏水清洗电极。用纸巾将水吸干,切勿擦拭电极。

3.7 小心使用电极,切勿将之用作搅拌器。在拿放电极时,勿接触电极膜。

3.8 随时留意电极填充液是否干涸,请通知仪器分析技术员填充。将灌有正确填充液的电极竖直放置。

3.9 如果不使用A TC探测器,PH计则认为温度值为25℃

附录3:电子分析天平标准操作规程

1.使用操作:

1.1接通电源,打开电源开关和天平开关,预热至少30分钟以上。也可于上班时预热至下班前关断电源,使天平处于稳定的预热状态。

1.2参数选择:预热完毕后,轻轻按一下天平面控制上的开关键,天平即开启,并显示0.0000;按下开关键松手,直至出现Int-x-后立即松开,并立即轻轻按一下即可选择积分时间,选择积分时间,选择档为1、2、3、,一般选“2”档;选好后,再按住开关不松开直到出现Asd-x-后立即松开,并立即轻轻按动即可选择稳定度,选择档为1、2、off三档,一般选“2”档。以上两参数选好后,如无必要可不再改变,每次开启后即执行选定参数。

1.3天平自检:电子天平设有自检功能,进行自检时,天平显示“CAL……”稍待片刻,闪显“100”,此时应将天平自身配备的100g标准砝码轻推入,天平即开始自校,片刻后显示100.0000,继后显“0”,此时应将100g标准砝码拉回,片刻后天平显示00.0000;天平自检完毕,即可称量。

1.4放入被称物:将被称物预先放置使与天平室的温度一致(过冷、过热物品均不能放在天平内称量),必要时先用台式天平称出被称物大约重量。开启天平侧门,将被称物置于天平载物盘中央;放入被称物时应戴手套或用带橡皮套的镊子镊取,不应直接用手接触。并且必须轻拿轻放。

1.5读数:天平自动显示被测物质的重量,等稳定后(显示屏左侧亮点消失)即可读数并记录。

1.6关闭天平,进行使用登记。

材料分析方法课后答案(更新至第十章)

材料分析方法课后练习题参考答案 2015-1-4 BY:二专业の学渣 材料科学与工程学院

3.讨论下列各组概念的关系 答案之一 (1)同一物质的吸收谱和发射谱; 答:λk吸收〈λkβ发射〈λkα发射 (2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:λkβ发射(靶)〈λk吸收(滤波片)〈λkα发射(靶)。任何材料对X射线的吸收都有一个Kα线和Kβ线。如Ni 的吸收限为0.14869 nm。也就是说它对0.14869nm波长及稍短波长的X射线有强烈的吸收。而对比0.14869稍长的X射线吸收很小。Cu靶X射线:Kα=0.15418nm Kβ=0.13922nm。 (3)X射线管靶材的发射谱与被照射试样的吸收谱。 答:Z靶≤Z样品+1 或Z靶>>Z样品 X射线管靶材的发射谱稍大于被照射试样的吸收谱,或X射线管靶材的发射谱大大小于被照射试样的吸收谱。在进行衍射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底。 答案之二 1)同一物质的吸收谱和发射谱; 答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。

浅析空间自相关的内容及意义.

浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysisAbstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 引言空间

材料分析方法部分课后习题答案(供参考)

第一章X 射线物理学基础 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 答:立方晶系中三个边长度相等设为a,则晶面间距为d=a/ 则它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

测量系统分析方法82638

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 质管部负责测量系统分析的归口管理; 公司计量室负责每年对公司在用测量系统进行一次全面的分析; 各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 偏倚(Bias):指测量结果的观测平均值与基准值的差值。 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为。有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于有效分辨率,在99%置信水平时其标准估计值为GR&R。 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。 计量型与计数型测量系统:测量系统测量结果可用具体的连续的数值来表述,这样的测量系

抗药抗体免疫原性分析方法学验证指导原则(中文版)

