当前位置:文档之家› 3.4牛顿运动定律的应用(二)

3.4牛顿运动定律的应用(二)

3.4牛顿运动定律的应用(二)
3.4牛顿运动定律的应用(二)

3.4牛顿运动定律的应用(二)

知识简析

一、简单连接体问题的处理方法

在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程.隔离法和整体法是互相依存、互相补充的.两种方法互相配合交替应用,常能更有效地解决有关连接体的问题.

【例1】一质量为M,倾角为θ的楔形木块,放在水平桌面上,与桌面间的动摩擦因数为μ,一物块质量为m,置于楔形木块的斜面上,物块与斜面的接触是光滑的.为了保持物块相对

斜面静止,可用一水平力F推楔形木块,如图所示,求此水

平力大小的表达式.

解析:把楔形木块和放在其上相对静止的物块看成一个整

体.它只受到四个力作用:重力(m+M)g,竖直向下;桌面

对它的支持力N,竖直向上;水平向左的推力F;桌面对它的摩擦力f,水平向右.由牛顿定律和摩擦定律可得

F-f=(m+M)a, N-(m+M)g=0,f=μN

联立解得 F=μ(m+M)g+(m+M)a…………①

再隔离m,根据其特殊要求(与M相对静止,a相同)和受力情况确定m的加速度也就是整体的a.

小物块m的受力情况如图.小物块相对地面是沿水平向左运动,故有

Nsinθ=ma, Ncosθ= mg 解得a=gtgθ代入①式得水平推力 F=μ(m+M)g+(m+M)gtgθ.

说明:(l)物体间相对静止指的是物体间的相对速度和相对加速度均为零的状态.(2)系统内各物体的加速度相同,是整体法与隔离法的联接点.

二、注意事项:

1、用隔离法解连接体问题时,容易产生如下错误:

(l)例如F推M及m一起前进(如图),隔离m分析其受力时,认为F通过物体M作用到m上,这是错误的.

(2)用水平力F通过质量为m的弹簧

秤拉物体M在光滑水平面上加速运动时

(如图所示.不考虑弹簧秤的重力),往

往会认为弹簧秤对物块M的拉力也一定等于F.实际上此时弹簧秤拉物体M的力F/=F—

ma ,显然F /<F .只有在弹簧秤质量可不计时,才可认为F /=F .

2.当系统内各个物体的加速度相同时,则可把系统作为一个整体来研究.但

这并不是使用整体法的必要条件,有些问题中系统内物体的加速度不同,也

可用整体法来研究处理。如图中物块m 沿斜面体M 以加速度a 下滑,斜面体

不动.欲求地面对斜面体的静摩擦力f 时,就可把此系统(m 和M )作为整

体处理,由牛顿第二定律得f =macos θ+M ×0=macos θ.式中acos θ为物块加速度的水平分量.

三、应用牛顿运动定律解题的特殊方法

1.用极端分析法分析临界条件

若题目中出现“最大”、“最小”、“刚好”等词语时,一般都有临界现象出现,分析时,可用极端分析法,即把问题(物理过程)推到极端(界),分析在极端情况下可能出现的状态和满足的条件,应用规律列出在极端情况下的方程,从而暴露出临界条件.

2.用假设法分析物体受力

在分析某些物理过程时,常常出现似乎是这又似乎是那的多种可能性,难以直观地判断出来.此时可用假设法去分析.

方法I :假定此力不存在,根据物体的受力情况分析物体将发生怎样的运动,然后再确定此力应在什么方向,物体才会产生题目给定的运动状态.

方法Ⅱ:假定此力存在,并假定沿某一方向,用运动规律进行分析运算,若算得结果是正值,说明此力确实存在并与假定方向相同;若算得的结果是负值,说明此力也确实存在,但与假定的方向相反;若算得的结果是零,说明此力不存在.

【例2】如图,一个质量为0.2 kg 的小球用细绳吊在倾角θ=530的斜面顶端,斜面静止时球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m /s 2的加速度向右运动时,求绳子的拉力及斜面对小球的弹力.

解析:把加速度a 推到两个极端来分析:当a 较小(a=0)时,小球

受到重力、绳的拉力、斜面的支持力的作用,此时,绳平行于斜面;

当a 足够大时,小球将“飞离”斜面,此时绳与水平方向的夹角未知,

那么a=10m /s 2向右时,究竟是上述两种情况中的哪能一种呢?必须

先求出小球离开斜面的临界值a 0,然后才能确定.