抗药抗体免疫原性分析方法学验证指导原则 摘要: 几乎所有的生物制药产品都会引起一定的抗药抗体(anti-drug antibody,ADA)反应,抗药抗体反应可能会降低药物疗效或导致严重的不良反应。在人体内,抗药抗体通常不会引起明显的临床反应。但是对于某些治疗性蛋白质,抗药抗体反应能引起各种临床的不良反应,包括温和事件及严重不良事件。临床前研究表明,抗药抗体能对药物暴露、药物毒性作用、药物代谢动力学、药物效应动力学等造成影响。因此治疗性蛋白质的免疫原性引起了临床医生、药企及监管机构的注意。为了评估生物药物分子的免疫原性,以及将实验结果与临床事件联系起来,在临床前研究和临床研究中,很有必要开发可靠的能够有效评估抗药抗体反应的实验方法。这里方法学验证显得尤为重要,并且方法学验证是药物上市申请必不可少的。现行的监管文件对于免疫分析方法的验证的指导相当有限,特别是缺乏有关免疫原性分析方法的验证的指导。因此,本文对抗药抗体免疫分析方法的验证提供科学的建议。在现有的关于生物分析的规范性文件的基础上加入独特的性能验证。笔者建议采用实验和统计学的方法进行免疫分析的方法学验证。这些建议被视为最佳的例子,旨在促进整个医药行业形成一个更加统一的抗体检测方法。 1.简介: 生物制药产品包括氨基酸聚合物、碳水化合物或核酸,一般通过人细胞系、哺乳动物细胞或细菌进行表达,比常规的小分子药物更大(一般大于1~3KD)。由于以上特性,生物制药产品引起免疫反应的潜力更大。生物制药的免疫原性与产品的内在因素(种属特异性表位、外源性、糖基化程度、聚合或变性程度、杂质和制剂)、外在因素(给药途径、慢性或急性给药、药代动力学及内源性当量)、患者因素(自身免疫性疾病、免疫抑制、和替代疗法)相关。 抗药抗体反应可能会导致严重的临床症状,包括过敏、自身免疫和不同的药代动力学特征(例如,药物中和、生物分布异常和药物清除率增强等均可能会使

新版材料分析方法同步练习题

材料分析方法同步练习题 材料分析方法同步练习题 第一章 X 射线物理学基础 1、在原子序24(Cr)到74(W)之间选择7 种元素,根据它们的特征谱波长(Kα),用图解法验证莫塞莱定律。(答案略) 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少?答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10- 10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中 h为普郎克常数,其值等于6.626×10-34

e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071 纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴ 当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向 上各散射波符合相干条件,故称为相干散射。 ⑵ 当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现 象称为非相干散射。 ⑶ 一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光 子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷ 指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作 的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填 补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体, 这样一个K层空位被两个L层空位代替的过程称为俄歇效应。

材料分析方法答案

第一章 一、选择题 1.用来进行晶体结构分析的X射线学分支是() A.X射线透射学; B.X射线衍射学; C.X射线光谱学; D.其它 2. M层电子回迁到K层后,多余的能量放出的特征X射线称() A.Kα; B. Kβ; C. Kγ; D. Lα。 3. 当X射线发生装置是Cu靶,滤波片应选() A.Cu;B. Fe;C. Ni;D. Mo。 4. 当电子把所有能量都转换为X射线时,该X射线波长称() A.短波限λ0; B. 激发限λk; C. 吸收限; D. 特征X射线 5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题) A.光电子; B. 二次荧光; C. 俄歇电子; D. (A+C) 二、正误题 1. 随X射线管的电压升高,λ0和λk都随之减小。() 2. 激发限与吸收限是一回事,只是从不同角度看问题。() 3. 经滤波后的X射线是相对的单色光。() 4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。() 5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。() 三、填空题 1. 当X射线管电压超过临界电压就可以产生X射线和X射线。 2. X射线与物质相互作用可以产生、、、、 、、、。 3. 经过厚度为H的物质后,X射线的强度为。 4. X射线的本质既是也是,具有性。 5. 短波长的X射线称,常用于;长波长的X射线称 ,常用于。 习题 1.X射线学有几个分支?每个分支的研究对象是什么? 2.分析下列荧光辐射产生的可能性,为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射; (3)用CuKαX射线激发CuLα荧光辐射。 3.什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱

空间自相关--Morans'I

重庆各区县乡村人口所占比例的空间自相关分析 选题: 在ArcGIS中分别计算全局Moran’I 指数和局部Moran’I指数,分析重庆各区县乡村人口所占比例的空间关联程度。 实验目的: 根据重庆市各区县之间的邻接关系,采用二进制邻近权重矩阵,选取各区县2008年的重庆各区县的总人口及乡村人口,计算出重庆各区县乡村人口所占的比例,在ArcGIS里面分别计算全局Moran’I 指数和局部Moran’I指数,分析空间关联程度。 实验数据: 1.重庆统计年鉴中2008年重庆市各区县的总人口及乡村人口数量(excel表格) 2.重庆市各区县的矢量图(shp.文件) 软件: ArcGIS10.2 操作过程与结果分析: 第一步:导入Excel数据文件和重庆市各区县的矢量图,并建立关联 1. Catalog——Folder Connections,在对应的文件夹下打开重庆市各区县城镇化率的EXCEL表格及重庆市各区县shp文件

为关联字段,将两个文件关联起来

3.右键单击关联后的重庆区县界shp.文件,导出为Export_Output文件,新文件的属性表如下: 第二步:计算全局Morans I 1.打开ArcToolbox,选择Spatial Statistics Tools——Analying Patterns——Spatial Autocorrelation(Morans I)选择二进制邻接矩阵方法来确定空间权重矩阵(即当区域i和具有公共边或公共点时,两区域的距离矩阵设为1,若不相邻接,其距离矩阵设为0),选择欧式距离作为计算距离的方法,对数据进行标准化处理后计算全局Moran’I指数度量空间自相关

分析MSA测量系统的方法

第一章通用测量系统指南 MSA目的: 。 选择各种方法来评定测量系统的质量 ......... 受控:量具、仪器、检测人员、程序、软件 活动:测量、分析、校正 适用范围: 用于对每一零件能重复读数的测量系统。 测量和测量过程: 1)赋值给具体事物以表示它们之间关于特殊特性的关系; 2)赋值过程定义为测量过程; 3)赋予的值定义为测量值; 4)测量过程看成一个制造过程,它产生数字(数据)作为输出。 量具: 任何用来获得测量结果的装置;经常用来特指在车间的装置;包括用来测量合格/不合格的装置。

测量系统: 用来对被测特性赋值的操作、程序、量具、设备、软件、以及操作人员的集合;用来获得测量结果的整个过程。 测量变差: ●多次测量结果变异程度; ●常用σm表示; ●也可用测量过程过程变差R&R表示。 注: a.测量过程(数据)服从正态分布; b.R&R=5.15σm 测量系统质量特性: ●测量成本; ●测量的容易程度; ●最重要的是测量系统的统计特性。 常用统计特性: ●重复性(针对同一人,反映量具本身情况) ●再现性(针对不同人,反映测量方法情况) ●稳定性 ●线性(针对不同尺寸的研究)

注:对不同的测量系统可能需要有不同的统计特性(相对于顾客的要求)。 测量系统对其统计特性的基本要求: ●测量系统必须处于统计控制中; ●测量系统的变异必须比制造过程的变异小; ●变异应小于公差带; ●测量精度应高于过程变异和公差带两者中精度较高者(十分之一); ●测量系统统计特性随被测项目的改变而变化时,其最大的变差应小于过程 变差和公差带中的较小者。 评价测量系统的三个问题: ●有足够的分辨力;(根据产品特性的需要) ●一定时间内统计上保持一致(稳定性); ●在预期范围(被测项目)内一致可用于过程分析或过程控制。(线性) 评价测量系统的试验: ●确定该测量系统是否具有满足要求的统计特性; ●发现哪种环境因素对测量系统有显著的影响; ●验证统计特性持续满足要求(R&R)。 程序文件要求:

(完整版)分析方法开发与验证

分析方法开发与验证在不同行业有不同的要求,医药化学行业对于质量的控制非常严格,高效液相分析是控制产品质量的重要手段,其开发与验证对其它行业有很好的借鉴意义。一、分析方法开发 分析方法的开发主要包括色谱柱的选择、流动相的选择、检测波长的选择和梯度的优化几个方面。目前高效液相多做反相使用,所以本文主要以反相为例进行讲解。 1.色谱柱的选择 原料药生产对产品的纯度和杂质含量的要求非常苛刻,要求检测使用的色谱柱有较高的理论塔板数,能提供更好的分离度,从而对可能存在的杂质有更大的分离的可能性,所以5um 填料的色谱柱长要250mm,3.5um填料的柱长要150mm,基本上都是各个粒径柱长最长的。我比较喜欢近两年新出的亚二微米填料的色谱柱,50mm柱长就能提供很高的理论塔板数,而且柱长和粒径小了,流速增加很多,能节省很多的分析时间,极大的提高工作效率。一般选用直径为4.6mm或3.0mm的柱子,太细了可能会增大柱外效应。填料的孔径对于小分子合成药物不需要考虑,普通的分析柱都在100A左右,能满足分析检测的需要。 对于API分析方法开发,一般要求必须做色谱柱的筛选实验,最少使用三种不同类型的色谱柱,每种类型三只,要来自于不同厂家。 三种类型包括: 1)普通的C18或相应的C8色谱柱,如Waters的Symmetry C18或C8,YMC的Pack Pro C18或C8,Agilent的RX C8等,其它公司如菲罗门和热电也有相应的色谱柱; 2)封端处理的或者极性嵌入型色谱柱,如Waters的Symmetry Shield RP18或RP8,XTerra RP18或RP8,YMC的ODS AQ,Agilent的Zorbax SB AQ等,其它公司如菲罗门和热电也有相应的色谱柱; 3)填料用其它官能团修饰过的色谱柱,如苯基柱等,很多公司都有。 一般不同类型的色谱柱在选择性上会有很大的差异,相同类型的色谱柱生产厂家不同在选择性上也会有差异,这个主要是填料的性质和生产工艺决定的,有时候用一只色谱柱分离不好,除了优化梯度和流动相外,换一个厂家的柱子也是一个很好的选择。相同品牌型号的色谱柱,C18和C8在选择性上没有差异,但是C18保留能力更强,相同的样品分离度更高,我们一般倾向于选择用C18。我们在筛选色谱柱时尽量选择行业内排名前几位的厂家,柱子品质好,开发分析方法时能省很多力气,做出来的分析方法也有保证。一个药从开发到上市可能会持续十几年甚至更长时间,厂家有实力,开发方法时选定的柱子在若干年以后需要时还会有的

材料分析方法课后习题答案

第十四章 1、波谱仪和能谱仪各有什么优缺点? 优点:1)能谱仪探测X射线的效率高。 2)在同一时间对分析点内所有元素X射线光子的能量进行测定和计数,在几分钟内可得到定性分析结果,而波谱仪只能逐个测量每种元素特征波长。 3)结构简单,稳定性和重现性都很好 4)不必聚焦,对样品表面无特殊要求,适于粗糙表面分析。 缺点:1)分辨率低。 2)能谱仪只能分析原子序数大于11的元素;而波谱仪可测定原子序数从4到92间的所有元素。 3)能谱仪的Si(Li)探头必须保持在低温态,因此必须时时用液氮冷却。 分析钢中碳化物成分可用能谱仪;分析基体中碳含量可用波谱仪。 2、举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。 答:(1)、定点分析:将电子束固定在要分析的微区上用波谱仪分析时,改变分光晶体和探测器的位置,即可得到分析点的X射线谱线;用能谱仪分析时,几分钟内即可直接从荧光屏(或计算机)上得到微区内全部元素的谱线。 (2)、线分析:将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置把电子束沿着指定的方向作直线轨迹扫描,便可得到这一元素沿直线的浓度分布情况。改变位置可得到另一元素的浓度分布情况。 (3)、面分析:电子束在样品表面作光栅扫描,将谱仪(波、能)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置,此时,在荧光屏上得到该元素的面分布图像。改变位置可得到另一元素的浓度分布情况。也是用X射线调制图像的方法。