设小球处在刚离开斜面或刚不离开斜面的临界状态(N 刚好为零)时斜面向右的加速度为a 0,此时对小球由牛顿第二定律得

Tcos θ=ma 0………① Tsin θ-mg=0………②

由①②式解得a 0=gCtg θ=7.5m /s 2.

由于斜面的加速度a =10m /s 2>a 0,可知小球已离开斜面.则 T=()()22ma mg +=2.83 N , N =0.

说明:若斜面体向左加速运动,小球及绳将可能处于何种状态?斜面体对地面的压力在向右加速和向左加速时比(M +m )g 大还是小?

【例3】如图,车厢中有一倾角为300的斜面,当火车以10m /s 2的加速度沿水平方向向左运

动时,斜面上的物体m 与车厢相对静止,分析物体m 所受摩擦力的方向.

解析:方法一:m 受三个力作用,重力mg 、弹力 N 、静摩擦力f . f 的方向难以确定.我们先假设这个力不存在,那么如图,mg 与N 只能在水平方向产生mg tg θ的合力,此合力只

能产生gtg300=3

3g 的加速度,小于题目给定的加速度,故斜面对m 的静摩擦力沿斜面向下.

方法二:假定m 所受的静摩擦力沿斜面向上.将加速度a 正交分解,

沿斜面方向根据牛顿定律有mgsin300一f=macos300

解得f =5(1一3)m ,为负值,说明f 的方向与假定的方向相反,应是沿斜面向下. 说明:极端分析法、特值分析法、临界分析法、假设法等都是解答物理题时常用到的思维方法.望同学们结合平时的解题训练,认真地体会各种方法的实质、特点,总结每种方法的适用情境.

规律方法

1、连接体的求解方法

【例4】如图所示,A,B 并排紧贴着放在光滑的水平面上,用水平力F 1 ,F 2同时推A 和B.如F 1=10N ,F 2=6N ,m A <m B ,则A,B 间的压力可能为( )

A. 9 N ;

B. 9.5 N ;

C. 11 N ;

D. 7 N ;

解:设A,B 间的压力为N ,对A,B 分别应用牛顿第二定律得

F 1一N= m A a ………①

N 一F 2=m B a ………② 由①②式得N=8+())

(2A B A B m m m m +- 物体的质量只能大于零,即m A >0,m B >0,由此可知()

1()B A B A m m m m -?+.

由③式可推出N>8 'N.综上分析得8 N

【例5】如图所示,等臂天平左端挂一质量不计的光滑定滑轮,跨过滑轮的轻绳,两端各拴一物体A 和B.已知物体B 的质量m B =3kg ,欲使天平平衡,物体C 的质量可能为()

A. 3 kg ;

B. 9 kg ;

C. 12 kg ;

D. 15 kg

解:设绳的拉力为T,对物体A,B,分别由牛顿第二定律有

m B g 一T=m B a ,①

T -m A g=m A a .② 由①②式得g m m m m T A B B A +=2;对物体C,由平衡条件有g m m m m T g m A

B B A

C +==42 当m A →O 时,有m C =0

当m A →∞时,有m C =4m B =12 kg

得0

“利用区间解选择题”,对有些物理选择题,若能够相应的物理规律,确定出所求物理量的取值范 反复推论便可迅速求解,这是一种重复的解题方法:

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律的应用

牛顿运动定律的应用 一、矢量性 1. 如图所示,装有架子的小车,用细线拖着小球在水平地面上运动,已 知运动中,细线偏离竖直方向θ=30°,则小车在做什么运动?求出小球 的加速度。 2.如图所示,质量为m=4kg的物体静止在水平地面上,与水平地面间的动摩擦因数μ=0.5,在外力F=20N的作用下开始运动,已知力F与水平方向夹 角θ=37°,(sin37°=0.6,cos37°=0.8,g=10m/s2)。求物 体运动的加速度。 3.如图所示,在倾角为37°的固定斜面上静置一个质量为5 kg的物体,物体与斜面间的动摩擦因数为0.2. 求:(sin37°=0.6,cos37°=0.8,g=10m/s2)。 (1)物体所受的摩擦力;(2)物体沿斜面下滑过程中的加速度。 二、独立性 4.力F 1单独作用在物体A上时产生加速度a 1 大小为5m/s 2 。力F 2 单独作用在物 体A上时产生加速度a 2大小为2m/s2。那么F 1 和F 2 同时作用在物体A上时产生 的加速度为 A.5m/s2B.2m/s2 C.8m/s2D.6m/s2 三、瞬时性 5.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度为a′,则 A.a′=aB.a′<2a C.a′>2a D.a′=2a 6.如图所示,位于光滑固定斜面上的小物块P受到一水平向右 的推力F的作用.已知物块P沿斜面加速下滑.现保持F的方向 不变,使其减小,则加速度 A.一定变小B.一定变大