3、要在观察断口形貌的同时,分析断口上粒状夹杂物的化学成分,选用什么仪器?用怎样的操作方式进行具体分析? 答:(1)若观察断口形貌,用扫描电子显微镜来观察:而要分析夹杂物的化学成分,得选用能谱仪来分析其化学成分。 (2)A 、用扫描电镜的断口分析观察其断口形貌: a 、沿晶断口分析:靠近二次电子检测器的断裂面亮度大,背面则暗,故短裤呈冰糖块状或呈石块状。沿晶断口属于脆性断裂,断口上午塑性变形迹象。 b 、韧窝断口分析:韧窝的边缘类似尖棱,故亮度较大,韧窝底部比较平坦,图像亮度较低。韧窝断口是一种韧性断裂断口,无论是从试样的宏观变形行为上,还是从断口的微观区域上都能看出明显的塑性变形。韧窝断口是穿晶韧性断口。 c 、解理断口分析:由于相邻晶粒的位相不一样,因此解理断裂纹从一个晶粒扩展到相邻晶粒内部时,在晶界处开始形成河流花样即解理台阶。解理断裂是脆性断裂,是沿着某特定的晶体学晶面产生的穿晶断裂。 d 、纤维增强复合材料断口分析:断口上有很多纤维拔出。由于纤维断裂的位置不都是在基体主裂纹平面上,一些纤维与基体脱粘后断裂位置在基体中,所以断口山更大量露出的拔出纤维,同时还可看到纤维拔出后留下的孔洞。 B 、用能谱仪定性分析方法进行其化学成分的分析。定点分析: 对样品选定区进行定性分析.线分析: 测定某特定元素的直线分布. 面分析: 测定某特定元素的面分布 a 、定点分析方法:电子束照射分析区,波谱仪分析时,改变分光晶体和探测器位置. 或用能谱仪,获取 、E —I 谱线,根据谱线中各峰对应的特征波长值或特征能量值, 确定照射区的元素组成; b 、线分析方法:将谱仪固定在要测元素的特征X 射线 波长值或特征能量值,使电I --λ

测量系统分析(MSA)

测量系统分析(MSA) 1目的和围 规测量系统分析,明确实施方法、步骤及对数据的处理、分析。 2规性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 3.2稳定性:是测量系统在某持续时间测量同一基准或零件的单一特性时获得的测量值总变差。 稳定性是整个时间的偏倚的变化。 3.3分辨率:为测量仪器能够读取的最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* 1.41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总的标准差 3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。%偏倚=偏倚的平均绝对值/TV。 3.5.3线性:在测量设备预期的工作量程,偏倚值的差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据的波动。测量系统分析的重点,包括:重复性和再现性 3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。再现性又被称为“评价人之间”的波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性 σ/ (USL-LSL) *100%。 公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

小学教育知识与能力 第三章 练习题(单选、简答、材料分析)

高频考点练习题 一、单项选择题 1.学校行政体系中最基层的正式组织是()。 A.教导处 B.班级 C.学生会 D.共青团组织 2.()对班级组织进行了论证,从而奠定了班级组织的理论基础。A.夸美纽斯的《大教学论》 B.赞可夫的《教学与发展》 C.赫尔巴特的《普通教育学》 D.杜威的《民主主义与教育》 3.中国采用班级组织形式最早的雏形始于()。 A.癸卯学制 B.壬寅学制 C.京师同文馆 D.壬戌学制 4.()是班集体发展的方向和动力,是班集体形成的基础条件。A.共同目标 B.一定的组织结构 C.共同生活的准则 D.平等、心理相容的氛围 5.在班集体的组建阶段,主要任务是()。 A.组织和团结集体

B.建设学生干部队伍 C.提出共同目标 D.形成正确的集体舆论 6.老师与学生、学生与学生之间有一定的了解和信任,班级的组织比较健全时,班集体发展处于()阶段。 A.成熟 B.组建 C.核心形成 D.自主活动 7.班集体成为教育主体是在班集体的()阶段。 A.组建 B.形核 C.发展 D.成熟 8.()是班级管理活动的开始,也是班级管理工作的总的行动指导方案。 A.班级管理目标 B.班级管理计划 C.班级管理的原则 D.班级管理模式 9.()是指班主任指导或直接组织的晨会、班会、队会等各种班级教育活动。A.班级组织建设 B.班级日常管理 C.班级活动管理 D.班级教育力量管理 10.通过制定和执行规章制度去管理班级的经常性活动是()模式。

A.班级常规管理 B.班级民主管理 C.班级目标管理 D.班级平行管理 11.班主任既通过对集体的管理去间接影响个人,又通过对个人的直接管理去影响集体,从而把对集体和个人的管理结合起来的管理方式称为()。 A.班级常规管理 B.班级平行管理 C.班级民主管理 D.班级目标管理 12.班级平行管理的理论源于()的“平行影响”教育思想。 A.马卡连柯 B.乌申斯基 C.苏霍姆林斯基 D.加里宁 13.班主任与学生共同确立班级总体目标,然后转化为小组目标和个人目标,使其与班级总体目标融为一体,形成目标体系,以此推动班级管理活动、实现班级目标的管理方法属于()。 A.班级平行管理 B.班级常规管理 C.班级民主管理 D.班级目标管理 14.班级教育管理者了解班级学生和班级整体情况,把握班级特点,解决班级教育管理问题的方法是()。 A.调查研究法 B.目标管理法