C.一定不变D .可能变小,可能变大,也可能不变 7. 一重球从高h 处下落,如图所示,到A 点时接触弹簧,压缩弹簧至最低点位置B 。那么重球从A至B 的运动过程中: A 、速度一直减小 B 、速度先增加后减小 C、在B处加速度可能为零 D 、加速度方向先竖直向下再竖直向上 8. (1)如图(A)所示,一质量为m 的物体系于长度 分别为1L ,2L 的两根细线上,1L 的一端悬挂在天花板上,与竖直方向夹角为θ,2L 水平拉直,物体处于平衡状态。现将2L 线剪断,求剪断瞬时物体的加速度。 9. 如图所示,木块A 、B用一轻弹簧相连,竖直放在木块C 上,C 静置于地 面上,它们的质量之比是1:2:3,设所有接触面都光滑。当沿水平方向迅速抽出木块C 的瞬间,A 、B 的加速度分别是A a ,B a 各多大? 四、同体性 10.一人在井下站在吊台上,用如图所示的定滑轮装置拉绳把吊台和自己提升上来.图中跨过滑轮的两段绳都认为是竖直的且不计摩擦.吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m /s 2,求这时人对吊台的压力.(g=9.8m/s 2) 五、两类问题 11.如图,一个人用与水平方向成?37的力F =20N 推一个静止在水平面上质量为2kg 的物体,物体和地面间的动摩擦因数为0.25。(6.037sin =?)求 (1)物体的加速度多大。 (2)3s 末物体的位移多大。 (3)5S 后撤去F物体还能运动多远。

牛顿运动定律的应用2

牛顿第二定律(2) 应用牛顿第二定律解题的一般步骤: (1)确定研究对象(在有多个物体存在的复杂问题中,确定研究对象尤其显得重要)。 (2)分析研究对象的受力情况,画出受力图。 (3)选定正方向或建立直角坐标系。通常选加速度的方向为正方向,或将加速度的方向作为某一坐标轴的正方向。这样与正方向相同的力(或速度)取正值;与正方向相反的力(或速度)取负值。 (4)求合力(可用作图法,计算法或正交分解法)。 (5)根据牛顿第二定律列方程。 (6)必要时进行检验或讨论。 1.质量为2kg 的物体放在水平地面上,与水平地面的动摩擦因数为0.2,现对物体作用一向右与水平方向成37°,大小为10N 的拉力F ,使之向右做匀加速运动,求物体运动的加速度? 2.如图所示,装有架子的小车,用细线拖着小球在水 平地面上运动,已知运动中,细线偏离竖直方向30°, 则小车在做什么运动? 4.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作( ) A .匀减速运动。 B .匀加速运动。 C .速度逐渐减小的变加速运动。 D .速度逐渐增大的变加速运动。 5.一个力作用于质量为m 1的物体A 时,加速度为a 1;这个力作用于质量为m 2的物体时,加速度为a 2,如果这个力作用于质量为m 1+m 2的物体C 时,得到的加速度为( ) A . 221a a + B .2111m m a m + C .2122m m a m + D .2 121a a a a + 作业: 1.当作用在物体上的合外力不等于零时,则 ( ) A .物体的速度一定越来越大 B .物体的速度一定越来越小

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

专题 牛顿运动定律的综合应用

专题1牛顿运动定律的综合应用 动力学中的图象问题 1.常见的动力学图象及问题类型 2.解题策略——数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与规律”间的关系;然后根据函数关系读取图象信息或描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标轴包围的“面积”等所表示的物理意义,尽可能多地提取有效信息。 考向动力学中的v-t图象 【例1】(多选)(2015·全国Ⅰ卷,20)如图1甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() 图1 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析由v-t图象可求物块沿斜面向上滑行时的加速度大小为a=v0 t1 ,根据牛顿