空间自相关统计量(20201209125239)

空间自相关的测度指标 1全局空间自相关 全局空间自相关是对属性值在整个区域的空间特征的描述。表示全局空间自相关的指标和方法很多,主要有全局Moran' si、全局Geary' sC和全局Getis-OrdG[3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。 全局Moran' si 全局Moran指数i的计算公式为: 其中,n为样本量,即空间位置的个数。X i、x j是空间位置i和j的观察值,Wj表示空间位置i和j的邻近关系,当i和j为邻近的空间位置时,wij =1 ;反之,Wj =0o全局Moran指数i的取值范围为[-1,1]。 对于Moran指数,可以用标准化统计量Z来检验n个区域是否存在空间自相关关系,Z 的计算 公式为: n I E(l) W j(d)(X j X i) Z -------------- _i j i 'VAR( I) = S Jwi (n~1 ~W i) /(n~2) >f E(I i)和VAR(h)是其理论期望和理论方差。数学期望EI=-1/(n-1) o 当Z值为正且显着时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空 间集聚;当Z值为负且显着时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。 全局Geary' sC 全局Geary' sC测量空间自相关的方法与全局Moran' sI相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Moran' sI的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary' sC比较的是邻近空间位置的观察值之差,由于并不关心xi是否大于xj,只 关心xi和xj之间差异的程度,因此对其取平方值。全局Geary' sC的取值范围为[0,2],数学期望恒为1。当全局Geary' sC的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary' sC的观察值>1时,存在负空间自相关;全局Geary' sC的观察值=1时,无空间自相关。其假设检验的方法同全局Moran' sI。值得注意的是,全局Geary' sC的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary' sC的

空间分布模式与空间相关分析

实习序号和题目空间分布模式与空间相关分析 实习人专业及编号 实习目的: 熟悉和掌握 Spatial Statistics Tools里的基本工具,对所给数据进行空间分析。 实习内容: 1.参考文献《多尺度人口增长的空间统计分析》,练习多距离 L(d) 、全局 Moran’ I 与 G*统计量分析,显著性检验的置信区间定义为90%; 2.对 adabg00 数据进行全局与局部的 moran I 与 G统计量分析; 3. 对 deer 数据进行基于距离的最近邻分析与L(d) 分析; 实习数据: 1.省区 .shp :中国各省分布图 2.各省第 5 次和第 6 次人口普查:各省人口普查数据 deer.shp :鹿场点分布图 3.adabg00.shp: 爱达荷州阿达各街区2000 年人口普查数据 基本原理: 空间分布的模式一般来说,有三种,分别是离散、随机、和聚合。离散的概 念就是指观测的每个数据之间的差异程度,离散程度越大,差异性就越大。聚合与离散正好相反,表示在一定区域内的相关程度,就是聚合程度越大,相关性就越大。随机是纯粹的无模式,既不能从随机数据中获取结论,也发现不了规律和模式。 1.零假设( null hypothesis ):指进行统计检验时预先建立的假设。在空间统计中,零假设指的就是空间位置在一定区域里面呈现完全随机(均匀)分布。在检 验结果之前,先对这些结果假设一个数值区间,这个区间一般是符合某种概率分布的情况,如果真实结果偏离了设定的区间,就表示发生了小概率事件。这样原来 的假设就不成立了。