第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1。同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1 cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知, 向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为s =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高 度为s sin θ=v 02t 1×v 0+v 12gt 1 =v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误。 答案 ACD 考向 动力学中的F -t 图象 【例2】 (多选)(2019·全国Ⅲ卷,20)如图2(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2。由题给数据可以得出( ) 图2 A.木板的质量为1 kg B.2 s ~4 s 内,力F 的大小为0.4 N C.0~2 s 内,力F 的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

高中物理牛顿运动定律的应用模拟试题含解析

高中物理牛顿运动定律的应用模拟试题含解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.某智能分拣装置如图所示,A为包裹箱,BC为传送带.传送带保持静止,包裹P 以初速度v0滑上传送带,当P滑至传送带底端时,该包裹经系统扫描检测,发现不应由A收纳,则被拦停在B处,且系统启动传送带轮转动,将包裹送回C处.已知v0=3m/s,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37o,传送带BC长度L=10m,重力加速度g=10m/s2,sin37o=0.6,cos37o=0.8,求: (1)包裹P沿传送带下滑过程中的加速度大小和方向; (2)包裹P到达B时的速度大小; (3)若传送带匀速转动速度v=2m/s,包裹P经多长时间从B处由静止被送回到C处;(4)若传送带从静止开始以加速度a加速转动,请写出包裹P送回C处的速度v c与a的关系式,并画出v c2-a图象. 【答案】(1)0.4m/s2 方向:沿传送带向上(2)1m/s(3)7.5s (4) 2 2 2 200.4/ 80.4/ c a a m s v a m s ?< =? ≥ ? () () 如图所示: 【解析】 【分析】 先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a进行讨论分析得到v c2-a的关系,从而画出图像。 【详解】

(1)包裹下滑时根据牛顿第二定律有:1sin cos mg mg ma θμθ-= 代入数据得:2 10.4/a m s =-,方向:沿传送带向上; (2)包裹P 沿传送带由B 到C 过程中根据速度与位移关系可知:220 L=2v v a - 代入数据得:1/v m s =; (3)包裹P 向上匀加速运动根据牛顿第二定律有:2cos sin mg mg ma μθθ-= 得2 20.4/a m s = 当包裹P 的速度达到传送带的速度所用时间为:12250.4 v t s s a = == 速度从零增加到等于传送带速度时通过的位移有:2245220.4 v x m m a = ==? 因为x

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律的综合应用试题整理

考点11 牛顿运动定律的综合应用考点名片 考点细研究:本考点是物理教材的基础,也是历年高考必考的内容之一,其主要包括的考点有:(1)超重、失重;(2)连接体问题;(3)牛顿运动定律的综合应用、滑块滑板模型、传送带模型等。其中考查到的如:2015年全国卷Ⅰ第25题、2015年全国卷Ⅱ第25题、2015年海南高考第9题、2014年北京高考第8题、2014年四川高考第7题、2014年大纲卷第19题、2014年江苏高考第5题、2014年福建高考第15题、2013年浙江高考第17题和第19题、2013年广东高考第19题、2013年山东高考第15题等。 备考正能量:牛顿运动定律是历年高考的主干知识;它不仅是独立的知识点,更是解决力、电动力学综合问题的核心规律。可单独命题(选择题、实验题),也可综合命题(解答题)。高考对本考点的考查以对概念和规律的理解及应用为主,试题难度中等或中等偏上。 一、基础与经典 1.小明家住十层,他乘电梯从一层直达十层。则下列说法正确的是( ) A.他始终处于超重状态 B.他始终处于失重状态 C.他先后处于超重、平衡、失重状态 D.他先后处于失重、平衡、超重状态 答案 C 解析小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,运动过程中加速度方向最初向上,中间为零,最后加速度方向向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C正确。

2.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( ) 答案 A 解析放上小木块后,长木板受到小木块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小木块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于木板刚开始运动时的加速度,故A正确,也可能物块与长木板间动摩擦因数较小,达到共同速度后物块相对木板向右运动,给木板向右的摩擦力,但木板的加速度也小于刚开始运动的加速度,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误。 3.如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则( )