如果计算结果落在-2 到2 之间,就表示假设是可以接受,但是不在这个范围内, 就说明发生小概率事件了。有两种可能: 1,假设有错误; 2,出现了异常值。 2.z 得分( Z scores )表示标准差的倍数 标准差:总体各单位标准值与其平均数离差平方的算术平均数的平方根” 也就是“标准差能反映一个数据集的离散程度” 。比如z 得分是+2.5 ,得到的结果是标准差的正 2.5 倍,表示数据已经高度聚集。反之,如果是 -2.5, 那么就表示标准差的负 2.5 倍,就是高度离散的数据。 置信度:数据落在期望区间的可能性 在统计学中,一个概率样本的置信区间( Confidence interval )是对这个样本的某 个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量 结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度。这个概率 被称为置信水平。置信水平是指总体参数值落在样本统计值某一区内的概率;而置 信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 3.在空间统计分析中,通过相关分析可以检测两种现象(统计量)的变化是否 存在相关性,若所分析的统计量为不同观察对象的同一属性变量,则称之为自相关。而空间自相关反映的是一个区域单元上的某种地理现象或某一属性值与邻近 区域单元上同一现象或属性值的相关程度,是一种检测与量化从多个标定点中取 样值变异的空间依赖性的空间统计方法。当变量在空间上表现出一定的规律性,即 不是随机分布则存在着空间自相关,空间自相关理论认为彼此之间距离越近的事 物越相像。也就是说,空间自相关是针对同一个属性变量而言的。 4.空间自相关方法按功能大致分为两类:全域型自相关和区域型自相关。全域型自相关的功能在于描述某现象的整体分布状况,判断此现象在空间是否有聚集特性 存在,但其并不能确切得指出聚集在哪些地区,若将全域型不同空间间隔的空间自 相关统计量依序排列,可进一步得到空间自相关系数图,用于分析该现象在空间 上是否有阶层性分布。区域型自相关能够推算出聚集地的范围。 5.最近邻分析 是根据每个要素与其最近邻要素之间的平均距离计算其最近邻指数。最近邻指数 是平均观测距离和平均期望距离之比。如果小于1,则要素呈现空间聚集式;如果 大于1,则要素呈现空间离散模式或竞争模式。最近邻分析并没有考虑到属性特征,只是根据空间位置。 6.Moran ’s I法 高的自相关性代表了空间现象聚集性的存在,空间自相关分析的主要功能在于同时 可以处理数据的区位和属性。全域型 Moran ’s I 计算方式是基于统计学相关系数的协方差关系推算出来的。 I 值一定介于 -1 到 1 之间,大于 0 为正相关,且值越大表 示空间分布的相关性越大,即空间上聚集分布的现象越明显,反之, 值越小代表空间分布相关性小,而当值趋于 0 时,代表此时空间分布呈现随机分布 的情形。若 I 值大于 0 ,说明相邻地区拥有相似的数据属性,属性值高或低的地区都有聚集现象;若 I 小于 0 ,说明相邻地区属性差异大,数据空间分布呈现高地间隔分布的状态;若 I 趋近于 0 ,则相邻空间单元间相关低,某空间现象的高值或低值呈无规律的随机分布状态。若 I 值显著大于 I 的期望值(I值为正值且显著),说明两 点存在相似关系,若 I 值显著小于 I 的期望值(I 值为负值且显著),说明两点存在不相似关系。区域空间自相关值累加之和即全域空间自相关 Moran ’s I 值。

材料分析方法课后答案更新至第十章

第一章 X 射线物理学基础 3.讨论下列各组概念的关系 答案之一 (1)同一物质的吸收谱和发射谱; 答:λk 吸收 〈λk β发射〈λk α发射 (2)X 射线管靶 材的发射 谱与其配 用的滤波 片的吸收谱。 答:λk β发射(靶)〈λk 吸收(滤波片)〈λk α发射(靶)。任何材料对X 射线的吸收都有一个K α线和K β线。如 Ni 的吸收限为0.14869 nm 。也就是说它对0.14869nm 波长及稍短波长的X 射线有强烈的吸收。而对比0.14869稍长的X 射线吸收很小。Cu 靶X 射线:K α=0.15418nm K β=0.13922nm 。 (3)X 射线管靶材的发射谱与被照射试样的吸收谱。 答:Z 靶≤Z 样品+1 或 Z 靶>>Z 样品 X 射线管靶材的发射谱稍大于被照射试样的吸收谱,或X 射线管靶材的发射谱大大小 于被照射 试样的吸 收谱。在进行衍材料分析方法 综合教育类 2015-1-4 BY :二专业の学渣 材料科学与工程学院

射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底。 答案之二 1)同一物质的吸收谱和发射谱; 答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中 h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。 生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布 2)均匀分布:个体间保持一定的距离,每一个点尽量地远离其周围的邻近点。在单位(样方)

相关主题
文本预览
相关文档 最新文档