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

【物理】物理牛顿运动定律的应用练习题

【物理】物理牛顿运动定律的应用练习题 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求: (1)开始时B离小车右端的距离; (2)从A、B开始运动计时,经t=6s小车离原位置的距离。 【答案】(1)B离右端距离(2)小车在6s内向右走的总距离: 【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒 解得:, A离左端距离,运动到左端历时,在A运动至左端前,木板静止 ,, 解得 B离右端距离 (2)从开始到达共速历时,,, 解得 小车在前静止,在至之间以a向右加速: 小车向右走位移

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

牛顿运动定律的综合应用

3-4专题:牛顿运动定律的综合应用 一、选择题 1.(2012·江西南昌)如图所示,一名消防队员在模拟演习训练中,沿着长为12m 的竖立在地面上的钢管往下滑。已知这名消防队员的质量为60kg ,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零。如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3s ,g 取10m/s 2,那么( ) A .该消防队员加速与减速过程的时间之比为1 ∶2 B .该消防队员加速与减速过程的时间之比为2 ∶1 C .加速与减速过程中所受摩擦力大小之比为1 ∶7 D .加速与减速过程中所受摩擦力大小之比为2 ∶7 [答案] AC [解析] 由v =a 1t 1,v =a 2t 2,联立解得t 1 ∶t 2=1 ∶2,A 正确,B 错误;由t 1+t 2=3s 可得t 1=1s ,t 2=2s ,由L =v (t 1+t 2)2可知v =8m/s ,a 1=8m/s 2,a 2=4m/s 2。由mg -f 1=ma 1, mg -f 2=-ma 2,得f 1 ∶f 2=1 ∶7,C 正确,D 错误。 2.(2012·辽宁大连)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙壁相切于A 点,竖直墙壁上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心。已知在同一时刻,a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道运动到M 点;c 球由C 点自由下落到M 点;则( )

A .a 球最先到达M 点 B .b 球最先到达M 点 C .c 球最先到达M 点 D .a 球最后到达M 点 [答案] C [解析] 由几何关系可得,A 、C 两点等高且OM 的长度等于圆环的半径R ,所以BM 的长度为2R ,AM 的长度为2R ,a 球的加速度大小为g sin45°,b 球的加速度大小为g sin60°,c 球的加速度大小为g ,由x =1 2at 2得t = 2x a ,结合三个小球加速度大小的表达可得,c 球最先到达M 点,故选项C 正确。 3.(2012·泉州五校质检)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳固定于墙壁。开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F fa ≠0,b 所受摩擦力F fb =0,现将右侧细绳剪断,则剪断瞬间( ) A .F fa 大小不变 B .F fa 方向改变 C .F fb 仍然为零 D .F fb 方向向右 [答案] AD [解析] 系统初始处于平衡状态,当剪断右侧细线后,细绳弹力可发生突变,而弹簧上弹力不可突变。故b 此时只受弹簧向左弹力,相对地面有向左运动趋势和地面间存在向右摩擦力,D 正确;而a 物体由于所受弹力不变,故其受力情况不改变,F fa 大小方向均不变,A 对。 4.(2012·长沙模拟)一条足够长的浅色水平传送带自左向右匀速运行。现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。下列说法中正

牛顿运动定律综合应用

牛顿运动定律综合应用 整体法与隔离法 1.物体A 、B 放在光滑的水平地面上,其质量之比m A ∶m B =2∶1。现用水平3 N 的拉力作用在物体A 上,如图所示,则A 对B 的拉力大小等于( ) A.1 N B.1.5 N C.2 N D.3 N 2.如图所示,光滑水平面上的小车,在水平拉力F 的作用下,向右加速运动时,物块与竖直车厢壁相对静止,不计空气阻力。若作用在小车上的水平拉力F 增大,则( ) A.物块受到的摩擦力不变 B.物块受到的合力不变 C.物块可能相对于车厢壁滑动 D.物块与车厢壁之间的最大静摩擦力不变 动力学中的临界和极值问题 3.倾角为θ=45°、外表面光滑的楔形滑块M 放在水平面AB 上,在滑块M 的顶端O 处固定一细线,细线的另一端拴一小球,已知小球的质量为m =55 kg ,当滑块M 以a =2g 的加速度向右运动时,细线拉力的大小为(g 取10 m/s 2)( ) A.10 N B.5 N C. 5 N D.10 N 4.如图所示,质量为M 的滑块A 放置在光滑水平地面上,A 的左侧面有一个圆心为O 、半径为R 的光滑四分之一圆弧面。当用一水平向左的恒力F 作用在滑块A 上时,一质量为m 的小球B (可视为质点)在圆弧面上与A 保持相对静止,且B 距圆弧面末端Q 的竖直高度 H =R 3 。已知重力加速度大小为g ,则力F 的大小为( )

A. 5 3Mg B. 5 2Mg C. 5 3(M+m)g D. 5 2(M+m)g 图象应用 5.一次演习中,一空降特战兵实施空降,飞机悬停在高空某处后,空降特战兵从机舱中跳下,设空降特战兵沿直线运动,其速度—时间图象如图甲所示,当速度减为零时特战兵恰好落到地面。已知空降特战兵的质量为60 kg。设降落伞用8根对称的绳悬挂空降特战兵,每根绳与中轴线的夹角均为37°,如图乙所示。不计空降特战兵所受的阻力。则空降特战兵(sin 37°=0.6,cos 37°=0.8)() A.前2 s处于超重状态 B.从200 m高处开始跳下 C.落地前瞬间降落伞的每根绳对特战兵的拉力大 小为125 N D.整个运动过程中的平均速度大小为10 m/s 6.(多选)如图甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 7.(多选)如图甲所示,物块的质量m=1 kg,初速度v0=10 m/s,在一水平向左的恒力F作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g取 10 m/s2。下列选项中正确的是()

牛顿运动定律的综合应用

课时作业10 牛顿运动定律的综合应用 时间:45分钟 满分:100分 一、选择题(8×8′=64′) 1.如图1,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为( ) A.g 2sin α B .g sin α C.3 2 g sin α D .2g sin α 图1 图2 解析:当绳子突然断开,猫保持其相对斜面的位置不变,即相对地面位置不变,猫可视为静止状态,木板沿斜面下滑,取猫和木板整体为研究对象,如图2进行受力分析,由牛顿第二定律得3mg sin α=2ma ,a =3 2 g sin α,所以C 选项正确. 答案:C 图3 2.如图3所示,在光滑水平面上叠放着A 、B 两物体,已知m A =6 kg 、m B =2 kg ,A 、B 间动摩擦因数μ=0.2,在物体A 上系一细线,细线所能承受的最大拉力是20 N ,现水平向右拉细线,g 取10 m/s 2,则( ) A .当拉力F <12 N 时,A 静止不动 B .当拉力F >12 N 时,A 相对B 滑动 C .当拉力F =16 N 时,B 受A 的摩擦力等于4 N D .无论拉力F 多大,A 相对B 始终静止 解析:设A 、B 共同运动时的最大加速度为a max ,最大拉力为F max 对B :μm A g =m B a max ,a max = μm A g m B =6 m/s 2 对A 、B :F max =(m A +m B )a max =48 N

最新高考物理牛顿运动定律的应用试题经典

最新高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2 kA A A A A E m v m g H h = +- 400J kA E =

牛顿运动定律---牛顿运动定律的综合应用

专题12 牛顿运动定律的综合应用 【基础回顾】 考点内容:牛顿运动定律及其应用;超重与失重 考纲解读: 1.掌握超重、失重的概念,会分析有关超重、失重的问题。 2.学会分析临界与极值问题。 3.会进行动力学多过程问题的分析。 考点一超重与失重 1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化). 2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关. 3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态. 4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma. 考点二动力学中的临界极值问题分析 1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件.用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键. 2.临界或极值条件的标志: (1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态; (3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点; (4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度. 考点三动力学中的图象问题 物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点. 1.常见的图象有:v-t图象,a-t图象,F-t图象,F-a图象等.

牛顿运动定律的应用练习题含答案

牛顿运动定律的应用练习题含答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带的皮带轮逆时针匀速转动,使传送带上表面以u =2.0m/s 匀速运动。传送带的右边是一半径R =1.25m 位于竖直平面内的光滑 14圆弧轨道。质量m =2.0kg 的物块B 从1 4 圆弧的最高处由静止释放。已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。取g =10m/s 2。求: (1)物块B 滑到 1 4 圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能; (3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。 【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】 (1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得: 2 012 mgR mv 代入数据解得: v 0=5m/s

相关主题
文本预览
相关文档 最新文档